
A Time-Frequency Generative Adversarial based
method for Audio Packet Loss Concealment

Carlo Aironi, Samuele Cornell, Luca Serafini, Stefano Squartini
Department of Information Engineering, Università Politecnica delle Marche, Italy
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Abstract—Packet loss is a major cause of voice quality degra-
dation in VoIP transmissions with serious impact on intelligibility
and user experience. This paper describes a system based on a
generative adversarial approach, which aims to repair the lost
fragments during the transmission of audio streams. Inspired by
the powerful image-to-image translation capability of Generative
Adversarial Networks (GANs), we propose bin2bin, an improved
pix2pix framework to achieve the translation task from magni-
tude spectrograms of audio frames with lost packets, to non-
corrupted speech spectrograms. In order to better maintain the
structural information after spectrogram translation, this paper
introduces the combination of two STFT-based loss functions,
mixed with the traditional GAN objective. Furthermore, we
employ a modified PatchGAN structure as discriminator and we
lower the concealment time by a proper initialization of the phase
reconstruction algorithm. Experimental results show that the
proposed method has obvious advantages when compared with
the current state-of-the-art methods, as it can better handle both
high packet loss rates and large gaps. We make our code publicly
available at: github.com/aircarlo/bin2bin-GAN-PLC.

Index Terms—Packet Loss Concealment, Spectrogram Inpaint-
ing, Conditional Generative Adversarial Networks, bin2bin.

I. INTRODUCTION

Speech signals are often subject to localized distortions
or even total loss of information, when data is transmitted
through unreliable channels. This happens, for example, in
applications such as mobile digital communications, video-
conferencing systems and Voice over Internet Protocol (VoIP)
calls. In such scenarios, audio frames are often encapsulated
into packets, which are then routed individually through the
network, sometimes taking different paths, resulting in out-of-
order delivery. At the destination, the original sequence may be
reassembled in the correct order, based on the packet sequence
numbers. Hence, a variety of issues can occur, like packet
losses, over-delay or jitter.

The process of restoration of missing packets is known
as Packet Loss Concealment (PLC) [1]. This term refers
to any technique that attempts to overcome the packet-loss
problem, by concealing the lost fragments by an estimated
reconstruction, which should be meaningful and consistent
with the informative content of the speech message. The
system should also prevent audible artifacts and decrease
listening fatigue, so that the listener remains unaware of any
problems that have occurred.

A. Related works
Some techniques refer to a similar task with the terms

Audio Inpainting [2], [3], Waveform Interpolation [4] or

Extrapolation [5]. These techniques address the reconstruction
problem from a sparsity point of view, by approximating the
waveform with a combination of frequency atoms, extracted
from a given dictionary. However they are not suitable for
real-time applications, as the computational cost can lead to
excessive latency times.

Most of the current approaches to PLC are based on codecs
that implement algorithmic solutions: sender-based techniques
like Interleaving and Forward-Error Correction (FEC) [6],
or receiver-based concealment techniques, like Silence/Noise
Substitution, Waveform Substitution, or Linear Predictive Cod-
ing (LPC) [7].

With the rise of Deep Neural Networks (DNN), a significant
improvement of quality has been obtained on speech process-
ing tasks, hence also DNN architectures for neural PLC have
been successfully investigated: MLP [8], LSTM/RNN [1], [9],
Autoencoders [10], [11], GANs [12], [13].

In this study, we apply a Generative method, based on the
pix2pix [14] framework which exploits a Fully Convolutional
Network (FCN) architecture, to address the spectrogram in-
painting task. We show that this solution, while preserving
global temporal and spectral information along with local in-
formation, can outperform competing approaches, based either
on classical digital signal processing solutions or learning
methods.

II. GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs) [15] have
emerged in the past years as a powerful generative model-
ing technique. A typical GAN consists of two networks, a
generator (G) and a discriminator (D). Given an input of
random values sampled from a normal distribution, z (latent
variable), the generator performs an upsampling in order to
obtain a sample of suitable dimensions. On the other hand, the
discriminator acts as a binary classifier, trying to distinguish
“real” samples x (belonging to the dataset distribution) from
“fake” samples, generated by G.

Both G and D are trained simultaneously in a min–max
competition with respect to binary cross-entropy loss. The final
objective for G is to output samples that follow as close as
possible the “real” data distribution, while D learns to spot the
fake samples from real ones, by penalizing G for producing
implausible results.

Given the success achieved in the field of image processing,
GANs have also been effective in speech processing tasks. In
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this regard, WaveGAN [16] represents the pioneering attempt
to adapt a deep convolutional GAN (DCGAN) structure for
speech, by compressing the two-dimensional image input
into one-dimensional. It laid the foundations for GAN-based
practical audio synthesis and for converting different image
generation GANs to operate on waveforms.

Several extensions have been derived from WaveGAN; to
name a few, cWaveGAN [17], which allows conditioning both
G and D with additional information to drive the generation
process, and Parallel WaveGAN [18], which uses a multi-
resolution STFT loss along with the adversarial loss.

As outlined in [16], in the generative setting, working with
compressed time-frequency representations may be problem-
atic as the generated spectrograms are non-invertible, hence
they cannot be listened to without lossy estimations, never-
theless, the practice of bootstrapping image recognition algo-
rithms for audio tasks has become commonplace; examples
include SpecGAN [16], MelGAN [19], VocGAN [20] and
StyleGAN [21].

A. Pix2pix

Pix2pix is a conditional GAN (cGAN) originally developed
in 2017 by Phillip Isola, et al. [14] for synthesizing photos
from label maps, reconstructing objects from edge maps and
colorizing images. Unlike a vanilla GAN which uses only
random noise seeds to trigger generation, a cGAN introduces
a sort of supervision by feeding the generator with the target
information c, categorical labels or contextual samples. The
discriminator is also conditioned by c, to help distinguish more
accurately the matching and alignment of two images:

min
G

max
D

LcGAN (D,G) =Ex,c [log (D(x|c))] +

Ez,c [log (1−D(G(z|c)))]
(1)

Unlike other cGAN-based works (e.g. [22] [23]), Isola
et al. demonstrate that the input noise vector z does not
have a significant impact if the conditioning information is
strong enough, so they removed it, getting the same stochastic
behavior by adding dropout layers to the generator.

III. NEURAL CONCEALMENT ARCHITECTURE

An overview of our bin2bin architecture is presented in Fig.
1. The main contribution of this paper is the adaptation of the
pix2pix architecture, for the audio packet loss concealment
task, through an in-depth evaluation of both generative and dis-
criminative processes, optimized to inpaint spectrograms gaps.
We adopt the term bin2bin as a direct translation of pix2pix,
inspired by the fundamental unit (bin) of the discretized time
and frequency axes of the spectrogram.

A. Generator

In the proposed bin2bin scheme, the generator architecture
makes use of the U-Net [24] structural design with the
insertion of skip-connections between affine layers. The U-Net
is composed of a convolutional encoder that down-samples
the input image in the first half of the architecture, and a

decoder that upsamples the latent representation applying 2D
transposed-convolutions.

The clean signal s and its lossy counterpart s̃, are first
transformed into time-frequency spectrograms. In the provided
implementation, all STFTs are computed with a 512 points
Hann window, corresponding to 32 milliseconds at the sample
rate of 16000 Hz, and a hop size of 64. The STFT parameters
have been chosen to ensure a balanced resolution between the
regions to be reconstructed and the reliable parts acting as
conditioning contexts.

Our generator G accepts 1× 256× 256 inputs, where each
dimension represents, respectively, the number of Channels,
Frequency and Time bins, hence, a portion of such size is
extracted at a random time, from the aforementioned spectro-
grams S and S̃, regardless of the amount of lost fragments
present inside.

Only the log-magnitude spectrogram is fed into the genera-
tor; for the training stage, the phase information is discarded,
while for the test stage it is used to initialize the Griffin-Lim
[25] phase reconstruction algorithm.

B. Discriminator

The discriminator is built on a custom architecture, specif-
ically designed for the pix2pix framework, called PatchGAN
[14]. It is basically a fully convolutional network that maps
the input image into an N × N feature map of outputs Y ,
in which each patch yij indicates whether the corresponding
portion of input is real or fake. The patches originate from
overlapped receptive fields, which can be retrieved through
simple backtracking operations.

In the original paper [14], an ablation study was conducted
to determine the best configuration of D (number of conv.
layers, kernels size), to maximize the evaluated metrics. In
this work we focused on a similar aspect: we tested the effect
of varying the size of the discriminator convolutional kernels,
to achieve a rectangular receptive field, instead of the square
dimension (70×70 pixels) used in pix2pix. We motivated this
decision by observing that the portions of the spectrogram to
be concealed extend over the entire frequency dimension, and
a relatively small part of the time dimension. We traded-off
between the complexity of D and the desired shape, obtaining
an optimal receptive field of 162× 24, with rectangular 8× 2
kernels for all conv layers.

C. Post-processing

The generator output represents the magnitudes of the
TF coefficients, both of the reliable and lost regions. The
synthesis by the inverse STFT introduces an inherent cross-
fading, which significantly reduces artifacts. For the phase
reconstruction we used a modified version of Griffin-Lim [25]
algorithm, by providing the phase of the lossy frame as an
initial estimate. In this way the synthesis of the reconstructed
waveform is considerably sped up; we can obtain maximum
quality, with less than 10 iterations of the algorithm.
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Fig. 1. The proposed framework is composed of the U-Net for spectrogram inpainting. Deep feature loss for training the U-Net is obtained by ensembling the
discriminator loss (binary cross-entropy between patches), along with the spectral distances (Lmag and Lsc), between the representations of the recovered
and the actual STFT log-magnitudes.

D. Loss functions

The generator model is trained by mixing the GAN objective
with a traditional pixel-wise loss, between the generated re-
construction of the source spectrogram and the expected target
spectrogram.

Differently from the original paper, we have found it more
beneficial to use loss functions related to the perceptual quality
of the audio signal: log-STFT magnitude loss (Lmag) and
Spectral Convergence loss (Lsc), defined as follows:

Lmag

(
S, S̃

)
=

∑
t,f |log|St,f | − log|S̃t,f ||

T ·N
(2)

Lsc

(
S, S̃

)
=

√∑
t,f

(
|St,f | − |S̃t,f |

)2

√∑
t,f |St,f |2

(3)

where |St,f | and |S̃t,f | represent the STFT magnitude vector
of s and s̃ respectively, at time t, while T and N denote the
number of time bins and frequency bins of a frame.

As outlined in [26], Lsc highly emphasizes large spectral
components, which helps especially in early phases of training,
while Lmag accurately fits small amplitude variations, which
tends to be more important towards the later phases of training.

The goal of the adversarial loss is to drive the generator
model to output T-F representations that are plausible in
the target domain, whereas the spectral losses regularize the
generator model to output spectrograms that are a plausible
translation of the source context. The combination of the
adversarial loss and the spectral losses is controlled by the
hyperparameters λ1 and λ2, both set to 250, since it has
been observed that the spectral loss is more important for
reconstruction than the adversarial one.

L = LcGAN + λ1Lmag + λ2Lsc (4)

The discriminator model is trained in a standalone manner
in the same way as in a traditional GAN model, minimizing
the negative log-likelihood of identifying real and fake images,

although conditioned on the clean spectrogram, which is
concatenated with G(S̃) to form the input of D.

We followed a common practice in training generative
networks [27], which consists in balancing the evolution of
training by iterating nG times the generator weights update,
for every one of D. We used the value nG = 10.

The models were trained for 50 epochs, following an early
stopping policy based on the spectral losses observed on
the validation set. We used the Adam [28] optimizer with
a learning rate of 0.0002 for both the generator and the
discriminator, and a batch size of 8.

IV. DATASETS

We used the VCTK Corpus (Centre for Speech Technology
Voice Cloning Toolkit) [29] set of data to simulate loss traces,
for training and evaluation of the speech PLC model.

VCTK contains about 44 hours of clean speech from 109
English speakers, 47 males and 62 females, with different
accents. To comply with the policy followed by the comparing
methods, we downsampled the audio to 16 kHz, trimmed
leading and trailing silence, and split into three subsets: train,
validation and test, the latter containing 5 speakers held out
from the train and validation sets. We assumed that the
lost packets have a duration multiple of 20 ms, and were
simulated by zeroing samples of the clean waveform, finally
we limited to 120 ms the maximum gap length, equivalent to 6
consecutive packets. Fig. 3 shows the distribution of lost gaps,
obtained by injecting packets with rates in the range 10% -
40%.

V. RESULTS AND COMPARISONS

The proposed PLC method has been compared with three al-
gorithmic solutions, represented by the general purpose codecs
Opus [30], WebRTC [31] and Enhanced Voice Services (EVS)
[32], and against four state-of-the-art deep PLC methods: the
wave-to-wave generative adversarial network (PLCNet) [33],
the mel-to-wave non-autoregressive adversarial auto-encoder
(PLAAE) [34], the wave-to-wave adaptive recurrent neural
network (RNN) [9] and the time-frequency hybrid generative
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Fig. 2. Magnitude spectrograms (in dB) of an example reconstruction. Left: original signal. Center: lossy signal with 120 ms wide gap (in red-dashed box)
Right: reconstruction by the bin2bin network. The axes of the plots indicate the frequency bin and the frame index.
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Fig. 3. Gap size distribution obtained by injecting zero-valued frames, with
different rates.

adversarial network (TFGAN) [12]. In addition, the evaluation
metrics obtained by simply zero-filling the lost gaps were also
reported as a baseline.

We evaluated the performances of the proposed generative
inpainting method, in terms of Wide-Band Perceptual Evalua-
tion of Speech Quality (PESQ) [35] and Short-Time Objective
Intelligibility (STOI) [36]. The implementations used in this
paper are from [37] for PESQ, and from [38] for STOI.

Table I shows the experimental results for PESQ and STOI,
under different packet loss rates, compared with the PLCNet
method, It can be seen that the proposed model can achieve
a significant improvement in performance, the more the loss
rate increases, so it is also able to cope better with large gaps
of adjacent lost packets. The improvement is notable on PESQ
scores; it ranges from +6.0% (loss rate 10%) to +27.5% (loss
rate 40%). The STOI shows less noticeable gains, only for
higher loss rates: +2.3% (loss rate 30%) and +7.8% (loss rate
40%).

Table II summarizes the results of the proposed method with
all the competing approaches. Values represent the average
score of PESQ and STOI under all packet loss rates inves-
tigated. Compared with the best performing network among

previous state-of-the-art systems (PLCNet), bin2bin improves
PESQ by 15.3% and STOI by 2.4%, while, in comparison with
the best codec-based concealment (EVS), the improvement
rises up to 43.9% for PESQ and 12.8% for STOI.

Figure 2 shows the qualitative results of a concealed 120
ms wide gap, within a test sample. This represents the worst
scenario, in terms of extent of lost fragments, the network is
trained to face.

In addition, we timed the forward execution of the bin2bin
inpainting process, both in a CPU environment (Intel core i7-
6850K) and a GPU environment (Nvidia Titan Xp), obtaining
real-time (RT) factor values of 0.17 and 0.11 respectively.

TABLE I
OBJECTIVE SCORES FOR BIN2BIN AND PLCNET, UNDER DIFFERENT

PACKET LOSS RATES

Packet Loss Rate zero-fill PLCNet bin2bin

PESQ

10 % 2.13 3.12 3.31
20 % 1.04 2.60 2.87
30 % 0.89 2.04 2.50
40 % 0.81 1.71 2.18

STOI

10 % 0.86 0.93 0.92
20 % 0.81 0.90 0.90
30 % 0.73 0.85 0.87
40 % 0.61 0.77 0.83

TABLE II
AVERAGE OBJECTIVE SCORES FOR THE COMPARISON PLC SOLUTIONS,

UNDER PACKET LOSS RATE 10%-40%

PESQ STOI

bin2bin 2.72 0.88
PLCNet 2.36 0.86
PLAAE 2.04 0.84
TF-GAN 1.97 0.81

RNN 1.91 0.77
EVS 1.89 0.78
Opus 1.77 0.77

WebRTC 1.70 0.70
zero-fill 1.22 0.75



VI. CONCLUSIONS

In this paper, we proposed an end-to-end pipeline for
spectrogram inpainting and audio concealment using a cGAN-
based architecture, inspired by the popular pix2pix framework.
We combined the classical discriminative loss with a linear
combination of two loss functions, that are correlated with
the perceptual quality of speech. In addition, we adapted the
receptive field of the PatchGAN discriminator and we used
a custom initialization of the Griffin-Lim algorithm to speed
up post-processing. We demonstrated experimentally that the
proposed method is capable of simultaneously identifying and
recovering missing parts, thus outperforming the state-of-the-
art DNN method by +15.3% on PESQ and +2.4% on STOI,
respectively. Finally, inference time evaluation suggests that
this approach can be integrated into a real-time application,
even with a mid-range hardware setting.

As future developments we plan to investigate the generator
to directly process complex-valued spectrograms, in order to
incorporate the phase reconstruction directly into the genera-
tive model.
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