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Abstract—A chieving high accuracy with low latency has always
been a challenge in streaming end-to-end automatic speech
recognition (ASR) systems. By attending to more future contexts,
a streaming ASR model achieves higher accuracy but results in
larger latency, which hurts the streaming performance. In the
Mask-CTC framework, an encoder network is trained to learn
the feature representation that anticipates long-term contexts,
which is desirable for streaming ASR. Mask-CTC-based encoder
pre-training has been shown beneficial in achieving low latency
and high accuracy for triggered attention-based ASR. However,
the effectiveness of this method has not been demonstrated for
various model architectures, nor has it been verified that the
encoder has the expected look-ahead capability to reduce latency.
This study, therefore, examines the effectiveness of Mask-CTC-
based pre-training for models with different architectures, such
as Transformer-Transducer and contextual block streaming ASR.
We also discuss the effect of the proposed pre-training method
on obtaining accurate output spike timings, which contributes to
the latency reduction in streaming ASR.

Index Terms—Streaming automatic speech recognition, latency
reduction, Mask-CTC

I. INTRODUCTION

In recent years, deep learning has become the core tech-
nology of automatic speech recognition (ASR) [1f], [2]. End-
to-end ASR further integrates the traditional separated com-
ponents (i.e., acoustic, pronunciation, and language models)
into a single deep neural network, significantly contributing to
the simplicity of ASR developments [2]]-[4]]. End-to-end ASR
models can be realized in various approaches, including con-
nectionist temporal classification (CTC) [5]], Transducer [6],
and attention-based encoder-decoder [2], [4]. These end-to-
end ASR approaches have greatly benefited from the adoption
of Transformer [7]-[11]], enabling a model to capture global
contexts using the self-attention mechanism.

Streaming properties (i.e., real-time processing) are of vital
importance in the applications of ASR systems. With the
superior performance of Transformer, many efforts have been
devoted to making Transformer-based ASR models streaming.
Triggered attention-based ASR [12]] obtains alignment infor-
mation from CTC and realizes frame-synchronous decoding
according to the CTC spike timings. Meanwhile, contextual
block streaming ASR (CBS-ASR) [13] splits the input into
blocks (chunks), and streaming encoder feature extraction is
conducted on each block with the contexts inherited from
the previous blocks. A block boundary detection algorithm
is applied to detect the index boundary in each block, which

enables block-synchronous beam search decoding. Apart from
the above streaming models based on attention-based encoder-
decoder, the Transducer-based model can be naturally applied
to streaming ASR. Transducer trains a model to align the
output of the acoustic encoder with the output of the label
encoder, enabling frame-synchronous decoding and making it
a suitable framework for streaming ASR [8]]. Transformer-
Transducer (Transformer-T) [9] adopts Transformer for the
acoustic encoder, where the chunk-wise attention mask limits
the look-ahead range of the self-attention layer to ensure
streaming properties.

For streaming ASR models in general, performance degra-
dation occurs when the look-ahead range is limited from
global to local, suppressing the advantage of the Transformer
architecture (i.e., processing with long-range contexts). Conse-
quently, longer look-ahead ranges are often required to provide
adequate future contexts, leading to the growth of latency
requirements. Therefore, capturing long-term contexts within
short look-ahead ranges is essential for building successful
streaming ASR systems.

One approach to realizing such a property is to utilize the
Mask-CTC [14], [15]] framework. With conditional masked
language model (CMLM) [16], [17] and CTC multi-task train-
ing, Mask-CTC trains an encoder network to extract acoustic
feature representation that contributes to capturing long-term
output dependencies by anticipating future contexts. Its capa-
bility of learning context-rich bi-directional representations has
been validated in the spoken language understanding task [18]],
[19]. In our previous work [20], we conducted supervised pre-
training with the Mask-CTC objective on the encoder and
CTC modules of the triggered attention-based model, which
has shown effective results for improving accuracy while
reducing latency. In this work, we aim to further examine the
effectiveness of Mask-CTC-based pre-training for streaming
models with various architectures.

In addition, a detailed perspective on the latency can be ana-
lyzed by focusing on the timing of output spikes. In streaming
ASR, the timing of output spikes is generally delayed due to
the lack of long-term context information. We expect that the
proposed pre-training based on Mask-CTC will introduce the
look-ahead capability to the encoder, thereby enabling accu-
rate prediction of the timing of output spikes. This property
contributes to the early determination of recognition results,
which is essential for streaming applications (e.g., a system



that interacts with a user in real-time).

This study, therefore, attempts to demonstrate the effec-
tiveness of Mask-CTC-based pre-training for streaming mod-
els with different architectures, including Transformer-T and
CBS-ASR, and to discuss the contribution of the proposed
pre-training to latency reduction.

The rest of this paper is organized as follows. Section
overviews the streaming ASR models and the Mask-CTC
model. Section describes the proposed pre-training ap-
proach for constructing low latency and high recognition ac-
curacy streaming ASR models. In Section we demonstrate
the effectiveness of Mask-CTC-based pre-training through ex-
periments and discuss the latency reduction effect with output
spike timing measurements. Finally, Section [V] concludes this

paper.

II. BACKGROUND

In this section, we introduce two types of streaming
ASR approaches that we study in this work: Transformer-
Transducer [9]] and contextual block streaming ASR [13]]. We
also describe Mask-CTC [14]], which is the key to our proposed
method.

A. Transformer-Transducer

A Transducer-based ASR model contains three components:
acoustic encoder, label encoder, and joint network. Given a
streaming input to a current time index ¢, the output probability
of the u-th token is calculated as follows:

hF = AcousticEncoder(x.;), (1)
h'E | = LabelEncoder(yy., 1), )
h = Tanh(Linear(h¥) + Linear(h%F ), 3)
P(yu|y1:u—1, X1:¢) = SoftMax(h). 4)

First, the acoustic encoder embeds the input sequence xi.
into vector htAE (Eq. (0)). Meanwhile, the label encoder gen-
erates h'{LE_l from the previous output token sequence yi.,—1
(Eq. (@)). The two outputs are then sent to the joint network,
projected to the same dimension, and added up (Eq. ().
Finally, the output probabilities against tokens in a vocabulary
V are calculated based on the previous result (Eq. (4)). The
Transducer framework predicts the current symbol for each
input frame based on the past output tokens, which naturally
introduces streaming fashion into decoding.

Various neural network types can be applied to implement
the acoustic and label encoders [6], [21]], [22]. In the work
of [9], Transformer [7]] is applied to the acoustic encoder to
achieve high accuracy and LSTM [21] for the label encoder in
consideration of the model size control. Chunk-wise attention
masks are applied to the self-attention layers of the Trans-
former acoustic encoder to enable streaming feature extraction.
This architecture is referred to as a Transformer-Transducer
(Transformer-T).

B. Contextual block streaming ASR

Contextual block streaming ASR (CBS-ASR) [13] intro-
duces streaming properties to attention-based encoder-decoder
models. For streaming feature extraction in the encoder, CBS-
ASR utilizes block processing with a context inheritance
mechanism proposed in [23]]. The speech input is segmented
into blocks containing past, central, and future frames with
the numbers of N;, N., and N,. The input blocks are passed
on to the encoder, where the central frames are utilized
for the output with local contexts provided by the past and
future frames as well as the global contexts provided by a
context embedding vector inherited from the previous block.
Streaming decoding is achieved by a block boundary detection
(BBD) algorithm [[13]], which takes end-of-sentence prediction
or token repetition as stopping criteria from detecting the
index boundaries on-the-fly and enables the beam search
synchronous to the encoded blocks. The streaming processing
in CBS-ASR is calculated as follows:

Hy, ¢, = BlockEncoder(Zy, cp—1), 5)

B I
a(yos, Hip) =~y Y logp(Uilyos—1, Hip).  (6)
b=1j=I,_;+1

Eq. (®) represents the streaming encoding of the b-th input
sequence 7, where |Zy] = N; + N. + N,. The encoded
acoustic features Hj is obtained from Z;, and the contextual
vector from the previous block cp—_1. Eq. (6) represents the
score of the partial hypothesis yg.; during streaming beam
search decoding, where y is the start-of-sequence token. I
denotes the index boundary of the b-th input block derived
from the BBD algorithm.

C. Mask-CTC

The Mask-CTC framework [14] aims to learn feature
representations suitable for anticipation of future contexts.
Mask-CTC trains an encoder-decoder model with the joint
CMLM [16] and CTC objectives. During training, tokens in
the ground truth are randomly masked, and the masked tokens
are predicted based on contextual information captured by
the encoder and other unmasked output tokens. For the input
X and observed tokens Ygps, the output probabilities of the
masked tokens Y.k are computed as follows:

Pcmlm(YmaskD/obm X) = H Pcmlm(?]l}/obs; X)> (7
YE Yinask

where Yobs is Y\ Yinask- Based on the CMLM mask prediction
of the decoder, the encoder network of Mask-CTC is trained
to consider the long-term bidirectional dependencies between
output tokens, which enables it to generate acoustic feature
representations that anticipate future information.

Such properties are desirable in streaming ASR as it allows
the model to capture more future contexts with a limited look-
ahead range. In such a way, the Mask-CTC framework can be
a potential solution for improving streaming ASR, enhancing
a model to achieve high accuracy while keeping low latency.
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Fig. 1. Illustration of Mask-CTC-based pre-training using Transformer-
Transducer model. In stage 1, encoder is trained with Mask-CTC frame-
work. In stage 2, Transformer-Transducer model is initialized with pre-
trained encoder and fine-tuned with streaming objective.

III. MASK-CTC-BASED PRE-TRAINING METHOD

We present a simple and general Mask-CTC-based pre-
training method for achieving high-accuracy and low-latency
streaming ASR. Specifically, this paper aims to demonstrate
the effectiveness of the Mask-CTC pre-training regardless of
model architectures and discusses whether such pre-training
can extract features suitable for anticipation as intended,
focusing on the alignment of the output tokens.

As different end-to-end streaming ASR models, we focus
on Transformer-T (see Section and CBS-ASR (see
Section |lI-B)), which cover both Transducer and encoder-
decoder model architectures. For both models, the adoption
of Transformer has realized high recognition accuracy in their
non-streaming baselines. However, when applied to streaming
scenarios, the look-ahead ranges of self-attention layers are
limited from global to local. This leads to an inevitable
performance drop by degrading the Transformer’s capability to
capture long-range contexts, which limits applications where
low latency is a top priority for recognition.

To remedy such an effect, we need the feature representation
for the input sequence that considers long-term contextual
dependencies and anticipates future information, which corre-
sponds to the properties of the Mask-CTC encoder network as
described in Section[[I-C| To introduce the desirable properties
of the Mask-CTC model into the streaming ASR, we propose
a simple two-step training method as follows, which is also
described in Fig. [T}

o Stage 1 (Feature representation learning): The Mask-
CTC model is pre-trained to obtain an encoder network
that can consider long-term dependencies and anticipate
future information.

o Stage 2 (Streaming ASR training): The pre-trained
Mask-CTC model is exploited to initialize the streaming
ASR models. For Transformer-T, the acoustic encoder
with the chunk-wise attention is initialized with the
Mask-CTC encoder. For CBS-ASR, both the Mask-CTC
encoder and CTC networks are used to initialize the
corresponding components.

With the two-step training method above, we expect to
inherit the characteristics of Mask-CTC to a streaming ASR

model to capture long-term contextual information and reduce
the latency dependency.

IV. EXPERIMENTS

Speech recognition experiments were conducted to examine
the effectiveness of the Mask-CTC-based pre-training method
using ESPnet2 [24], [25]. We also investigated the essential
effect of the proposed pre-training method by studying the
output token alignments of the streaming ASR models.

A. Datasets

The models were trained and evaluated using the Wall Street
Journal (WSJ) [26] dataset, which contains 81h English utter-
ances of read articles from the newspaper and the TED-LIUM?2
(TED2) [27] dataset, which contains 207h English spontaneous
speech. For the output tokens, we used SentencePiece [28] to
construct a 80 subword vocabulary for WSJ and a 500 subword
vocabulary for TED2, respectively. For robust model training,
we applied SpecAugment [29] to the input data.

B. Experimental setup

For the Transformer-T model, the acoustic encoder was
implemented with 12 Transformer encoder layers and a single
LSTM layer for the label encoder. For streaming feature
extraction, a chunk-wise attention mask was implemented and
applied to the encoder layers as in [9]. The latency value was
calculated as the product of the maximum look-ahead range
(i.e., chunk size — 1) and a frame rate of 40ms.

For WSJ experiments, the CBS-ASR model consisted of
6 Conformer encoder layers [30] and 6 Transformer decoder
layers. The input block settings followed N; as eight, N, as
four, and N, varying from O to 6. The latency for CBS-ASR
was calculated as the product of the maximum look-ahead
range in the block (i.e., N.+ N,.—1) and a frame rate of 40ms.
For TED2 experiments, the CBS-ASR model consisted of 12
Conformer encoder layers [30] and 6 Transformer decoder
layers. The IV, was set to 6.

For the pre-trained Mask-CTC model, the encoder was
constructed with the identical setting as the target streaming
model. The CMLM decoder was built with six Transformer
decoder layers. All the models were trained by 150 epochs,
and the final models were obtained by averaging the snapshots
of the ten epochs of the minimal loss for Transformer-T and
the best accuracy for CBS-ASR. For decoding, a beam search
was conducted with a beam size of ten for all. We used the
word error rate (WER) for measuring the ASR performance.

C. Experimental results

For both the Transformer-T and CBS-ASR systems, the
performances of the following models are compared.

« Baseline (9], [[13]], [31]]: Existing streaming ASR models,
including Transformer-T and CBS-ASR. The parameters
for all the components were randomly initialized.

o Enhanced: Streaming ASR models with Mask-CTC-
based pre-training. Components of the streaming ASR
were initialized with pre-trained Mask-CTC modules. For



TABLE I
WORD ERROR RATES ON WSJ DATASET.

WER [%] (1)

Model Latency [ms] Initialization eval92  dev93
Baseline
120 19.5 23.3
160 Random 16.8 20.9
Transformer-T 200 15.1 18.9
0o Random 14.7 17.3
200 14.4 18.1
280 Random 13.2 16.2
CBS-ASR 360 129 16.1
1240 Random 11.2 14.2
Enhanced
120 16.6 20.8
Transformer-T 160 Mask-CTC 15.0 19.0
200 14.8 18.5
200 13.5 17.2
CBS-ASR 280 Mask-CTC 12.9 16.0
360 12.2 16.1
TABLE II
WORD ERROR RATE ON TED2 DATASET.
Model Latency [ms] Initialization = WER [%] ({)
Baseline
280 Random 11.3
CBS-ASR
1240 Random 9.8
Enhanced
CBS-ASR 280 Mask-CTC 11.1

Transformer-T, the acoustic encoder was initialized with
the Mask-CTC encoder. For CBS-ASR, both encoder and
CTC modules were initialized with corresponding Mask-
CTC modules.

The experimental results of Transformer-T and CBS-ASR
are summarized in Table |l and Table Non-streaming
Transformer-T and CBS-ASR with 1240ms latency were used
as lower bounds in the experiments.

The results on WSJ show that for both Transformer-T and
CBS-ASR, the enhanced models outperformed the baseline
models by achieving lower WERs under all latency settings,
suggesting the accuracy enhancements introduced by the
Mask-CTC-based pre-training method. For WSJ dataset, 40ms
and 80ms latency reductions were reached for Transformer-T
and CBS-ASR, respectively, while achieving better or equal
recognition accuracy than the baseline models. For instance,
the enhanced Transformer-T with 120ms latency achieved
lower WERs (16.6% for eval92 and 20.8% for dev93) than
the WERs of the baseline with 160ms latency (16.8% for
eval92 and 20.9% for dev93). Such results demonstrated that
our method contributed to the construction of streaming ASR
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Fig. 2. Output token alignments of non-streaming and streaming

Transformer-Transducer models.

models with low latency and high accuracy. For TED2 dataset,
the enhanced CBS-ASR model also achieved 0.2 percentage
point of WER reduction compared to the baseline model,
which proves the general effectiveness of the proposed method
regardless of the dataset. The results for systems with differ-
ent architectures, such as Transducer and Encoder-Decoder,
also demonstrated that the Mask-CTC-based pre-training was
effective regardless of the model architecture.

D. Analysis of output token alignments

The work of [32] argued that the streaming model attends
to shift the token boundaries to the future side to obtain more
contextual information, which results in delay of the posterior
probability spikes for the output tokens compared to non-
streaming models. In contrast, if the encoder network learns
the feature representations that anticipate future information,
the output tokens can be confirmed earlier and the token
boundary shifting issue should be remedied in some instances.
Therefore, we measured the delay of the spike occurrences
in streaming models by comparing them to the alignments
obtained from a non-streaming model. The delay is expected
to be reduced with the Mask-CTC-based pre-training method.

We conducted measurements on the dev93 validation set
of WSJ. We used the baseline and enhanced models with
200ms latency settings for Transformer-T and compared their
alignments with a non-streaming Transformer-T model. The
alignments were obtained from the output of the joint network.
For CBS-ASR, the latency was also set to 200ms, and we
compared the output token boundaries between the baseline
and enhanced models. The ASR alignments were obtained
from the CTC predictions of CBS-ASR in the same manner
as [32] and the reference alignments were obtained with
the Montreal Forced Aligner [33]. Figure [J] illustrates one
example of output token alignments given by Transformer-
T. Here, the color in the background represents the reference
alignment to the speech input. The non-streaming ASR (top)
managed to predict accurate token alignments. However, the



baseline streaming ASR (bottom) showed a significant delay
in the alignments, indicating token boundary shifting due
to the lack of contexts. Meanwhile, our enhanced streaming
ASR (middle), with a Mask-CTC-based pre-trained encoder
network, largely improved the alignments of the streaming
ASR. We calculated the average output delay reduction across
the dev93 validation set for both Transformer-T and CBS-
ASR. For Transformer-T, the spike output delay was reduced
by 44ms, and for CBS-ASR, 46ms. Such results help us to
understand the knowledge learned from the Mask-CTC-based
pre-training method and the reason for the latency reduction
capability.

V. CONCLUSION

In this study, an attempt was made to demonstrate the
effectiveness of Mask-CTC-based pre-training for achiev-
ing low latency and high accuracy in streaming speech
recognition. Experimental results showed the effectiveness
of the method on various model architectures, including
Transformer-Transducer and contextual block streaming ASR.
Furthermore, by studying the output spike timings of the
streaming models, we discovered that more precise alignments
of the input and output sequences are learnt by the pre-training,
which contributes to the latency reduction in streaming ASR.
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