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Abstract—Dataflow models are efficient programming
paradigms for expressing the parallelism of an application.
Dataflow-based resource allocation methods on multicore
architectures usually rely on complex graph transformations
to explicit the application parallelism which can result in
complex graphs for embarrassingly parallel applications. This
paper presents an automated method that efficiently manages
pre-scheduling graph complexity, pipelines sequential parts, and
optimally adapts the dataflow model to the target architecture,
striking a superior balance between application complexity
and performance than existing methods. Our method surpasses
state-of-the-art techniques, achieving up to 1.8 times higher
throughputs in experiments. It also significantly reduces analysis
time to seconds compared to the original PREESM method,
which could take several days for fine-grained applications.

Index Terms—Dataflow, PREESM, clustering, pipeline

I. INTRODUCTION

A major issue in parallel programming is the granularity
of the application description. Data transfers and computation
times differ depending on the target architecture. Architectures
with low data transfer costs like FPGAs are better suited for
a fine-grain description [10]. Moreover, the granularity is also
related to the number of Processing Elements (PEs) of the
architecture, requiring adapting the number of actors and their
size to the hardware platform.

Solutions such as OpenMP, OpenCL, and CUDA facilitate
this adaptation but still require time-consuming hardware-
specific programming. The dataflow parallel programming
paradigm [6] investigated in this paper naturally expresses
data, task, and pipeline parallelisms. Task parallelism consists
in executing different computations on several PEs. Data
parallelism consists in executing the same computations on dif-
ferent data simultaneously on several PEs. Pipeline parallelism
breaks the data dependencies and divides the computations
into several stages, executed simultaneously on several PEs.
A dataflow model is a collection of computational units called
actors exchanging data via First In First Out queues (FIFOs).
Dataflow Model of Computation (MoC) is architecture inde-
pendent which means a single description is portable on any
type of architecture. In practice, the granularity of the dataflow
models is often adapted to the architecture. Decreasing the
granularity is performed by increasing the number of actors
and decreasing the size of the FIFOs.

The aim of this paper is to introduce a clustering method
that is based on dataflow, which addresses the two-fold
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challenge of decreasing graph complexity while maintaining
performance on the target architecture. The complexity of
an application is a critical issue in parallel programming.
Excessive complexity hampers compilation due to the NP-
complete nature of resource allocation. Conversely, an overly
fine-grained application causes excessive data transfer, while
a simple one underutilizes parallelism. Dataflow-based clus-
tering methods have proven to be effective in automatically
adapting the granularity of applications to the number of
PEs of the target architecture. Whereas previous work on
clustering [9] deals with task and data parallelism, this paper
adds the possibility of automatically pipelining the application
execution. A primary advantage of dataflow-based clustering
is also to accelerate the resource allocation process. The paper
focuses on the static resource allocation done at compile
time. Resource allocation involves two steps: mapping and
scheduling [7]. Mapping consists in distributing actors on the
target PEs, and scheduling consists in ordering the execution
of these actors on the PEs. Clustering simplifies the resource
allocation by reducing the number of actors but this must be
done in such a way as to maintain the execution parallelism.
In this paper, the impact of the clustering in terms of latency,
throughput, and memory footprint are also evaluated.

The rest of this paper is organized as follows: Section II
presents dataflow MoCs, the classic static scheduling method,
and the state-of-the-art clustering heuristics. Section III de-
scribes the proposed method. Section IV outlines the exper-
imental evaluation of the clustering method about resource
allocation process time, latency, throughput, and memory
footprint. Finally, Section V concludes this paper.

II. BACKGROUND

A. SDF-based dataflow MoC

Due to their high predictability that allows the develop-
ment of real-time applications, Synchronous Dataflow (SDF)
models, illustrated in Figure 1, are extensively employed
for modeling signal and image processing applications. SDF
graphs are characterized by a fixed rate of tokens consumed
and produced by actors at each of their executions. FIFOs
can have an initial state depicted as initial tokens, also called
delays. The delays are used to create a shift of the tokens in the
FIFOs and allow feedback loops in the graph or feed-forward
graph cuts for example.

The State-Aware Parameterized and Interfaced DataFlow
(SPiDF) [1] is an extension of the SDF model. This paper
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emphasizes two key features of the SPiDF model: the hier-
archy and graph persistence. The hierarchy allows specifying
the internal behavior of an actor by a subgraph instead of a C.
The SPiDF hierarchy feature defines interfaces to isolate the
hierarchy levels and allow the composability of the model.
The model introduces the persistence of a graph state with
three types of delays: Local Delay (LD), Locally Persistent
Delay (LPD), Globally Persistent Delay (GPD). The paper
focuses on LDs to unroll cycles. The LD delayed data tokens
are preserved within the scope of a unique graph iteration. In
this case, an LD is not only connected to a fixed initial token
number and a FIFO but it is also linked to two optional data
connections. The input data connection of the delay is linked
to a Setter actor in charge of initializing the data tokens of
the concerned FIFO. The output data connection of the LD is
linked to a Getter actor receiving the last held values by the
LD. GPDs are used for pipelining because they persist across
graph iterations until their next use. The advantage of SPiDF
is that it allows a finer description of the application.

B. Standard flattening method

In order to generate a multicore implementation, a schedul-
ing process must be performed first. The typical static schedul-
ing process involves four primary tasks, namely flattening,
Single rate Directed Acyclic Graphs (SrDAG) transformation,
mapping, and scheduling.

The flattening task replaces all hierarchical actors with their
contents, which implies bringing actors of different granu-
larities to the top level. The SrDAG transformation reveals
parallelism by converting the flattened graph into a single-rates
graph where consumed and produced rates are equal on each
FIFO and cycles are unrolled. The transformation duplicates
actors by the minimal number of firings of each actor to return
the graph back to its original state given by the calculation of
the Repetition Vector (RV) q and exposes data dependencies.
After the SrDAG transformation, each actor in the SrDAG is
individually mapped and scheduled.

The code generated by the classic flattening approach in
the Parallel and Real-time Embedded Executives Scheduling
Method (PREESM) open source framework takes the form of
a specific C file for each target PE. Every file contains first
the application initialization section including the allocation of
buffers, actors, and FIFOs and some initialization such as the
initialization of globally persistent delays. The second part of
these files is a loop containing the firing of actors scheduled
at compile time.

The problem that arises is that the static scheduling time
increases with the application complexity and the number of
PEs in an architecture [7]. Since the mapping options are
restricted to the number of PEs on the target, it is not necessary
to depict the application with more parallelism than the target.

C. SDF actor clustering methods

The clustering of SDF actors is an efficient method for
reducing graph complexity. Since grouping several actors into
a single equivalent hierarchical actor may change the behavior
of the application or even create deadlocks, clustering rules
have been introduced in [8] and illustrated on four clustering
techniques. The first one is a manual and tedious method
that enables the user to select improper groups of actors
introducing deadlocks. The second one consists of clustering
SDF subgraphs as long as possible. The third one is the Unique
Repetition Count (URC) clustering technique. The method
consists in creating an SDF subgraph of at least two sequential
actors with identical RV q and no internal state. Considering
the graph G shown in Figure 1, an URC candidate is the cluster
of the actors D and E. The last one concerns dynamic re-
source allocation. Another clustering technique depicted in [2],
the Pairwise Grouping of Adjacent Nodes (PGAN) method,
consists in coupling two actors together and provides a wide
choice of possible configurations that are tedious to evaluate.
Its extension, the Pairwise Grouping of Adjacent Nodes for
Acyclic graph (APGAN) clustering technique introduce in [3]
shows that first clustering couples that form a cluster with the
highest RV lead to a minimum memory requirement schedule
and minimize the possible configuration. These methods focus
solely on addressing one of the two challenges presented in the
paper: reducing graph complexity. However, they do not take
into account the second challenge, which involves considering
the parallelism of the target architecture.

The Scaling up of Clusters of Actors on Processing Element
(SCAPE) method [9] takes as input a parameter nc that
corresponds to the number of hierarchical levels to be clustered
entirely. The method analyses the hierarchy levels of the input
SPiDF graph starting at the bottom. The level is a cluster as
long as the current level is lower than the parameter nc. The
levels above the parameter nc are left as they are. The level
equal to the parameter nc is partially clustered by identifying
interesting patterns of actors to cluster. The patterns are URC
and Single Repetition Vector (SRV) which is an actor with a
RV greater than the number of PE. The RV of these clusters are
reduced to match the number of PEs. Thus, the method offers
a set of clustering configurations of decreasing granularity and
parallelism. The proposed method is an extension of SCAPE
that offer better parallelism management by unrolling cycles
and integrating pipeline.

III. THE PROPOSED METHOD

The proposed clustering method will reduce graph com-
plexity and happen just before the flattening process. Like
SCAPE, the method takes as a task input a parameter nc that
corresponds to the number of levels to be coarsely clustered.



When the nc levels are clustered, the method is about iden-
tifying four patterns of actors explained in Section III-A on
the bottom level of the clustered graph, replacing them with a
hierarchical actor that contains the identified actor explained
in Section III-B, computing the scheduling of the newly
created subgraph, generating the associated code explained in
Section III-C, and replacing the behavior of the hierarchical
actor with this code explained in Section III-D.
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Fig. 2: Illustration of the clustering Loop pattern on a 3 PEs
architecture
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A. Identification of particular pattern

The method considers the two patterns of SCAPE,URC and
SRV II-C, and adds two other ones:

The Loop pattern allows the creation of parallelism on
cyclic graphs. Illustrated in Figure 2, a cyclic part is a sequence
of actors where the last one is connected to the first one by
one or more FIFOs with a LD. Considering the input graph
G where the input of actor L depends on its output but is
initialized by actor set, the output of the 6th firing of L
is stored by the get actor at each graph iteration. Given an
architecture of 3 PEs. The identified actor is L.

The Sequential pattern allows the creation of parallelism on
sequential graphs. Figure 3 is a sequential part of the graph or a
part with a degree of parallelism lower than the number of PE.

The method is about grouping actors in topological order so
that the sum of the execution times of the actors contained in
a group tends to be equally distributed. The number of groups
must be equal to the number of PEs.Considering the input
graph G with a degree of parallelism of 2 and architecture of
3 PEs. We assume that the sum of the executions of actors
A, B, and C is equivalent to two executions of D and one
execution of E on a single core. The method first identifies
a first set composed of actors A, B, and C, the second set is
composed of D, and the last one is composed of E.

B. Subgraph transformation

The second step of the method consists in generating
subgraphs composed of the identified actors. The LDs are ex-
tracted from the subgraph and connected to the corresponding
hierarchical actor. The operation consists of adding interfaces
in the subgraph and linking the corresponding ports on the
hierarchical actor to the delay(s). Extracting the delay(s) is
necessary to compute the internal execution order of the
subgraph via the APGAN method.

In the case of Loop pattern, the transformation consists
of duplicating n times the hierarchical actor, where nloop is
the greatest common divisor of the RVs of the actors of the
subgraph C flattened just above the number of PE, fixing its
RV q to 1. The RV of the content is also scaled such as it’s
the result of the division.

nloop = gcd(q(a ∈ C)) |nloop ≥ nPE (1)

To preserve the consistency of the graph the FIFO buffers
subsequently connected to the actors from the Loop are
duplicated, distributed, or gathered on the different Loop
instances. Considering the input graph G shown in Figure 2
where identified actor L has a RV q = 6 and an architecture of
3 PEs. Thus, gcd(6, 3) = 2 the method duplicates the subgraph
that contains 2 instances of L 3 times. Thus the SrDAG
transformation of this graph which would have resulted in
6 + 2 = 8 actors is presently 3 actors.

In the case of Sequential pattern, the SrDAG transformation
of graph G shown in Figure 3 which would have resulted in
6 actors is presently 3 actors.

C. Cluster code generation

The third step is to generate a code for the cluster. The
SCAPE approach takes the form of C files where is defined
a function that contains the scheduled firing of actors of
the subgraph. The schedule is computed with the APGAN
algorithm. The firing of actors is translated into function calls
implementing the behavior of the actors. The functions contain
arguments referring to the ports of the actors and exchange
data via FIFO buffers.

The particularity of the code resulting from the subgraph
that contains looped actors lies in the copy of delayed output(s)
on delayed input(s) using memcpy function. Considering the
input graph G shown in Figure 2, The Set function initializes
a buffer on its output argument, The first looped function L0

copies it on the input of the first L function call. Then L output



buffer is copied on the L input buffer and the L function call
output buffer is copied on the looped function output buffer.

D. Graph transformation

The last step is to replace the behavior of the hierarchical
actor with the code generated beforehand. Then the method
integrates pipelining by adding a GPD between the Loop and
Sequential clustering stages. [5] describe how to create a
pipeline on an SDF graph.

The clustered transformed graph is then employed by the
rest of the static scheduling method able to generate code.
PREESM translates GPD by a fifoInit function in the initial-
ization part of the PE C File. This function is used to reset
a global buffer at the start of the application. In the second
part of the PE C File, the loop part, a fifopop precedes firing
of the Loop and Sequential clustering pipeline stages loading
the previously initialized GPD. The stages are succeeded by
a fifopush function that stores the last delayed tokens of the
actor for the next use. Thus, at each graph iteration, the first
firing of clustering pipeline stages receives the delayed FIFO
from the previous iteration.

Considering the input graph G shown in Figure 2 the
method transmits an output graph to the rest of the static
scheduling process composed of 3 pipeline stages, the first
one containing the setter actor and the last one the getter
actor. Stages are linked by GPDs. fifoInit function initialized
global buffers headL0 and headL1 in the initial part of the
program. fifoPop function copy the headL0 buffer in another
buffer outL0 before its reading by L1 function call. fifoPush
function copy the outL0 buffer in headL0 buffer after the L1
function process.

IV. EXPERIMENTS

A. Experimental set up

The proposed method is applied to three image processing
applications such as the OpenVVC dataflow model [4], SDP
Evolutionary Pipeline (SEP), and Stereo on a SPiDF descrip-
tion summarize in Table I. Owing the fact that the proposed
method provides a set of clustering configurations, the one
that offers the best tradeoff in terms of the number of SrDAG
actors, resource allocation process time, also called analysis
time, latency, and throughput speedups, and memory footprint
growth is chosen, noted BC for Best Clustering results.
This configuration is compared to the configuration without
clustering, noted NC for No Clustering.

The above-mentioned applications have some limitations.
Indeed, they are characterized by a large number of sequential
parts that limit the mapping possibilities. Our approach solves
this constraint by allowing the use of pipelining to provide
a better mapping option. In addition, the proposed approach
solves the problem of SrDAG explosion in some applications,
especially for the OpenVVC and the SEP dataflow models.
In fact, the user on both applications has to manually modify
some instructions to avoid the explosion of the SrDAG graph.
Without manual modification, the resource allocation process
is Computationally Prohibitive, noted CP by the test

desktop computer. The proposed approach makes the process
fully automated.

The three exposed use cases were not relevant to the original
SCAPE method because the resulting clustering configurations
either present a poor degree of parallelism or are too complex
and not schedulable hence the relevance of the extension.

Because the performance criteria depend on the architec-
ture and the method exploits this information in the graph
transformation, experiments have been conducted on architec-
tures with 1 to 16 homogeneous cores. Latency and memory
footprint are computed at runtime, whereas the size of the
SrDAG and throughput are metrics simulated by the tool.
The proposed method has been implemented in open-source
projects into the PREESM rapid prototyping framework. The
experiments are performed on a desktop computer with an
8-core Intel i7-8665U processor and 31,2 GB of RAM.

B. General results

Results in table I show the possible gains in terms of
analysis time, latency, and throughput with the associated
impact on memory footprint. The size of the SrDAG impacts
the analysis time, small value leads to a fast process time.
The method significantly reduces the size of the SrDAG,
especially on large applications. The OpenVVC application
described for a 24-tile bitstream without clustering has a
size of 7262 actors which reaches the computational limit
of the test PC, with the method this application on a 4-
core architecture has a size of 24 actors and compiles in
a few seconds. Pipelining is used to add parallelism to the
application at the cost of increased latency. Actors in the
first pipeline stage are executed and intermediate results are
saved in the first iteration but the first output is only generated
after a number of iterations equal to the number of pipeline
stages. As the method matches the number of pipeline stages
to the number of PEs, the latency increases as the architecture
becomes more complex. That’s why the stereo application on
16 cores has a speed down of 0.1 in terms of latency. In the
case of the OpenVVC application, the FIFO sizing exploited
by the clustering reduces the internal memory access time to
the computation. Thus on a 4-core architecture, the latency
speedup is 6.8 because the global computation time is reduced
so that the time lost by the pipeline is insignificant. The
latency loss is balanced by the gain in throughput. In sequential
parts of an application without task nor data parallelisms, the
pipelining provides additional parallelism for the remaining.
Pipelining is only possible if the sequential computations are
not part of an iterative loop with self-data dependencies. For
applications exploiting the Loop pipelining, the gain is the
most important when the number of PEs is a divisor of the
number of loop iterations. For example, the loop in Stereo
iterates 60 times so that the pipeline is efficient for 1, 2, and
4 PEs providing a speedup of the throughput very close to
the optimal parallelism, 3.8 on 4 cores. Due to the fact that
the SEP is modeled by looped hierarchical actors on its top
level, pipelining of the inner levels is not allowed. Only the
configuration that coarsely clusters the hierarchy up to the



Number of PEs

Application Output 1 2 4 8 16
NC BC NC BC NC BC NC BC NC BC

OpenVVC SrDAG 7262 1 7262 12 7262 24 7262 99 7262 99
Analysis Time CP 0.8s CP 0.9s CP 1s CP 6s CP 7s

Latency Speedup 1 1 1.9 5.8 3.3 6.8 5.7 6.1 11.4 10.7
Throughput Speedup 1 1 1.9 1.9 3.3 2.9 5.7 7.6 11.4 15.2

Memory Footprint Growth 1 1 1 1 1 1 1 1 1 1

SEP SrDAG 4423 1 4423 21 4423 27 4423 27 4423 27
Analysis Time CP 6s CP 6s CP 9s CP 17s CP 25s

Latency Speedup 1 1 1 0.6 1.1 0.4 1.1 0.4 1.1 0.4
Throughput Speedup 1 1 1 1.7 1.1 2.1 1.1 2.1 1.1 2.1

Memory Footprint Growth 1 0.1 1.2 1.9 1.3 3.9 1.3 3.9 1.3 3.9

Stereo SrDAG 313 1 313 56 313 61 313 89 313 109
Analysis Time 15s 0.7s 27s 7s 37s 9s 65s 19s 112s 22s

Latency Speedup 1 1 2 0.6 3.7 0.4 5.5 0.2 8.3 0.1
Throughput Speedup 1 1 2 2 3.7 3.8 5.5 7.0 8.3 11.2

Memory Footprint Growth 1 0.1 1.5 1.3 1.7 1.5 1.8 2.3 1.8 3.9

TABLE I: Comparison of graph complexity, analysis time, latency, throughput, and memory footprint between the No Clustering
(NC) and the Best Clustering (BC) configurations on 3 applications on various number of PEs, CP: Computationally Prohibitive

top level can be performed. The sequential description of the
application justifies the use of the pipeline but quickly reaches
a parallelization limit with a throughput speedup of up to
2.1. When the gains in throughput are small, the memory
footprint is reduced compared to the configuration without
clustering. Indeed pipelines add memory requirements since
data must be stored at the end of each iteration. The application
memory footprint is reduced by clustering which exploits
FIFO sizing by default, that’s why the Stereo application
requires 10 times less memory on 1 core with clustering than
without. However, if the gains in throughput are substantial,
parallelism may increase memory requirements. For example,
the SEP application has a throughput speedup of 1.8 times
faster with clustering than without on 16 cores and a memory
requirement 3 times higher. OpenVVC dataflow model cannot
take advantage of the memory optimization technique provided
by the tool since a significant portion of the memory is already
allocated by an external library used in this project.

V. CONCLUSION

This paper presents a new clustering method to reduce
the mapping and scheduling processing time on multicore
architectures. The method consists in reducing the size of the
graph by clustering actors detecting particular patterns taking
into account the target architecture. The method allows the de-
veloper to choose the best granularity to optimize the latency,
throughput, and memory requirements on a target architecture.
This clustering method preserves the task and data parallelism
of SDF graphs and automatically implements the pipelining
of sequential parts of an application in order to improve
its throughput. This automatic method enables developers
to evaluate very quickly the increase in throughput, latency,
and memory footprint associated with the use of pipelining.
The automatic code generation enables to generate automat-
ically the multicore pipelined implementation, reducing the
programming time associated with this optimization. Fine
grain dataflow models of applications can now be proposed
without the concern of exploding the parallelism, knowing

the clustering will adapt the implementation to the number of
PEs of the architecture in order to reach the best acceleration
optimizing throughput, latency, and memory requirements. A
potential direction for future work includes the consideration
of heterogeneous PEs in the selection of clusters of actors.
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