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Abstract—Audio source separation is often achieved by esti-
mating the magnitude spectrogram of each source, and then
applying a phase recovery (or spectrogram inversion) algorithm to
retrieve time-domain signals. Typically, spectrogram inversion is
treated as an optimization problem involving one or several terms
in order to promote estimates that comply with a consistency
property, a mixing constraint, and/or a target magnitude objec-
tive. Nonetheless, it is still unclear which set of constraints and
problem formulation is the most appropriate in practice. In this
paper, we design a general framework for deriving spectrogram
inversion algorithm, which is based on formulating optimization
problems by combining these objectives either as soft penalties
or hard constraints. We solve these by means of algorithms that
perform alternating projections on the subsets corresponding to
each objective/constraint. Our framework encompasses existing
techniques from the literature as well as novel algorithms.
We investigate the potential of these approaches for a speech
enhancement task. In particular, one of our novel algorithms
outperforms other approaches in a realistic setting where the
magnitudes are estimated beforehand using a neural network.

Index Terms—Audio source separation, spectrogram inversion,
phase recovery, alternating projections, speech enhancement.

I. INTRODUCTION

Audio source separation consists in extracting the un-

derlying sources that add up to form an observed audio

mixture. Typical source separation approaches use a deep

neural network (DNN) to estimate a nonnegative mask that is

applied to a time-frequency (TF) representation of the audio

mixture, such as the short-time Fourier transform (STFT) [1].

Alternatively, complex-valued DNNs jointly process the real

and imaginary parts of the STFT [2], and end-to-end net-

works operate in the time domain directly, where the STFT

is replaced with learned filterbanks [3], [4]. Nonetheless, it

was recently shown that nonnegative TF masking remains

interesting, since it yields competitive results with lighter and

more interpretable networks [5], [6].

Such a masking results in assigning the mixture’s STFT

phase to each isolated source, which induces residual interfer-

ence and artifacts in the estimates. Consequently, a significant

research effort has been put on phase recovery, also called

spectrogram inversion. While recent approaches mostly rely

on deep phase models [7] or neural vocoders [8], in this

work we focus on optimization-based iterative algorithms [9].

Indeed, these remain powerful since they can be either used

as a light post-processing, unfolded within end-to-end sys-

tems [10], [11], or combined with the above-mentioned deep

phase models.

Iterative spectrogram inversion algorithms are usually de-

rived as solutions to optimization problems involving one

or several terms that promote desirable properties in the TF

domain. For instance, the multiple input spectrogram inversion

(MISI) algorithm [9] minimizes a measure of magnitude spec-

trogram mismatch under a mixing constraint (the estimates

must add up to the mixture). Alternatively, the authors in [12]

relax the mixing constraint into a soft penalty that is added

to a consistency [13] term. Conversely, [14] considers a hard

magnitude constraint and discards the consistency criterion.

Nonetheless, it is still unclear which set of constraints and

problem formulation is the most appropriate in practice.

In this paper, we design a general framework for deriving

spectrogram inversion algorithms. We consider three objec-

tives in the TF domain: mixing, consistency, and magnitude

match, and we formulate optimization problems by combining

these objectives either as soft penalties or hard constraints. We

then derive an auxiliary function for each term, which allows

to solve the corresponding optimization problems by means

of alternating projection algorithms. While this framework

encompasses existing techniques from the literature, it also

allows to derive novel algorithms. We experimentally assess

the potential of these algorithms for a speech enhancement

task on an freely available audio corpus. In particular, one of

our novel algorithms outperforms baseline MISI variants [9],

[12] in a realistic setting where the magnitudes are estimated

beforehand using a DNN.

The rest of this paper is structured as follows. Section II

introduces the proposed framework, and algorithms are derived

in Section III. Section IV presents the experimental results.

Finally, Section V concludes the paper.

II. PROPOSED FRAMEWORK

A. Problem setting

Let us consider a monaural instantaneous mixture model:

X =

J
∑

j=1

Sj , (1)

where X ∈ CF×T is the mixture STFT, and Sj ∈ CF×T are

the J sources matrices, whose entries are denoted xf,t and
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sj,f,t. F and T respectively denote the number of frequency

channels and time frames of the STFT. We assume that the

sources’ STFT magnitudes Vj have been estimated before-

hand, e.g., via a DNN. Then, spectrogram inversion consists

in estimating the complex-valued sources S = {S1, . . . ,SJ}
in order to further invert these for retrieving time-domain

signals. To perform this task, we search for source estimates

that comply with the following properties:

• Mixing: the estimates should sum up to the mixture ac-

cording to (1), so that there is no creation or destruction of

energy overall. Such estimates are said to be conservative.

• Consistency: the estimates should be consistent [13], that

is, the corresponding complex-valued matrices should be

the STFT of time-domain signals.

• Magnitude match: the magnitudes of the estimates

should remain close to the target magnitudes Vj that have

been estimated beforehand.

We propose to define a loss function corresponding to

each objective in an optimization framework, and to combine

these either as soft penalties or hard constraints. To solve

the corresponding optimization problems, we resort to the

auxiliary function method, which has shown powerful for

spectrogram inversion [13]–[15]. In a nutshell, if we con-

sider minimization of a function φ with parameters θ, this

approach consists in constructing and minimizing an auxiliary

function φ+ with additional auxiliary parameters θ̃ such that

∀θ, φ(θ) = minθ̃ φ
+(θ, θ̃). Then, it can easily be shown that

φ is non-increasing under the following update scheme:

θ̃ ← argmin
θ̃

φ+(θ, θ̃) and θ ← argmin
θ

φ+(θ, θ̃). (2)

For a clarity purpose, this paper focuses on formulating the

optimization problems and providing the algorithms’ updates;

a supporting document details the mathematical derivations.1

B. Mixing error

We consider the following mixing error:

h(S) = ||X−
∑

j

Sj ||
2, (3)

where ||.|| is the Frobenius norm. Let us consider auxiliary

parameters Y = {Y1, . . . ,YJ} such that
∑

j Yj = X, and

positive weights Λj = {λj,f,t}f,t such that
∑

j λj,f,t = 1. We

define h+ as follows:

h+(S,Y) =
∑

j,f,t

|yj,f,t − sj,f,t|
2

λj,f,t

. (4)

Then, using the Jensen inequality, one can show that [14]:

h(S) = min
Y

h+(S,Y) s. t.
∑

j

Yj = X, (5)

which shows that h+ is an auxiliary function for h. Besides,

the auxiliary parameters’ update is given by [14]:

Yj = Sj +Λj ⊙ (X−
∑

k

Sk), (6)

where ⊙ denotes the element-wise matrix multiplication.

1https://magronp.github.io/files/2023specinv sup.pdf

C. Inconsistency

To promote consistent estimates, we consider the inconsis-

tency measure defined in [13]: i(S) =
∑

j ||Sj − G(Sj)||
2,

where G = STFT ◦ iSTFT. It is proven [13] that G(Sj) is the

closest consistent matrix to Sj in a least-square sense, that is:

||Sj − G(Sj)||
2 = min

Zj

||Sj − Zj ||
2 s. t. Zj ∈ I, (7)

where I is the image set of the STFT operator. Therefore,

i+(S,Z) =
∑

j ||Sj−Zj ||
2 is an auxiliary function for i, and

the auxiliary parameters’ update is given by:

Zj = G(Sj). (8)

D. Magnitude mismatch

Finally, we consider the following loss for characterizing

the magnitude mismatch:2

m(S) =
∑

j

|||Sj | −Vj ||
2. (9)

We introduce a set of auxiliary parameters Uj such that

|Uj | = Vj . Then, drawing on [15], we have

|||Sj | −Vj ||
2 = min

Uj

||Sj −Uj ||
2 s. t. |Uj | = Vj , (10)

and the minimum is reached for:

Uj =
Sj

|Sj |
⊙Vj . (11)

This proves that m+(S,U) =
∑

j ||Sj −Uj ||
2 is an auxiliary

function for m.

III. ALGORITHMS DERIVATION

A. Mixing and consistency as objectives

First, let us ignore the magnitude constraint, and consider

the following problem:

min
S

h(S) + σi(S), (12)

where σ ≥ 0 is a weight adjusting the relative importance of

the consistency constraint (for notation purposes, σ = +∞
corresponds to an inconsistency objective only). Using our

proposed framework, the problem rewrites:

min
S,Y,Z

h+(S,Y) + σi+(S,Z) s. t.
∑

j

Yj = X and Zj ∈ I.

(13)

The updates for Y and Z have been derived previously (see

Section II-B and II-C), thus we only need to obtain the update

for S. To do so, we set the partial derivative of the objective

function in (13) with respect to Sj at 0 and solve, which yields:

Sj =
Yj + σΛj ⊙ Zj

1 + σΛj

, (14)

where division is meant element-wise. Therefore, alternating

updates (6), (8), and (14) yields an iterative procedure that

solves (12). We call it Mix+Incons, and we remark that:

2Note that we recently investigated alternative magnitude discrepancy
measures [16], but we focus on the Frobenius norm in this study.
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• This procedure is similar to the first version of the con-

sistent Wiener filtering [13], which forces the estimates

to be close to Wiener filter estimates instead of Yj .

Nonetheless, both sets of estimates are conservative.

• Choosing σ = 0 or σ = +∞ leads to Sj = Yj and

Sj = Zj , respectively. These non-iterative estimators

are termed “mixture-consistent projection” and “STFT-

consistent projection” in [17]. Thus, the general update

given by (14) allows for a smooth trade-off between these.

B. Mixing and consistency with a hard magnitude constraint

We now incorporate an additional hard magnitude constraint

into (12) by means of the method of Lagrange multipliers. This

results in finding a critical point for:

h+(S,Y) + σi+(S,Z) +
∑

j,f,t

δj,f,t(|sj,f,t|
2 − v2j,f,t), (15)

where {δj,f,t}j,f,t are the Lagrange multipliers. We set the

partial derivative of (15) with respect to Sj at 0 and solve,

which yields:

Sj =
Yj + σΛj ⊙ Zj

|Yj + σΛj ⊙ Zj |
⊙Vj . (16)

We call this procedure Mix+Incons_hardMag. Note that:

• This procedure is equivalent to the modified MISI algo-

rithm from [12], which however treats the weights Λ as

unknown parameters and updates them at each iteration.

• If σ = +∞, the procedure boils down to applying

the well-known Griffin-Lim update [18] to each source

independently without mixing constraint.

• If σ = 0, the procedure reduces to our previous “PU-

Iter” [14], which discards the consistency constraint.

C. Consistency objective with a hard mixing constraint

Now, let us consider an inconsistency-only objective func-

tion, where mixing is treated as a hard constraint. Note that in

this setup, we do not consider an additional hard magnitude

constraint since this yields an ill-posed problem.3 As above,

we treat this problem with the method of Lagrange multipliers,

which eventually yields:

Sj = Zj +
1

J
(X−

∑

k

Zk), (17)

where the update for Z is given by (8). We call this method

Incons_hardMix, and we remark that:

• This approach is non-iterative, since the set of consistent

matrices is a vector space and Zj is consistent by

construction.

• It is equivalent to the successive application of the STFT-

and mixture-consistent projections used in [17].

• The update (17) is similar to (6) with fixed weights

Λj = 1/J , which is expected when using mixing as a

hard constraint [9].

3Indeed, one can verify on a simple example (J = 2, v1 = v2 = 1, and
x = 4) that there is no solution that satisfies both constraints in general.

D. Magnitude objective with a hard mixing constraint

Finally, we consider the magnitude mismatch as the main

objective under a hard mixing constraint. Since incorporating

an additional hard consistency constraint would eventually

yield MISI [15], we focus here on a soft consistency penalty:

min
S

m(S) + σi(S) s. t.
∑

j

Sj = X. (18)

Still using the method of Lagrange multipliers, we obtain:

Wj =
1

1 + σ
(Uj + σZj) , (19)

Sj = Wj +
1

J

(

X−
∑

k

Wk

)

, (20)

where Zj and Uj are given by (8) and (11). We call this

procedure Mag+Incons_hardMix.

Remark: Let us note that if we discard the consistency con-

straint (σ = 0) and initialize the estimates using an amplitude

mask (see Section IV-A), then the estimator becomes:

Sj =

(

Vj +
1

J
(|X| −

∑

k

Vk)

)

X

|X|
, (21)

which is non-iterative and assigns the mixture’s phase to each

source, therefore it does not improve phase recovery.

E. Summary of the algorithms

We summarize in Table I the updates performed by these

various algorithms using the following magnitude, consistency,

and mixing projectors:

Pmag(S) =

{

Sj

|Sj |
⊙Vj

}

j

(22)

Pcons(S) = {G(Sj)}j (23)

Pmix(S) =

{

Sj +Λj ⊙ (X−
∑

k

Sk)

}

j

. (24)

IV. EXPERIMENTS

In this section, we assess the potential of our algorithms

for a speech enhancement task, a particular case of source

separation with J = 2 sources (speech and noise). Note that

this framework remains applicable to other source separation

scenarios such as speech [1] or music [19] separation. We

provide our code and sound examples online.4

A. Protocol

Data: As acoustic material, we build mixtures of clean

speech and noise. We randomly select 100 utterances from the

VoiceBank set [20] to create the clean speech, and we select

three real-world environments noise signals (living room, bus,

and public square) from the DEMAND dataset [21]. For

each clean speech signal, we randomly select a noise excerpt

cropped at the same length than that of the speech signal.

We then mix the two signals at various input signal-to-noise

4https://github.com/magronp/spectrogram-inversion
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TABLE I: Alternating projection algorithms for spectrogram inversion, where particular cases from the literature are indicated

in italics. Λj denotes mixing weights that can be hand-tuned. Note that all algorithms exhibit a similar computational cost,

which is dominated by the calculation of the STFT / iSTFT, thus consistency-free approaches are slightly faster.

Algorithm Reference Consistency weight Mixing weights Iterative Update formula

MISI [9] no 1/J yes Pmix(Pmag(Pcons(S)))

Mix+Incons σ {Λj}j yes
1

1 + σΛ
⊙ (Pmix(S) + σΛ⊙ Pcons(S))

Mixture-consistent projection [17] σ = 0 no Pmix(S)

STFT-consistent projection [17] σ = +∞ no Pcons(S)

Mix+Incons_hardMag σ {Λj}j yes Pmag(Pmix(S) + σΛ⊙ Pcons(S))

Modified MISI [12] σ optimized yes Pmag(Pmix(S) + σΛ⊙ Pcons(S))

PU-Iter [14] σ = 0 {Λj}j yes Pmag(Pmix(S))

Incons_hardMix [17] no 1/J or {Λj}j or learned no Pmix(Pcons(S))

Mag+Incons_hardMix σ 1/J yes Pmix

(

1

1 + σ
(Pmag(S) + σPcons(S))

)

ratios (iSNRs) (10, 0, and −10 dB). All audio excerpts are

single-channel and sampled at 16 kHz. The STFT is computed

with a 1024 samples-long (64 ms) Hann window and 75%
overlap. The dataset is split into two subsets of 50 mixtures: a

validation set, on which the consistency weight is tuned; and

a test set, on which all algorithms are evaluated.

Spectrogram estimation: We estimate the magnitude

spectrograms Vj with Open-Unmix [19], an open implemen-

tation of a three-layer BLSTM neural network, originally

tailored for music source separation, and later adapted to

speech enhancement. We use the pre-trained model available

at [22] and described in [20]. In practice, magnitudes are

estimated more accurately as the iSNR increases.

Methods: All algorithms are initialized with an amplitude

mask (AM), i.e., the estimated magnitudes are combined with

the mixture’s phase. The number of iterations is tuned on the

validation set (see next section), with a maximum of 20. For

the mixing projector, any nonnegative weights Λj that verify

the sum-to-one constraint can be used. In practice, we consider

magnitude ratios Λj = Vj/
∑

k Vk, since these are common

in such algorithms [14], [17] and yield the same performance

as the optimized weights described in III-B.

Metric: We evaluate the separation quality via the signal-

to-distortion ratio (SDR) between the true clean speech s
⋆
1 and

its estimate s1 (averaged over signals, higher is better):

SDR(s⋆1, s1) = 20 log10
‖s⋆1‖

‖s⋆1 − s1‖
. (25)

B. Results

First, let us investigate the influence of the consistency

weight σ onto performance. From the results displayed in

Fig. 1a-1c, we remark that Mag+Incons_hardMix ex-

hibits a stable performance with respect to σ. Conversely,

for the other algorithms, the SDR peaks at specific values

of σ. In particular, a properly tuned Mix+Incons outper-

forms its special cases corresponding to σ = 0 and +∞,

which were used in [17]. A similar behavior is observed for

Mix+Incons_hardMag, which outperforms its special case

TABLE II: Test results (SDR in dB).

iSNR= 10 iSNR= 0 iSNR= −10
AM 18.7 13.5 7.7
MISI 19.6 14.1 7.7
Mix+Incons 19.3 13.7 8.1
Mix+Incons_hardMag 18.7 13.8 7.9
Incons_hardMix 19.6 13.9 7.5
Mag+Incons_hardMix 19.6 14.1 7.7

σ = 0 [14]. This demonstrates the interest of our framework,

which allows for deriving general algorithms that outperform

their special cases found in the literature.

Besides, Fig. 1d reveals that the algorithms exhibit a

different behavior over iterations. Indeed, while for most

methods, the SDR steadily increases over iterations, MISI

reaches its peak performance after very few iterations, and

then its performance drops severely. This was notably observed

in [12]; nonetheless, the modified MISI algorithm introduced

in this paper (which is similar to Mix+Incons_hardMag)

was compared to MISI after 200 iterations, which is somewhat

unfair to MISI. Here, we select the optimal weight and number

of iterations for each algorithm in order to run them on the

test set in a more fair setup.

From the test results presented in Table II, we remark that

MISI achieves the best performance at high or moderate iSNR,

i.e., when the spectrograms are rather accurately estimated. We

also observe that Mag+Incons_hardMix can be an inter-

esting alternative to MISI: indeed, both algorithms perform

similarly in terms of SDR, but the latter is easier to tune, as is

evident from its steady behavior over iterations and stability

with respect to σ (see Fig. 1). The Incons_hardMix

algorithm, which was used for end-to-end source separation

in [17], reveals interesting at high iSNR since it is non-iterative

and yields similar results to MISI. However, it performs the

worst at low iSNR, where a baseline AM is preferable. On

the other hand, while Mix+Incons_hardMag improves

over MISI at low iSNR, it becomes less interesting when

spectrograms are more accurately estimated (iSNR = 0 or 10
dB), which differs from the results of [12]. This difference



0 10−3 10−2 10−1 100 101 102 103

Consistency weight

18.8

19.0

19.2

19.4

19.6
SD

R 
(d
B)

0 10−3 10−2 10−1 100 101 102 103

C nsistency weight

13.8

13.9

14.0

14.1

14.2

14.3

14.4

14.5

0 10−3 10−2 10−1 100 101 102 103

C nsistency weight

6.5

6.6

6.7

6.8

6.9

0 5 10 15 20
Iterati ns

13.6

13.8

14.0

14.2

14.4

Mix+Inc ns Mix+Inc ns_hardMag Mag+Inc ns_hardMix MISI

0 10−3 10−2 10−1 100 101 102 103

Consistency weight

18.8

19.0

19.2

19.4

19.6

SD
R 

(d
B)

(a) iSNR=10 dB

0 10−3 10−2 10−1 100 101 102 103

Consistency weight

13.8

14.0

14.2

14.4

(b) iSNR=0 dB

0 10−3 10−2 10−1 100 101 102 103

Consistency weight

6.5

6.6

6.7

6.8

6.9

(c) iSNR=-10 dB

0 5 10 15 20
Iterations

13.6

13.8

14.0

14.2

14.4

(d) iSNR=0 dB

Fig. 1: Validation SDR as a function of σ for the optimal number of iterations at various iSNRs (1a-1c), and validation SDR

over iterations for the optimal consistency weight at iSNR=0 dB (1d); similar trends are observed at other iSNRs.

might be explained by the usage of a different magnitude

estimation technique which is of paramount importance in

phase recovery [14] (spectral subtraction in [12] vs. a DNN

here); and by the afore-mentioned impact of an optimized

number of iterations. Finally, we note that the proposed

Mix+Incons allows to mitigate this SDR drop at high iSNR,

while it further improves the performance at low iSNR by 0.2
dB over the previously best performing approach. It should

be noted that this technique does not exploit the magnitude

projector, and only relies on the estimated magnitudes Vj via

its initialization. Therefore, the algorithm allows for deviation

from these magnitude values, which might explain its good

performance at low iSNR, since magnitude are estimated with

a lower accuracy in this case.

V. CONCLUSION

In this paper, we introduced a general framework for

deriving alternating projection algorithms for spectrogram in-

version using consistency, mixing, and magnitude constraints.

This framework encompasses existing techniques from the

literature, but also yields novel algorithms, among which

some appear as promising alternatives to baseline spectrogram

inversion approaches. Future work will be devoted to adapt

these algorithms to operate online [15] in order to combine

them with model-based phase priors [7], [14]. We will also

unfold them into deep networks for end-to-end separation [10],

where supervised learning can be leveraged to optimize the

consistency and mixing weights.
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