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Abstract—Tensor representations have proven useful for many
problems, including data completion. A promising application
for tensor completion is functional magnetic resonance imaging
(fMRI) data that has an inherent four-dimensional (4D) structure
and is prone to missing voxels and regions due to issues in
acquisition. A key component of successful tensor completion
is a rank estimation. While widely used as a convex relaxation
of the tensor rank, tensor nuclear norm (TNN) imposes strong
low-rank constraints on all tensor modes to be simultaneously
low-rank and often leads to suboptimal solutions. We propose a
novel tensor completion model in tensor train (TT) format with
a proximal conjugate subgradient (PCS-TT) method for solving
the nonconvex rank minimization problem by using properties
of Moreau’s decomposition. PCS-TT allows the use of a wide
range of robust estimators and can be used for data completion
and sparse signal recovery problems. We present experimental
results for data completion in fMRI, where PCS-TT demonstrates
significant improvements compared with competing methods. In
addition, we present results that demonstrate the advantages
of considering the 4D structure of the fMRI data. as opposed
to using three- and two-dimensional representations that have
dominated the work on fMRI analysis.

Index Terms—Tensor completion, Tensor train decomposition,
fMRI missing data completion.

I. INTRODUCTION

Tensors allow effective description of multilinear relation-
ships and have proven useful in a large array of problems, in-
cluding tensor completion. FMRI data, which have been a vital
tool in research and clinical settings, suffer from equipment
instabilities, subject, and task-related noise. As a result, typi-
cally a significant number of brain voxels, sometimes regions,
are excluded from fMRI analysis, which impacts the success
of subsequent analysis steps. Therefore, the development of
effective data completion methods for high-dimensional fMRI
data is a critical path to improve the reliability of such
analyses. FMRI data are inherently four dimensional (4D);
hence, tensor representations, in particular TT decomposition,
offer particular advantages in terms of scalability and stability.

In data completion problems, the tensor rank captures the
correlation information in different tensor modes in a TT
representation, and therefore, to be able to learn the most
significant interactions across the modes, the tensor rank
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has to be correctly estimated. Recently, there have been
many contributions that use the nonconvex surrogate low-
rank penalty functions to better estimate the rank. These
approaches can be categorized as convex relaxation of nuclear
norm [1] or general nonconvex methods such as generalized
singular value thresholding (GSVT) [2] and proximal gradient
methods [3]. It has been shown in [4] that convex relaxation
applies the same penalty to all singular values and leads to a
biased solution. To alleviate the bias introduced by the convex
relaxation of nuclear norms, many nonconvex regularizers
have been proposed [5]. The surrogate rank minimization
functions assign weighted smaller coefficients to penalize
the larger singular values. This results in better empirical
performance and statistical guarantees on recovery bounds
[4]. To solve the fMRI data completion problem, we propose
an inexact proximal conjugate subgradient algorithm based
on the generalized Moreau-Yosida gradient to regularize a
nonconvex surrogate rank function for tensor completion.
Thus, by using a nonconvex objective, we can use surrogate
penalties, which implicitly promote sparsity and ensure a low-
rank property even when the rank of the original problem is
overestimated. We propose a new inexact proximal conjugate
subgradient (PCS-TT) method for tensor completion in the TT
format. By its derivation, PCS-TT allows the use of robust
low-rank estimators and can be used for data completion
as well as sparse signal recovery problems. Experiments on
real fMRI data demonstrate that PCS-TT provides significant
improvements in terms of tensor completion metrics such as
tensor completion score (TCS) [6] over competing methods,
primarily due to the use of TT decomposition in conjunction
with adaptive conjugate subgradients in computation. In par-
ticular, we demonstrate that taking the 4D structure of fMRI
data promises significant gains by presenting comparisons with
three-dimensional (3D) and two-dimensional (2D) representa-
tions of the same data, which have dominated the field when
working with fMRI data.

II. PRELIMINARIES

We denote scalar, vectors, matrices and tensors by z, X,
X, and X. The Frobenius norm is defined by || - || z. The
mode product is represented by x,,. For a matrix X, || X]|| :=
> 0;(X) defines the Schatten-1 norm, where o; is a j-th

J
singular value of X.
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Fig. 1. Conceptual representation of the TT decomposition for an
Nth multidimensional tensor X € RI1*I2XXIN_ TT decomposition
of an Nth order tensor X € RI1XI2X-XIN with TT rank r =
[ro,r1,72,** yrn, - ,*N—1,7N], where 19 = rx = 1. Analytically,
the TT tensor can be described in the form of the slicewise representation
v = GHE® ..M where G = G (i, ) €
»IN i1 12 iN in LR

R™»—1X"n are the slice matrices of TT-cores G(?) € RTn—1XInXrn

as Tip ig,...

A. Tensor Train Decomposition

A tensor train decomposition [7], shown in Fig. 1, represents
an N-way tensor X € RI1>*12XIN defined as

X:goxlgl X1g2><1 .XlgN7 (1)

where G" € R™-1XInX"n ig the n-th TT core, and go,gl
are (2D) matrices. The rank of TT decomposition (TT rank)
[7] is an N + 1 tuple of ranks: rankpr(X) = r =
[ro, 71,72, ,7N—-1,7N], Which controls the complexity of
TT decomposition. The r,, component of TT rank is the rank
of matrix X, obtained by splitting operator [7] of tensor
X as follows:

D), = Xeps = (x HIM H I) )

=1 i=n-+1

It was shown that the matrix rank of ®(X),, is the upper
bound of the n-th TT rank of X and that ro = r,, = 1 [7].
B. Low-Rank Tensor Learning

The algorithm using robust low-rank tensor learning can be
stated as the following optimization problem:

min F(X) = /(%) 3)
s.t HPQX — PQTH% <e

where ¢ is the noise tolerance. The constrained formulation in
(3) can be converted into an unconstrained problem as

. 1 =

min F(X) = S [PoX = PoT e + FX(X), )
where A > 0 is the regularization parameter and F Y is a
nonconvex low-rank regularizer. P denotes projection onto
sampling set 2, and X € RIv<>In,

N—-1
=Y F\(X), 5)
i=1

, where F\ is the generalized surrogate low-rank function
satisfying Assumption 2 given below. Throughout the paper,
we assume the following:

Assumption 1: f(X) is convex differentiable, with L-
Lipschitz gradient V f for some L > 0.

Assumption 2: F\(X) is a concave, nondecreasing and a
Lipschitz function on X € [0,00) with F3(0) = 0. For a
comprehensive list of nonconvex functions, we refer the reader
to [5]. In Section III, we derive the update rules to solve the
problem in (4) using the proximal algorithm framework [8].

III. GENERALIZED NONCONVEX LOW-RANK TENSOR
COMPLETION

To pose TT decomposition as a low-rank learning problem
(4), we need the surrogate relaxation of the TT rank. Hence,
we introduce the overlapped Schatten TT norm [9]:

72”

Since ®(X),, bounds the n-th TT rank of X, the TT norm
in (6) replaces the sum of the TT rank [4]. When we appply
a nonconvex function (5) to the Schatten TT norm in (6), the
tensor completion problem (4) becomes

JF—ZFA |®(x

= f(X) + Fy (X )-
When F,(-) is a general low-rank promoting function, the
problem in (7) can be regarded as a low-tensor rank mini-
mization problem. The problem in (7) can be solved via simple
fixed-point iterations, which can be derived from the optimality
conditions. We record the first-order optimality conditions for
problem (7) for any 7 > 0 as follows:
0€ Vf(X,)+OFL(X.,) ®)
O S va(X*) - X* +X* +8F§(X*)
(Z+10FH)X,.€(Z—-7VHX
X.=(Z+710F)" " (ZT-7VHX
By definition (Z+70F{) 1 X = prox pa (X) [8], the fixed-
point iterative scheme is given as .

Xy =(ZT+moF) (T

X ||spr = Jnllsrr- (6)

min F(X) = f(X Jalsrr) )

-V )X -1, )

, where the proximity operator prox Fa(X ) of F{ is given
in the context of Moreau’s decomposmon [8]:
pa (X) = in |2 - X|% + F{(2). (10
pros, ¢ (X) = argmin = || 2 - X[} + F{(2). (10)
Using the definition of the proximity operator in (10), the
proximal step can be written as follows:

Xk = pI‘OX%kFﬁg (Xk—l — Tka(Xk_l))

= argmin { (12— (Xim — n V(X)) 3] + B}
X 27y,

The proximal mapping in (11) can be obtained via singular
value thresholding [2], which can be computed using subgra-
dients of the components functions F)(X) in an elementwise
manner.
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IV. PROXIMAL CONJUGATE SUBGRADIENT METHOD FOR
TENSOR COMPLETION

In this section, we present a conjugate subgradient algorithm
to solve the problem in (7). The proximal step (11) can be
regarded as the Moreau envelope [8] of the function F/‘\I(X ),
which is a smoothed version of f(X’) [8]. Therefore, we can
use inexact gradient-based methods designed for nonconvex
differential problems, such as the variable metric inexact prox-
imal methods. We develop the inexact conjugate subragient
method, which uses the variable metric Hj to scale the
gradient step, and the quasi-Newton update to smooth the
proximal step. The scaling and smoothing operations are in
place to enforce sufficient descent for the search direction.
The conjugate search direction Dy is computed using the
Polak—Ribiere—Polyak (PRP) method for nonsmooth problems
in [10], which utilizes the modified secant equation with the
gradient and function values so that the sufficient descent
property is satisfied [10].

A. PCS-TT Algorithm

With the prerequisite concepts introduced in Section III, we
define the PCS-TT update rule

Pr =X — eHi V(X io1) (12a)
x () = prox}i (P) (12b)
G(Xji1) = (Xf — X)) /7 (12¢)
X1 = X+ oDy, (124d)

, where ay, is a step length, and Dy, is a search direction
at the k-th iteration, and #;, = 7Z, which serves as
an approximation of the inverse Hessian, the step length
T, obtained by the Barzilai-Borwein (BB) [11] rule 7, =
(Sk—18k-1)/(S}_1Zk-1), Ske1 = Xjy — Xp_1, Zpo1 =
V(X)) - VI(Xg).

The search direction in (12d) is computed as

—Gr11 ifk=0

D — T *D . DT *
k+1 Gt Gri1Y k)\k kGet1Y k>,
(13)

where A\ = max{2|| Dy || r | Vil r, [Gr41l7:}-
V' =V + %Sk ¥ = Gry1 — Gk» Sk = X1 — X,
w >0, and
e = Gri1 + G Sk +2(F(Xy) — F(Xj41))
’ 1Skl
We find step length a > 0 satisfying nonmonotone Armijo
rules proposed in [12]

F(Xk+Oéka) — Ck S O'OzkH'Dk”% (14a)
+ F(X},

o = T EEY) g1, (14b)
qk+1

where 0 > 0, > 0,p > 0,n > 0, ap = p2~ % i) =
{0,1,2,---}, and the parameter 1 defines the level of non-
momotonicity for the Armijo line search. Next, we present
our PCS-TT algorithm for solving (7), which is stated in

Algorithm 1 PCS-TT: Algorithm for solving (7)

Input: The observed tensor 7~ € RI1>*12XXIn sampling set
€, prescribed tolerance € > 0, o > 0,7 > 0,p > 0.
Output: The completed tensor X as approximation of 7.
Initialize: k = 0, Xy € RI1*I2XXIN j5 3 random tensor,
co =F(X0),q90 =1,Dy = —Go(Xo).
1: while |Gx||r > € do
2:  Compute 7, = (sk_lsk_l)/(sk?“_lyk_l).
3 Compute X\ by (12b).
4:  Compute gradient Gy 1 by (12c¢).
5. Compute the step length ay, by (14)
6
7
8
9

ir =0
Run the backtracking loop until (14) is satisfied
while F'(X ) + a;Dy) — ¢ > UOékH'DkH%? do

: ap = p27i’“
10: e =1+ 1
11: Update c; and g by (14b)

122 end while

13 Xy = Xy + Dy

14:  Compute search direction Dy by (13).
15: end while

Algorithm 1.

At each iteration, we check if the condition (14) is satisfied
and run the backtracking loop until we find a suitable step
length. The stopping criterion is defined as the norm of the
composite gradient ||G||r being below a prescribed tolerance
e or the difference of the iterates W being less
than the convergence tolerance ¢.. /

V. EXPERIMENTS

In this section, we present experiments on real fMRI data
and show the effectiveness of the PCS-TT algorithm. We
compare our method with low-rank tensor completion solvers
based on the sum of nuclear norms (ADMM-SNN) [1] and the
TMac-TT algorithm [9]. We select ADMM-SNN and TMac-
TT for comparison because they belong to a family of tensor
completion solvers based on the convex relaxation of a nuclear
norm similar to PCS-TT. We conduct experiments in different
tensor dimensions and study the effectiveness of PCS-TT using
2D, 3D, and 4D representations of fMRI data. There are many
alternatives that exist for the choice of low-rank function F{(-)
[5]. However, we test our algorithm by solving problem (7) on
nonconvex surrogate low-rank functions such as Geman [13],
logarithm [14], and convex formulation of the Schatten TT
norm in (6). The selected regularizers satisfy Assumption 2,
and the problem in (7) can be solved using Algorithm 1.

A. Methods

In our experiments, the input is a sparse tensor Po X x T,
where T is the fully observed true tensor, PoX is the pro-
jected tensor onto the sampling set €2, and x* is the Hadamard
(elementwise) product. The completed tensor X is computed
as X = (1 —PoX  T) * X + PoX + T, where X is the
output tensor estimated by each experiment. The following
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Fig. 2. Tensor completion performance. (a) TCS comparison by penalty type
(b) TCS comparison between the state-of-the-art algorithms and PCS-TT for
the logarithm penalty.

Original scan Corrupted scan  Logarithm Geman  Schatten TT norm

Fig. 3. 4D fMRI tensor completion with MR = 50% at 10th timepoint using
different low-rank penalty functions.

parameters were used in the implementation of the proposed
method: € = 1078, ¢ = 1074, p = 0.5,7 = 0.001, x = 0.8.
We evaluate the performance of the algorithm using the
residual square error (RSE) between the completed tensor
X and the true tensor 7 that is defined as RSE = (|| X —
Tllr)/(|T|lF), and the reconstruction quality in missing
values is measured using the tensor completion score (TCS)
TCS = ([(1 — PoX) * (X — T)#)/(I(1 — PaX) = T|r)
[6]. The convergence criterion of the competing algorithms
is defined when the relative tolerance for RSE(, is below a
tolerance, ¢ = 1075 or exceeds the maximum number of
iterations maxite; = 500. The missing elements were sampled
at random from a uniform distribution over [0,1). We study
the numerical performance with respect to different missing
values rate M R defined as M R = m/(]_[fj=1 I1), where m is
the number of missing entries, and [ is the number elements
in each tensor mode. Each experiment is repeated ten times,
and we present averages across ten runs.

B. Image Acquisition and Processing

We assessed the numerical performance of the PCS-TT
method using real fMRI data from the Center of Biomedi-
cal Research Excellence (COBRE) data exchange repository
[15]. The resting state fMRI data consisted of 149 volumes
of T2"-weighted functional images each, acquired using a
gradient-echo EPI sequence: TR = 2s, TE = 29 ms,
flip angle = 75 degree. The data were spatially normalized to
the standard Montreal Neurological Institute space, resampled
to 3 mm X 3 mm x 3mm voxels, and smoothed using a Gaussian
kernel with a full-width at half-maximum of 5 mm.

VI. RESULTS
A. Performance Comparison by Missing Value Rate

In this section, we investigate the performance of PCS-
TT using 4D spatiotemporal fMRI scans with 10% — 90%

PCS-TT TMac-TT ADMM-SNN

Fig. 4. Tensor completion with MR = 50% at the 10th timepoint using the
proposed and state-of-the-art methods.

Original scan Corrupted scan
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Fig. 5. High-dimensional fMRI data completion by MR for tensor dimensions:
D =2,3,4.

missing values with respect to different low-rank penalty
functions and two selected state-of-the-art tensor completion
methods. We randomly sample voxels of the 4D fMRI tensor
X € R53%63%46x144 " which represents a specific subject from
the COBRE study described in Section V-B. The initial value
of TT rank is set such that each r,, < R,,.y, Where R, .« is the
maximal theoretical tensor rank that corresponds to canonical
polyadic decomposition (CPD) [7].

We compare the performance of convex and nonconvex regu-
larizers as described in Section V with different M R values.
The results are shown in Fig. 2 and Fig. 3. From Fig. 2,
we can see that the lower values of MR result in better
data completion in terms of TCS. As seen in Fig. 2a, the
nonconvex rank penalty functions resulted in a lower TCS
than the convex Schatten TT norm since the nonconvex low-
rank penalty approximates the TT rank better than the convex
relaxation of the Schatten TT norm. Fig. 2b and Fig. 4 show
the comparison of PCS-TT with the logarithm penalty versus
the state-of-the-art algorithms. PCS-TT outperforms ADMM-
SNN and TMac-TT. The reason is that PCS-TT-logarithm
has a tighter rank bound than methods based on the convex
relaxation of the tensor norm.

B. Evaluation of PCS-TT in High-Dimensional Settings

FMRI data are typically analyzed as a 2D matrix where
3D brain volumes are flattened as rows, thus ignoring the
3D and 4D nature of the data. To assess the algorithmic
performance using natural 4D representation of fMRI data,
we evaluate tensor completion methods across 4D, 3D, and 2D
representations. We study the numerical performance of PCS-
TT using the logarithm low-rank penalty function in tensor
different dimensions, where M R changes from 10-90%. We
run fMRI tensor completion experiments for 2D, 3D, and
4D representation of the fMRI data tensor. We reshape the
original 4D fMRI data tensor to 2D and 3D forms yielding
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Fig. 6. Convergence curves for different surrogate low-rank functions using
the PCS-TT algorithm with M R = 50% and tensor dimension D = 4. (a)
Cost function value. (b) Surrogate rank penalty function by iteration. (c) TCS
by iteration. (d) RSE by iteration.

153,254 x 144 (2D) and 3, 339 x 46 x 144 (3D) and keep 4D
in the original form 53 x 63 x 46 x 144. We access the impact
of tensor dimensionality using numerical results in terms of
RSE and TCS and present the results in Fig. 5. In Fig. 5, we
can see that PCS-TT has the lowest RSE and TCS when the
data are represented as the original spatiotemporal 4D tensor.
The performance of PCS-TT slightly degrades when we cast
the tensor in 3D form, and there is sharp degradation in terms
of both RSE and TCS when we complete missing voxels using
the 2D representation of the fMRI tensor.

C. Computational Cost and Convergence Rate

In this section, we present the results of the computational
cost model for PCS-TT. Fig. 6 shows convergence curves
of the objective function (7) w.r.t the number of iterations
using different surrogate low-rank penalty functions. As we
can see from Fig. 6a, the surrogate penalties have a similar
impact on the convergence rate of PCS-TT w.r.t the number of
iterations. Fig. 6a shows that the logarithm penalty decreases
the objective function faster than the other low-rank penalties.
In addition, Fig. 6a demonstrates the computational superiority
of PCS-TT versus the state-of-the-art methods by providing a
lower value of the objective function and faster convergence
rate. In Fig. 6b, we examine how fast the surrogate low-rank
penalty shrinks w.r.t the number of iterations by presenting
convergence curves of logarithm and Geman functions we used
in our experiments.

VII. CONCLUSION

We present a new conjugate subgradient method for ten-
sor completion using a nonconvex generalized formulation

of the nonsmooth objective function. Our method provides
automatic low-rank tensor learning even when the original
problem is overcomplete, which is especially important in
high-dimensional tensor completion. PCS-TT demonstrates
excellent numerical performance when fMRI data are in the
form of a 4D tensor. The 4D representation of fMRI data takes
into account the natural formation of the original data as a
combination of 3D spatial brain volumes by time and therefore
fully exploits spatiotemporal interactions. We conduct experi-
ments using a number of robust estimators and compare PCS-
TT with state-of-the-art methods. The experimental results
demonstrate the advantages of nonconvex low-rank penalties
over convex formulation, which can be explained by the fact
that the robust estimators have intrinsic ability to be error
prone against noise and outliers. We can also observe from
the experiments the superiority of PCS-TT compared with the
nuclear norm-based tensor completion methods. PCS-TT is
more numerically efficient than TMac-TT and ADMM-SNN
due to the use of robust adaptive low-rank penalty functions,
which have tighter rank bounds.
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