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Abstract—The automatic detection of changes or anomalies
between multispectral and hyperspectral images collected at
different time instants is an active and challenging research
topic. To effectively perform change-point detection in
multitemporal images, it is important to devise techniques that
are computationally efficient for processing large datasets, and
that do not require knowledge about the nature of the changes. In
this paper, we introduce a novel online framework for detecting
changes in multitemporal remote sensing images. Acting
on neighboring spectra as adjacent vertices in a graph, this
algorithm focuses on anomalies concurrently activating groups of
vertices corresponding to compact, well-connected and spectrally
homogeneous image regions. It fully benefits from recent
advances in graph signal processing to exploit the characteristics
of the data that lie on irregular supports. Moreover, the graph
is estimated directly from the images using superpixel decompo-
sition algorithms. The learning algorithm is scalable in the sense
that it is efficient and spatially distributed. Experiments illustrate
the detection and localization performance of the method.

Index Terms—Hyperspectral images, change detection, graphs,
multitemporal, superpixels.

I. INTRODUCTION

The increasing availability of multitemporal multi- and
hyperspectral devices allows for a detailed analysis of the
evolution of a scene over time. This can potentially benefit
different applications, ranging from agricultural and forestry
monitoring, natural disaster and urban landscape analysis [1],
to surveillance and other industry problems [2], [3]. Among
these applications, the detection of changes or anomalies
between images acquired at different time instants is an
active and challenging research topic [1], [4]. The earliest
change detection (CD) works consisted of post-classification
algorithms, which compare supervised classification results of
the two images [1], [4]. Although conceptually simple, those
methods depend on training data, whose availability is often
limited. This motivated the development of unsupervised
techniques, which usually consists in analysing some kind of
distance between feature-based representations of the pixels
in both images [1]. Other popular approaches search for a
transformation of the data to a lower-dimensional feature
space that highlights the changes (e.g., multivariate alteration
detection (MAD), temporal PCA, or unmixing) [1].
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Traditionally, most CD algorithms were focused on pro-
cessing a single pair of images (i.e., the bitemporal problem).
However, those methods fail to explore the information
contained in longer data streams, which has recently become
the source of attention. For instance, [5] proposed to improve
the performance of binary CD by constraining detection
results to be consistent across all closed loops of subsequences
sampled from the observed time series. CD decision rules
known a priori have also been applied to new pairs of images
using domain adaptation techniques [6]. In [7], different
features were computed in local spatial windows centered
at each pixel, for the whole time series. These temporal
vectors of features were then classified using methods such
as, e.g., K-means. More applied work often considers precise
season-trend parametric models over, e.g., vegetation indices
and detect changes by examining the model parameters [8].

Other algorithms were devised to operate online, such
as [9], which detects changes on vegetation index data
by monitoring the state covariance matrix of the extended
Kalman filter. Another approach used density ratio estimation
(learned from training data) to detect changes [10]. In [11]
a cumulative sum test is used to detect change points in
time series data. However, the pre- and post-change densities
have to be estimated a priori. Recent work also considered
multitemporal unmixing to separate the observed images into
time series of the material signatures (endmembers) and their
fractional abundances for each pixel [12], [13]. This can be
used to perform CD in the lower dimensional space [1]. Other
methods based on, e.g., total-variation [14] and low-rank and
sparse decomposition [15] can also be considered to perform
CD. However, reconciling a low computational complexity
with flexibility to incorporate a priori knowledge about the
nature of the changes can be difficult in these techniques.

Despite the significant interest in this problem, there is still a
need for algorithms that operate online and explore the tempo-
ral and the intrinsic structure of the data, while also being un-
supervised and computationally efficient. In this work, we pro-
pose an online framework for detecting changes in multitem-
poral multiband images. We assume that changes occur con-
currently in groups of connected, spectrally homogeneous pix-
els, which are then represented as adjacent vertices in a graph
constructed from the superpixel representation of the images.
Instead of considering graph regularizations [16] or graph-
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based representations of the images learned from the data [17],
which lead to computationally inefficient and offline solutions,
the proposed method fully benefits from recent advances in
graph signal processing to better exploit the characteristics of
the data that lie on irregular supports [18]. Moreover, differ-
ently from previous bitemporal CD approaches that use super-
pixels to compute features to classification algorithms [19] or
as an ad hoc approach to introduce spatial homogeneity in CD
algorithms [20], we use the superpixel decomposition to gen-
erate a graph directly from the observed images. This allows
us to exploit theoretically-grounded tools from graph signal
processing. The learning algorithm is computationally efficient
and spatially distributed, and benefits from temporal informa-
tion by using a simple strategy that propagates two statistics
with different learning rates. Simulations illustrate both the de-
tection and localization performance of the proposed method.

II. PROBLEM FORMULATION

We consider a sequence of multi- or hyperspectral images
Y t ∈ RL×N with N pixels and L bands, for t = 1, . . . , T .
The unsupervised binary CD problem can be formulated as
follows: given the image sequence Y t, find ct ∈ RN , for
t = 2, . . . , T . where ct,j = 1 if there occurred a change in
pixel j between instants t − 1 and t, and ct,j = 0 otherwise.
More precisely, we consider the measurements to be given by:

Y t = Qt +Et , (1)

where Qt denotes contextually relevant image content, and
Et represents additive noise and perturbations that are non-
informative changes, which include, e.g., noise, illumination
and other acquisition variations [21], [22]. This allows us to
define the CD problem equivalently as:

ct,j = 1 ⇐⇒ qt,j 6= qt−1,j , t = 2, . . . , T, (2)

where qt,j is the jth column of Qt, for t = 1, . . . , T .
In this work, we make some simplifying assumptions that

facilitate the definition of the change detection problem:
A1: Changes occur concurrently in sets of pixels that share

semantically similar information (such as buildings, roads,
crop fields, etc.). Mathematically, we assume that every pixel
i for which ct,i = 1 is part of one among a set of compact,
connected, spectrally homogeneous groups of pixels C (k),
k = 1, . . . , NC for which ct,j = 1 for all pixels j in the
same group as i.

A2: Only a single change occurs in a given streaming signal
yt,j of length T (1 ≤ t ≤ T ).

A1 is reasonable as changes usually occur in compact
regions of the image composed of several pixels. A2 allows
us to explore temporal information contained in longer
sequences [1], differently from multi- and hyperspectral
image CD algorithms that focus in the bitemporal problem
(i.e., when T = 2). Moreover, very long sequences where
multiple changes occur can be divided into subsequences of
smaller length T in which A2 is satisfied, as long as multiple
abrupt changes do not happen in close succession.

A1 and A2 motivate a reformulation of the CD problem as
the detection of abrupt variations in the data sequence. This
simplified model is more accurate as the ratio of the sampling
period of the discrete image sequence to the time required
for the occurrence of a significant change increases. We use
this simplified model for ease of exposition.

The change point detection (CPD) problem consists of
finding tc ∈ N such that

qt,j = qj , t < tc ,

qt,j = qj + δj , t ≥ tc .
(3)

where vector qj ∈ RL is the jth column of matrix Q, which
captures the static underlying image content, and δj ∈ RL

is the jth column of matrix ∆, which captures the changes.
This formulation is adequate for different applications such
as surveillance or other industry applications [2], [3], which
can benefit from computationally efficient online algorithms.

A. Superpixel-based graph construction

An important aspect of this problem is how groups of pixels
C (k) should be defined. Fundamentally, C (k) should contain
pixels that share semantically similar information (e.g.,
belonging to the same objects or regions that may experience
changes concurrently). We focus at linking pixels that are
spatially adjacent and spectrally similar, attempting to respect
sharp image borders that might indicate different objects or
image regions. Recently, different works proposed to divide
multiband images into disjoint, compact regions by means
of image (over)-segmentation methods such as superpixels,
ultrametric contour maps, or binary partition trees [23]–
[25]. In particular, superpixels are able to group spectrally
similar pixels in compact spatial neighborhoods of average
size S2 with excellent preservation of image borders [23].
The superpixel decomposition has been sucesfully applied
to construct multiscale transformations used in spectral
unmixing applications [26]–[28]. In this paper, we consider
the superpixel decomposition in order to divide the pixels
n = 1, . . . , N into sets C (k) that group the pixels belonging
to each superpixel of the image.

III. PROPOSED STRATEGY

Traditional CD techniques operate individually on each
pixel of an image. In this work we propose a framework that
is able to explore, in a theoretically-grounded manner, the in-
formation that changes occur in groups of semantically similar
pixels in possibly long image sequences, while at the same
time benefiting from temporal information to operate online
and computationally efficiently. We base our work on [29],
which we extend to consider multidimensional data, and use
a graph constructed from the superpixel decomposition.

We assume that the images are defined over an undirected
graph G = {V, E ,W } with N vertices V = {1, . . . , N}, M
edges (i, j) ∈ E ⊆ V ×V and a (symmetric) adjacency matrix
W ∈ RN×N whose elements are nonnegative and specify the
similarity between the different pixels in the image. We also
denote by L ∈ RN×N the normalized graph Laplacian of G.



According to the discussion in Section II-A, G is constructed
such that (i, j) ∈ E if and only if pixels i and j belong to
the same superpixel, in which case [W ](i,j) = 1.

This definition makes C (k) equivalent to clusters in G,
and the CD problem becomes closely related to testing for
changes in clusters of pixels in the graph. A change will be
characterized by a δj 6= 0 for j in a well-connected cluster of
vertices of G. A detection strategy that is closely related to this
problem is the graph Fourier scan statistic (GFSS) [30]. The
GFSS addresses a counterpart of this problem for scalar (one-
dimensional) graph signals x ∈ RN measured over G by test-
ing whether the average value of x is constant on all vertices,
or if there is a cluster C of vertices with a different average
value [30]. The GFSS considers the following test statistic:

rcentrGFSS =
∥∥g(x)∥∥

2
, (4)

where g(x) is the graph-filtered version of x, where the
graph filter g is defined as

g
(
x
)

=

N∑
n=2

h(µn)
(
u>nx

)
un , (5)

with un ∈ RN being the nth eigenvector of L, µn the
eigenvalue associated with un, and

h(µ) = min
{

1,
√
γ/µ

}
, µ > 0 . (6)

Parameter γ > 0 in (6) controls the behavior of the graph
filter that is applied to the vertex-wise test statistic, which
attenuates high-frequency variations in x while enhancing
signals that are consistent across well connected clusters of G
(i.e., a low-pass graph filter) [18]. Although the graph filter
in (5) requires the eigendecomposition of L, which may be
computationally costly, several strategies have been proposed
to address this issue. Those typically involve approximating
g by a finite impulse response [31], or by autoregressive
moving average [32] graph filters that can be implemented
efficiently and in a distributed manner (even for large N ).

The GFSS, however, cannot be directly applied to the
present problem since the underlying hypotheses are not
satisfied (i.e., the graph signal is not constant over all vertices
under the null hypothesis, and the nodal observations are
vector valued pixels). If the underlying trend Q were known,
it could be subtracted from Y t, and each band of the resulting
signals could be tested using the GFSS. Since Q is not
known, we adopt the adaptive strategy first considered in
[29], [33], where two adaptive filters with different time
constants λ and Λ, 0 < λ < Λ < 1, are used according to:

V t = (1− λ)V t−1 + λY t ,

V ′t = (1− Λ)V ′t−1 + ΛY t .
(7)

Both V t and V ′t are weighted averages of Y t, which can
mitigate the influence of additive noise Et in (1). Moreover,
V ′t captures the short-term variations in Y t, from which the
long-term average V t can be subtracted [33] as:

Dt = V ′t − V t , (8)

where D>t = [d
(1)
t , . . . ,d

(L)
t ]. Assuming model (3), we

have that Dt is asymptotically zero-mean in the absence
of a change-point (i.e., t < tc). On the other hand, after a
change-point occurs (i.e., t ≥ tc), Dt will be non-zero-mean
at the clusters affected by the change in ∆, since V ′t will
adapt more quickly than V t to represent the changes in Y t

due to the difference between the time constants of both
filters in (7) (i.e., a change can be detected by verifying how
the short-term average differs from the long-term trend).

The graph signal Dt is, however, vector valued (at each
pixel), what still hinders the use of the GFSS test statistic
as defined in (4). Moreover, as noted in [29], the global test
statistic rcentrGFSS does not allow one to know in which
cluster of G the change occurred. An alternative strategy
proposed in [29] is to consider the coherent sum of the
graph-filtered difference signal at the neighborhood of each
vertex of G, which localizes the changes in the graph. Since
we are testing for changes affecting all bands of pixels in
clusters C (k) (i.e., we do not localize the changes at the
band level), we propose a distributed test statistic for each
vertex of G by summing the squared norms of the coherent
sums of g(d

(`)
t ) over all bands ` = 1, . . . , L. This leads to

the following test statistic for each pixel:

rdaGFSS(n) =

L∑
`=1

( ∑
m∈N (n)

g
(
d
(`)
t

))2

, (9)

where N (n) denotes the set of neighbors of vertex n in
the graph G. Assuming that vec(Et) ∼ N (0, σ2I), where
vec(·) is the vectorization operator, it can be shown using
[29, Proposition 2] that d(`)t is asymptotically distributed as
d
(`)
t

a∼ N (0, ησ2I), with

η =
λ

2− λ
+

Λ

2− Λ
− 2λΛ

λ+ Λ− λΛ
. (10)

This means that the graph-filtered d
(`)
t is distributed as

g(d
(`)
t )

a∼ N (0,R), where

R = ησ2
N∑

n=2

(
h(µn)

)2
unu

>
n , (11)

for ` = 1, . . . , L.
Similarly,

∑
m∈N (n) g(d

(`)
t )

a∼ N (0, σ2
R(n)), where

σ2
R(n) =

∑
m,p∈N (n)

ησ2
N∑

k=2

(
h(µk)

)2[
uku

>
k

]
m,p

, (12)

and [ · ]m,p denotes the (m, p)th element of a matrix.
Note that the summands in (9) are statistically independent

for different values of `, which means that under the null
hypothesis, rdaGFSS(n) follows a Chi-squared distribution
with L degrees of freedom. Then, a p-value of pn can be
obtained by setting the test threshold ξn according to

ξn = σR(n)Γ−1inc

(L
2

; 1− (1− pn)Γ
(L

2

))
, (13)

where Γ(·) is the common gamma function and Γinc(· ; ·) is



Figure 1. Snapshot of the multispectral video sequences used in example 1
(left) and in example 2 (right).

the upper incomplete gamma function.
Determining whether t is a change point of Y t is now

equivalent to testing if a change occurred on at least one of the
vertices, n = 1, . . . , N , which consists of a multiple testing
problem. In order to limit the probability of type I errors
in this context, we employ a False Discovery Rate (FDR)
controlling procedure. Since the test statistics rdaGFSS(n) are
statistically dependent, we employ the Bonferroni correction
as in [29], since it can be applied efficiently and distributedly
in this case. Thus, for an FDR of α we set pn = α/N .

Algorithm 1: Remote sensing Graph CD Algorithm
Input : Images {Y t}, parameters 0 < λ < Λ < 1, γ > 0.

1 Compute the graph G based
on the first observed HI using the procedure of Section II-A ;

2 Initialize V1 = Y1 and V ′
1 = Y1 ;

3 for t = 2, 3, . . . do
4 Compute V t, V ′

t and Dt using eqs. (7) and (8) ;
5 Compute the test statistic rdaGFSS(n) using eq. (9);
6 for n = 1, . . . , N do
7 if rdaGFSS(n) > ξn then
8 Flag t

as a change point for vertex n and set ĉt,n ← 1 ;
9 end

10 end
11 end

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the
proposed method using two examples. We compare the
proposed method with the traditional change vector analysis
(CVA), with MAD [34] and with the IRMAD [35] in the
first example, and also with the DSFA [36] in the second
one. The first example illustrates the change-point detection
performance for an abrupt change, while the second considers
a more general scenario where varied amounts of changes
are present in the scene. The superpixel decomposition is
computed using the SLIC algorithm [23]. Snapshots of the
sequences used in both examples are shown in Fig. 1.

Example 1: In this example, we consider a video
sequence with T = 70 frames of a concrete floor, which is
static at the beginning up until a water bottle is emptied in
front of the camera. This generates an abrupt change point
at tc = 16, after which frequent and intermittent changes are
observed until the end of the sequence. The images contained
L = 9 bands and were resized to N = 100 pixels to accelerate
processing. Additive white Gaussian noise with a signal to
noise ratio of 10 dB was added to each frame. To compare
the performance of the algorithms, we ran a Monte Carlo
simulation with 1000 realizations, and evaluated the mean
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Figure 2. Experimental results. (a) Mean detection delay as a function of
the probability of false alarm (Example 1). (b) Probability of detection as a
function of the probability of false alarm (Example 2).
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Figure 3. Test statistic rdaGFSS(n) in decibels (blue) and true change
points (red) for a road pixel.

detection delay (E{t̂c − tc}, where t̂c is the detected change
point) as a function of the probability of false alarm (evaluated
as the probability of having a detection when t < tc). The
parameters of the proposed algorithm were set as S = 6,
γ = 0.1, λ = 0.01, and Λ = 0.8. The results are presented
in Fig. 2-(a), and show that the proposed method is able to
provide a detection delay smaller than the other approaches.

Example 2: In this experiment, we consider a real
multispectral video sequence of an outdoor scene with
intermittent object motion (e.g., passing cars and pedestrians)
as well as more subtle, non-informative changes (e.g.,
tree leaves moving). The video contained 50 × 50 pixels,
L = 7 spectral bands and T = 1000 frames. Ground truth
segmentation results of the moving targets of interest (e.g.,
cars and pedestrians) were available for this sequence [37],
which we use to compute the true detections ct,n and evaluate
the detection and localization performance of the algorithms.
Denoting the estimated changes by ĉt,n, we compute the
probability of detection and false alarm by averaging them
across all pixels and across all frames:

Pd =
∑

∀t,n : ct,n=1

ĉt,n

/∑
∀t,n

ct,n , (14)

Pfa =
∑

∀t,n : ct,n=0

ĉt,n

/(
TN −

∑
∀t,n

ct,n

)
. (15)

The parameters of the proposed algorithm were set as S = 5,
γ = 0.1, λ = 0.15, and Λ = 0.5.

The results are shown in Fig. 2-(b) and 3. It can be seen
that even though this sequence is challenging since the
changes happen during short and intermittent periods, the
proposed algorithm is able to obtain a better performance if
the probability of false alarm is not very small.

V. CONCLUSIONS

In this paper, we proposed an online graph-based change
detection algorithm for multitemporal multiband images.
Acting on neighboring spectra as adjacent vertices in a graph,



this algorithm focuses on anomalies concurrently activating
groups of vertices corresponding to compact, well-connected
and spectrally homogeneous image regions. It fully benefits
from recent advances in graph signal processing and learns a
graph to characterize the support of the data directly from the
input image using superpixel decomposition methods. This
allows us to exploit both spatial and spectral information. The
method is unsupervised as it requires minimal knowledge
about the nature of the changes, and is computationally
efficient and scalable as it is spatially distributed. Preliminary
experiments indicate superior performance of the proposed
algorithm both in the detection and localization of changes.
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