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Abstract—In this paper, we consider a new framework for
particle filtering under model uncertainty that operates beyond
the scope of Markovian switching systems. Specifically, we
develop a novel particle filtering algorithm that applies to general
regime switching systems, where the model index is augmented as
an unknown time-varying parameter in the system. The proposed
approach does not require the use of multiple filters and can
maintain a diverse set of particles for each considered model
through appropriate choice of the particle filtering proposal
distribution. The flexibility of the proposed approach allows for
long-term dependencies between the models, which enables its
use to a wider variety of real-world applications. We validate
the method on a synthetic data experiment and show that
it outperforms state-of-the-art multiple model particle filtering
approaches that require the use of multiple filters.

I. INTRODUCTION

In the past three decades, particle filtering (PF) [1], [2]
has emerged as one of the most powerful statistical tools
for online state estimation in dynamical systems. PF methods
approximate the posterior distribution of an unknown time-
varying parameter vector in a state-space model (SSM) using
a set of weighted samples. The samples, which are also called
particles, are drawn from a probability distribution called the
proposal distribution and are weighted properly according
to the principle of importance sampling [3]. Unlike Kalman
filtering and its extensions [4], [5], PF can deal with SSMs
that exhibit both nonlinearities and non-Gaussianities. This
flexibility has allowed PF methods to thrive in many appli-
cations in fields as diverse as signal processing, economics,
neuroscience, epidemiology, and ecology [6]–[10].

Model uncertainty introduces an additional layer of com-
plexity to stochastic filtering that is generally difficult to deal
with. In this situation, one must determine the model that
best represents the system of interest from a set of candidate
models, while also jointly estimating the unknown time-
varying parameters of the chosen model. The issue of model
uncertainty is further complicated if the model can switch from
one time instant to the next. In signal processing, the well-
known problem of tracking a maneuvering target falls within
this class of model selection problems [11]. The trajectory of a
maneuvering target is represented via a Markovian switching
system (i.e., jump Markov systems) [12], where the model
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dynamics change according to the state of a discrete-time,
discrete-state Markov chain. More generally, however, systems
whose models (or regimes) can change from one time instant
to the next are referred to as regime-switching systems.

There have been mainly two classes of solutions proposed
in the PF literature to deal with the challenge of model
uncertainty. In the first class of solutions, a model index
that references the candidate models is augmented as an
unknown state in the system and is jointly estimated with
the unknown time-varying parameters using a single particle
filter [12], [13]. While this solution is simple to implement
and straightforwardly tackles the joint estimation problem,
the disadvantage is that the number of samples assigned to
each candidate model cannot be controlled, which can lead
to numerical issues and a lack of diversity in the considered
models. The second class of solutions employs the use of a
bank of particle filters that operate in parallel. Each filter is
conditioned on one of the candidate models and state estimates
are obtained by weighting the results of each of the filters and
then fusing them. In [14], the filters are weighted according
to the posterior probability of their respective models, while
in [15], they are weighted according to the predictive powers
of their respective models. Hybrid solutions which combine
this class of approaches with interacting multiple models
(IMM) filter have also been proposed to deal with Markovian
switching systems [16]. Unfortunately, because a separate filter
is required for each model, this class of approaches can be
computationally intensive if the number of candidate models
is large. We remark that, to the best of our knowledge, non-
heuristic implementations of both methods have not been
formulated for more general systems, which may exhibit long-
term dependencies in the regime switching dynamics beyond
those of the Markovian switching systems.

In this work, we propose a novel PF algorithm for general
regime switching systems. Similar to the aforementioned so-
lutions, the proposed PF method augments the model index
as an unknown in the system that is jointly estimated with
the time-varying parameters. Unlike previous approaches in
the literature, a diverse set of candidate models can always
be considered in the proposed algorithm through appropriate
choice of the model index proposal distribution. Furthermore,
since our method is not restricted to Markovian switching
systems, it can handle more complicated processes that may
describe the regime switching dynamics, such as the Pólya urn
process [17]. Simulation results for synthetic data experiments
validate the performance of the proposed approach.
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Fig. 1: The considered regime switching SSM formulation for
a time horizon T = 3. The probability of a model depends on
the complete history of models at previous time instants.

II. PROBLEM FORMULATION

Let xt ∈ Rdx denote a latent state vector, yt ∈ Rdy denote
a measurement vector, and Mt ∈ {1, . . . ,K} denote a model
index from a set of K candidate models, where t denotes time
index. We consider the generic stochastic filtering problem
under model uncertainty over a fixed time horizon T . The
generative process is assumed to have the following form:

Mt ∼ p(Mt|M0:t−1), (1)
xt ∼ p(xt|xt−1,Mt), (2)
yt ∼ p(yt|xt,Mt), (3)

for t = 1, . . . , T , where the initial model M0 is distributed
according to M0 ∼ p(M0) and the initial latent state x0

is distributed according to x0 ∼ p(x0|M0). A graphical
representation of the system is shown in Fig. 1 for T = 3.

Our goal is to jointly infer the unknown states x0:T ,
[x0, . . . ,xT ] ∈ Rdx×(T+1) and the sequence of unknown
models M0:T , (M0, . . . ,MT ) based on the given obser-
vations y1:T , [y1, . . . ,yT ] ∈ Rdy×T under the Bayesian
paradigm. In other words, we would like to approximate the
joint posterior distribution p(x0:T ,M0:T |y1:T ) in a recursive
manner using a Bayesian filtering solution.

III. REGIME SWITCHING PARTICLE FILTERING

In this section, we derive a generalized regime switching
PF (RSPF) algorithm. We begin by first establishing the
recursiveness of the joint distribution and then we derive the
importance weights of the particles in the novel PF algorithm.
We discuss different strategies for sampling models which
allow for model diversity. Finally, we elaborate on how one
can use the proposed algorithm to obtain the maximum a
posteriori (MAP) estimate of the model at each time instant.
We summarize the proposed approach in Algorithm 1.

A. Deriving the Joint Distribution

At time t, the distribution of interest is p(x0:t,M0:t|y1:t).
This joint distribution can be decomposed as

p(x0:t,M0:t|y1:t) = p(x0:t|y1:t,M0:t)p(M0:t|y1:t), (4)

Algorithm 1 Regime Switching Particle Filtering (RSPF)

1: Initialization: Draw N samples from the prior of the
initial model to determine the model indexes

M(n)
0 ∼ p(M0), n = 1, . . . , N,

and draw N samples from the prior of the initial state
conditioned on the sampled model indexes

x
(n)
0 ∼ p(x0|M(n)

0 ), n = 1, . . . , N.

Set the weights as w̃(n)
0 = 1

N for n = 1, . . . , N .
2: for t = 1, . . . , T do
3: Sampling models: Draw N samples from the model

index proposal distribution

M(n)
t ∼ q(Mt|M(n)

0:t−1), n = 1, . . . , N.

4: Sampling states: Draw N samples of the states condi-
tioned on the drawn models

x
(n)
t ∼ q(xt|x(n)

t−1,M
(n)
t ,yt), n = 1, . . . , N.

5: Weighting: Compute the weights {w̃(n)
t }Nn=1 according

to (15) and normalize them as

w
(n)
t =

w̃
(n)
t∑N

j=1 w̃
(j)
t

, n = 1, . . . , N.

6: Model selection: Determine the model index estimate
M̂t by solving the following maximization problem

M̂t = argmax
k∈{1,...,K}

p(Mt = k|y1:t)

where p(Mt = k|y1:t) ≈
∑N
n=1 w

(n)
t 1(M(n)

t = k) for all k.
7: State estimation: Obtain the state estimate as

x̂t =

N∑
n=1

w
(n)
t x

(n)
t .

8: Resampling: If necessary, resample the model indexes
and the states using multinomial resampling and set the
weights as w̃(n)

t = 1
N for n = 1, . . . , N .

9: end for

where p(x0:t|y1:t,M0:t) is the posterior of the state tra-
jectory x0:t conditioned on the model sequence M0:t and
p(M0:t|y1:t) is the marginal posterior distribution of the
model sequence. Following previous analysis in the Bayesian
filtering literature, we can readily deduce the conditional
posterior of the state trajectory p(x0:t|y1:t,M0:t) as

p(x0:t|y1:t,M0:t) =

p(yt|xt,Mt)p(xt|xt−1,Mt)p(x0:t−1|y1:t−1,M0:t−1)

p(yt|y1:t−1,M0:t)
.

(5)

Remark that we have made the appropriate assumption that
p(x0:t−1|y1:t−1,M0:t) = p(x0:t−1|y1:t−1,M0:t−1), since the
conditional posterior at time instant t− 1 does not depend on
the model at time t. Applying Bayes’ theorem to the marginal



posterior of the model sequence p(M0:t|y1:t), we also have

p(M0:t|y1:t) =
p(yt|y1:t−1,M0:t)p(M0:t|y1:t−1)

p(yt|y1:t−1)
. (6)

We decompose p(M0:t|y1:t−1) as

p(M0:t|y1:t−1) = p(Mt|M0:t−1,y1:t−1)p(M0:t−1|y1:t−1), (7)

where one can show that

p(Mt|M0:t−1,y1:t−1) =
p(y1:t−1|M0:t)p(Mt|M0:t−1)

p(y1:t−1|M0:t−1)
(8)

=
p(Mt|M0:t−1)

p(y1:t−1|M0:t−1)

∫
p(x0:t−1,y1:t−1|M0:t)dx0:t−1 (9)

=
p(Mt|M0:t−1)

p(y1:t−1|M0:t−1)
p(y1:t−1|M0:t−1) (10)

= p(Mt|M0:t−1), (11)

since the joint distribution of x0:t−1 and y1:t−1 is condi-
tionally independent from model Mt given the sequence of
models up to time instant t − 1. We can now establish the
recursive solution to the joint posterior p(x0:t,M0:t|y1:t) as

p(x0:t,M0:t|y1:t) ∝ p(yt|xt,Mt)p(xt|xt−1,Mt)

× p(Mt|M0:t−1)p(x0:t−1,M0:t−1|y1:t−1).
(12)

B. Deriving the Particle Filtering Weights

Suppose we draw a set of N samples {(x(n)
0:t ,M

(n)
0:t )}Nn=1,

where each sample (x
(n)
0:t ,M

(n)
0:t ) is drawn from a proposal

distribution q(x0:t,M0:t|y1:t) for n = 1, . . . , N . Then, the
importance weight of each sample is determined according to

w̃
(n)
t =

p(x
(n)
0:t ,M

(n)
0:t |y1:t)

q(x
(n)
0:t ,M

(n)
0:t |y1:t)

, n = 1, . . . , N. (13)

Suppose that the proposal distribution can be factored as

q(x0:t,M0:t|y1:t) = q(x0:t−1,M0:t−1|y1:t−1)

× q(xt|xt−1,Mt,yt)q(Mt|M0:t−1).
(14)

Combining with results from (12), the importance weight of
each sample (x

(n)
0:t ,M

(n)
0:t ) can thus be determined as

w̃
(n)
t ∝ w̃(n)

t−1
p(yt|x(n)

t ,M(n)
t )p(x

(n)
t |x

(n)
t−1,M

(n)
t )p(M(n)

t |M
(n)
0:t−1)

q(x
(n)
t |x

(n)
t−1,M

(n)
t ,yt)q(M(n)

t |M
(n)
0:t−1)

. (15)

For sampling the states, the bootstrap implementation of this
method would assume that the proposal distribution of the
states is identical to the state transition distribution, i.e.,
q(xt|xt−1,Mt,yt) = p(xt|xt−1,Mt), and that the particles
are resampled after each time instant. For the bootstrap im-
plementation, the importance weights are given by

w̃
(n)
t ∝

p(yt|x(n)
t ,M(n)

t )p(M(n)
t |M

(n)
0:t−1)

q(M(n)
t |M

(n)
0:t−1)

, (16)

for n = 1, . . . , N . The obtained solution is analogous to
the weighting function in bootstrap PF, except now, we must
taken into account that models can change according to
p(Mt|M0:t−1). We remark that p(Mt|M0:t−1) determines
how the model Mt is determined from the history of models
M0:t−1 and depends on the nature of system being considered.

C. Discussion on Sampling Model Indexes

There are a variety of choices for the model index pro-
posal distribution q(Mt|M0:t−1). The most obvious choice
is the bootstrap approach, where we use the model transi-
tion function as the proposal, i.e, we set q(Mt|M0:t−1) =
p(Mt|M0:t−1). Then, the importance weights simply become
the joint likelihood of the sampled model indexes and states.
Alternatively, one can use a discrete uniform proposal distribu-
tion to sample the model indexes, i.e., q(Mt = k|M0:t−1) =
1
K for all k. Then, each model has an equal chance to be
sampled at each step of the algorithm, and thus avoiding
the possibility of a model diversity issue. Finally, one can
deterministically sample an equal number of particles for each
model. The weights in this case would be the same as if we
had sampled from the discrete uniform distribution.

D. Online Maximum A Posteriori Model Selection

In order to select the most promising model at each time
instant from the set of candidate models, we need to solve the
following optimization problem:

M̂t = argmax
k∈{1,...,K}

p(Mt = k|y1:t), (17)

where p(Mt = k|y1:t) denotes the posterior probability of
the kth model. This posterior probability of each model can
be estimated directly using the set of particles and weights

p(Mt = k|y1:t) ≈
1∑N

n=1 w̃
(n)
t

N∑
n=1

w̃
(n)
t 1(M(n)

t = k), (18)

for k = 1, . . . ,K, where 1(·) denotes the indicator function.
Given the estimated posterior probabilities, one can obtain an
approximate solution to the optimization problem in (17).

IV. EXAMPLES OF MODEL SEQUENCE DYNAMICS

Here, we give examples of different regime switching dy-
namics that can easily be treated using our proposed approach.

A. Independent Regime Dynamics

The simplest case is when the models are generated inde-
pendently from one another, i.e., the joint distribution of the
models can be factored as:

p(M0:T ) =

T∏
t=0

p(Mt), (19)

where the model independence assumption implies that
p(Mt|M0:t−1) = p(Mt). The assumption that the models
are independent may be unrealistic for most applications and
requires to specify the prior distribution of each model.

B. Markovian Switching Dynamics

We also consider Markovian switching systems, where the
model at each time instant only depends on the model at the
previous time instant. The joint distribution of the models
under this assumption is given by

p(M0:T ) = p(M0)

T∏
t=1

p(Mt|Mt−1), (20)



where we have that p(Mt|M0:t−1) = p(Mt|Mt−1). Here,
the model transition distribution p(Mt|Mt−1) is represented
by a transition probability matrix P

P =

p1,1 . . . p1,K
...

. . .
...

pK,1 . . . pK,K

 , (21)

where each element pi,j , p(Mt = j|Mt−1 = i) is defined
to be the probability of transitioning from model i to model
j and each row of the matrix P satisfies

∑K
j=1 pi,j = 1.

C. Pólya Urn Dynamics

Under a more general formulation, the model at a given
time instant t depends on the complete sequence of models
M0:t−1. Here, since there are no independence assumptions,
the joint distribution of the models is given by

p(M0:T ) = p(M0)

T∏
t=1

p(Mt|M0:t−1). (22)

If the number of models is finite and a priori known, one
possibility is to consider a Pólya urn process for the regime
dynamics. For the Pólya urn process, the probability of transi-
tioning to a particular model at time instant t depends on how
many times that model was chosen in previous time instants.
Let αk,t = 1(Mt = k) be variable indicating if model k was
visited at time t for t = 1, . . . , T and let βk ∈ N be any
positive integer for k = 1, . . . ,K. Then, the probability of
transitioning to model k at time t is given by

p(Mt = k|M0:t−1) =
βk +

∑t−1
τ=0 αk,τ∑K

j=1(βj +
∑t−1
τ=0 αj,τ )

. (23)

V. SIMULATIONS

To validate the performance of the proposed RSPF, we
generated synthetic measurement sequences of time length
T = 50 based on eight candidate models, with each model
being of the form

Mk :

{
xt = akxt−1 + ck + ut

yt = bk
√
|xt|+ dk + vt

, (24)

where the parameter settings are [a1, ..., a8] =
[−0.1,−0.3,−0.5,−0.9, 0.1, 0.3, 0.5, 0.9], [c1, ..., c8] =
[0,−2, 2,−4, 0, 2,−2, 4], [b1, ..., b8] = [a1, ..., a8], and
[d1, ..., d8] = [c1, ..., c8]. The process noise ut and
observation noise vt are assumed to be i.i.d. zero-mean
Gaussian with equal variances, i.e., ut ∼ N (0, σ2

u) and
vt ∼ N (0, σ2

v) with σ2
u = σ2

v = 0.1. The initial state x0 was
generated uniformly from -0.5 to 0.5. We tested the method
on two scenarios corresponding to regime switching based on
Markovian dynamics and Pólya urn dynamics, respectively.

We first ran our novel algorithm with N = 2000 particles
per iteration when the model sequence dynamics is Markovian.
The transition probability matrix in simulation was

P =


0.80 0.15 ε · · · ε
ε 0.80 0.15 · · · ε
...

. . . . . .
...

ε · · · 0.80 0.15
0.15 ε · · · ε 0.80

, (25)

where we set ε = 1
120 so that each row of P summed to 1.

Three different model index proposal distributions were
used (deterministic, uniform, and bootstrap). For comparison,
we also ran the multiple model particle filtering (MMPF)
algorithm presented in [14], [18], where we drew 250 samples
per model. Note that this algorithm considers a forgetting
factor parameter γ ∈ [0, 1] that determines how much the
observation history influences the model probabilities. The
closer γ is to 1, the more the observation history influences
the model probabilities. We tested four different settings of
this method, each corresponding to a different forgetting factor
γ ∈ {0, 0.5, 0.9, 1}. The results are averaged over 500 Monte
Carlo runs and are summarized in Tables I and II. We can see
that the novel method, regardless of the choice of the model
index proposal distribution, provides a smaller mean squared
error (MSE) and more accurate model selection results. For
reference, we also plot the average cumulative sum of the
MSE in the state estimation in Fig. 2.

Next, we conducted the proposed method on the Pólya urn
process. The initial counts of the eight models were a random
permutation of the integers from 1 to 8. The parameter settings
for RSPF and MMPF were the same as above. Table III and
IV show the results, which are averaged over 500 Monte
Carlo simulations. Again, we can see that the novel method
outperforms MMPF with the settings γ = 0.5, 0.9 and 1 by far,
and slightly outperforms the MMPF with a forgetting factor of
0 in terms of model selection accuracy, and in terms of state

Average Best Worst
Novel (Deterministic) 0.2443 0.0566 4.8527
Novel (Uniform) 0.2446 0.0573 4.7388
Novel (Bootstrap) 0.2462 0.0546 4.9030
MMPF (γ = 0) 0.5986 0.0792 9.0508
MMPF (γ = 0.5) 9.9912 0.2635 279.7545
MMPF (γ = 0.9) 51.4122 1.5156 900.7603
MMPF (γ = 1) 63.5191 1.5136 1002.7609

TABLE I: State estimation MSE (Markovian dynamics).

Average Best Worst
Novel (Deterministic) 0.9407 1 0.5000
Novel (Uniform) 0.9402 1 0.5000
Novel (Bootstrap) 0.9419 1 0.5000
MMPF (γ = 0) 0.8437 1 0.5200
MMPF (γ = 0.5) 0.5089 0.9200 0.1200
MMPF (γ = 0.9) 0.2348 0.9200 0
MMPF (γ = 1) 0.2180 0.9200 0

TABLE II: Model selection accuracy (Markovian dynamics).



Average Best Worst
Novel (Deterministic) 0.4112 0.0663 2.3021
Novel (Uniform) 0.4111 0.0672 2.2512
Novel (Bootstrap) 0.4116 0.0644 2.3921
MMPF (γ = 0) 0.4995 0.0734 2.6993
MMPF (γ = 0.5) 4.4573 0.3854 28.0283
MMPF (γ = 0.9) 8.6751 1.9418 32.9856
MMPF (γ = 1) 11.1040 2.0316 43.6506

TABLE III: State estimation MSE (Pólya urn dynamics).

Average Best Worst
Novel (Deterministic) 0.9003 1 0.6800
Novel (Uniform) 0.8996 1 0.6600
Novel (Bootstrap) 0.8996 1 0.6800
MMPF (γ = 0) 0.8526 1 0.6200
MMPF (γ = 0.5) 0.2867 0.5600 0.0600
MMPF (γ = 0.9) 0.1690 0.4200 0
MMPF (γ = 1) 0.1571 0.4800 0

TABLE IV: Model selection accuracy (Pólya urn dynamics).

estimation MSE. The average cumulative sum of the MSE
for the state estimation is shown in Fig. 3.

VI. CONCLUSIONS

In this paper, we introduced a novel particle filtering al-
gorithm for regime switching systems. The proposed method
allows for the treatment of stochastic filtering problems under
model uncertainty, where the model can change from one time
instant to the next. Moreover, our algorithm does not have any
restrictions on the regime switching dynamics and can work
for systems that are not Markovian switching systems. We
validated our method on two synthetic data experiments, where
in the first experiment we considered a Markovian switching
system and in the second experiment we considered a system
where regimes changed according to a Pólya urn process.
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