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Abstract—Cyber-physical systems are often safety-critical in
that violations of safety properties may lead to catastrophes.
We propose a method to enforce the safety of systems with
real-valued signals by synthesizing a runtime enforcer called
the shield. Whenever the system violates a property, the shield,
composed with the system, makes correction instantaneously to
ensure that no erroneous output is generated by the combined
system. While techniques for synthesizing Boolean shields are well
understood, they do not handle real-valued signals ubiquitous in
cyber-physical systems, meaning their corrections may be either
unrealizable or inefficient to compute in the real domain. We
solve the realizability and efficiency problems by analyzing the
compatibility of predicates defined over real-valued signals, and
using the analysis result to constrain a two-player safety game
used to synthesize the shield. We demonstrate the effectiveness of
this method on a variety of applications, including an automotive
powertrain control system.

Index Terms—program synthesis, controller synthesis, safety
game, signal temporal logic, cyber physical system

I. INTRODUCTION

A cyber-physical system often needs to continuously re-
spond to external stimuli with actions under strict timing
and safety requirements; violations of these requirements may
lead to catastrophes. While formal verification is desirable, in
practice, it can be difficult due to high system complexity,
unavailability of source code, and limited capacity of existing
verification tools. In addition, many systems have started
incorporating machine learning components, which remain
challenging to test or verify [13], [21].

Bloem et al. [7] recently introduced the concept of shield,
denoted S , to enforce a specification ϕ of a system D with
certainty. The goal is to ensure that the combined D◦S never
violates ϕ. If, for example, D malfunctions and produces an
erroneous output O for input I , S will correct O into O′

instantaneously to ensure ϕ(I,O′) holds even when ϕ(I,O)
fails. Here, instantaneously means correction is made in the
same clock cycle. Furthermore, S depends solely on ϕ, which
makes it well-suited for complex D but small ϕ, e.g., learning-
based systems [2], [3], [42], [44].

While the functional specification of D, denoted Ψ, may be
large, typically, only a small subset ϕ ⊆ Ψ is safety-critical.
Since S depends on ϕ, as opposed to Ψ or D, synthesizing S
from ϕ is more practical than model checking [9], [33], which
decides if D satisfies ϕ, or program synthesis [5], [6], [14],
[32], which creates D from Ψ.

Although techniques for synthesizing Boolean shields are
well understood [7], [22], [43], they do not work for systems
where signals have real values and need to satisfy constraints

such as x + y ≤ 1.53. Naively treating the real-valued
constraint as a predicate, or a Boolean variable P , may lead
to loss of information at the synthesis time and unrealizability
at run time. For example, while the Boolean combination
P ∧¬Q∧¬R may be allowed, the corresponding real-valued
constraint may not have solution, e.g., with P : x+ y ≤ 1.53,
Q : x < 1.0 and R : y < 1.0.

Even the use of abstraction refinement to combine a
Boolean shield with constraint solving does not work. For
example, one may be tempted to block P ∧ ¬Q ∧ ¬R and
ask the shield to generate a new solution. However, since the
shield must be reflexive, i.e., producing O′ in the same clock
cycle when the erroneous O occurs, it may be too slow at run
time to recompute a solution. Even if it is fast enough, the
new solution may still be unrealizable in the real domain. In
general, it is difficult to bound a priori the number of iterations
in such an abstraction-refinement loop to meet the strict timing
requirement.

We propose a shield synthesis method to guarantee, with
certainty, the realizability of real-valued signals. This is ac-
complished by treating Boolean and real-valued signals uni-
formly by adding a set of new constraints. These constraints
take the form of two automata: a relaxation automaton, to
capture the impossible combinations of predicates over signals
in I and O, and a feasibility automaton, to capture the
infeasible combinations of signals in O′. We use them to
restrict the synthesis algorithm formulated as a two-player
safety game, where the antagonist controls the erroneous O
and the protagonist (shield) controls the corrected O′: the
game is won if the protagonist ensures that ϕ(I,O′) holds
even if ϕ(I,O) fails.

The overall flow is shown in Fig. 1, where the input consists
of real-valued Ir and Or signals and a safety property ϕr
defined over these signals. Internally, the shield S has three
subcomponents: a converter from real-valued Ir/Or signals
to Boolean I/O signals, a converter from Boolean O′ signals
to real-valued O′r signals, and a Boolean shield S(I,O,O′).
Note that the system, denoted D(Ir, Or), is not required to
synthesize the shield: by treating D as a blackbox, we ensure
that D ◦ S |= ϕr for any D.

Our shield synthesis algorithm first computes a set P of
predicates over real-valued signals from ϕr, Ir, Or and O′r.
Next, it leverages P to construct the Boolean abstractions ϕ,
I , O and O′, as well as the relaxation automaton R(I,O) and
the feasibility automaton F(O′). Using these components, it
constructs and solves a safety game where the antagonist is
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Fig. 1. Overview of the safety shield for real.

free to introduce errors to O and the protagonist must correct
them in O′. The winning strategy computed for the protagonist
is the Boolean shield S(I,O,O′). At run time, real values
are computed for signals in O′r by solving a conjunction of
constraints based on the Boolean values of signals in O.

To speed up the computation of real values at run time,
we also propose a set of design-time optimizations, which
leverage the information gathered from the shield to simplify
the constraints to be solved at run time. When there are
multiple real-valued solutions, the utility function γ shown
in Fig. 1, which defines a robustness criterion, is used to
pick the best one. We also propose a two-phase, predict-and-
validate technique to speed up the computation of the real-
valued solutions.

We have evaluated the method on a number of applications,
including automotive powertrain control [19], autonomous
driving [35], adaptive cruise control [29], multi-drone fleet
control [30], generic control [20], blood glucose control [39],
and water tank control [2]. Our results show that, in all cases,
the shield can quickly produce real-valued correction signals
at run time. Furthermore, the use of robustness constraints and
two-phase computation can significantly improve the quality
and efficiency of the real-valued solutions.

To sum up, we make the following contributions:

• We propose a method for synthesizing shields while
guaranteeing the realizability of real-valued signals.

• We propose optimizations to speed up the computation
and improve the quality of these correction signals.

• We demonstrate the effectiveness of the proposed tech-
niques on a number of applications.

The remainder of this paper is organized as follows. First,
we review the basics of shield synthesis in Section II. Then,
we present the technical challenges of extending the Boolean
shield to the real domain in Section III. Details of our method
for addressing these challenges can be found in Sections IV
and V. Next, we present our experimental results in Section VI.

We review the related work in Section VII. Finally, we give
our conclusions in Section VIII.

II. PRELIMINARIES

We assume that the system, D, is a blackbox with input
I and output O. When D malfunctions, it produces some
erroneous values in O. The shield, S, takes both I and O
as input and returns O′ as output. Whenever D |= ϕ, the
shield returns O′ = O; and when D 6|= ϕ, the shield needs to
compute correction O′ for O. Following Bloem et al. [7], we
treat the correction computation as a two-player safety game.

Safety Game The antagonist controls the alphabet ΣIO and
the protagonist controls the alphabet ΣO′ . The game is a tuple
G = (G, g0,ΣIO × ΣO′ , δG , F ), where G is a set of states,
g0 is the initial state, ΣIO × ΣO′ is the combined alphabet,
δG : G × ΣIO × ΣO′ → G is the transition function, and F
is the set of unsafe states. In each state g ∈ G, the antagonist
chooses a letter σIO ∈ ΣIO and then the protagonist chooses
a letter σO′ ∈ ΣO′ , thus leading to state g′ = δG(g, σIO, σO′).
The resulting state sequence g0g1... is called a play. A play is
winning for the protagonist when it visits only the safe states.

The game may be solved using the classic algorithm of
Mazala [28], which computes “attractors” for a subset of safe
states (G \ F ) and unsafe states F . A winning region W is
a subset of (G \ F ) states within which the protagonist has
a strategy to win. A winning strategy is a function ω : G ×
ΣIO → ΣO′ that ensures the protagonist always wins. The
shield S is an implementation of the winning strategy.

Boolean Shield It is a tuple S = (S, s0,ΣIO,ΣO′ , δS , λS),
where S is a set of states, s0 is the initial state, δS :
S×ΣIO → S is the transition function, and λS(S, σIO) = σO′

is the output function. Here, λS implements the winning
strategy ω in the game G. Assume the system is D =
(Q, q0,ΣI ,ΣO, δD, λD), where Q is the set of system states,
q0 is the initial state, δD : Q × ΣI → Q is the transition
function, and λD : Q×ΣI → ΣO is the output function. The
composition D ◦ S is (QS, qs0,ΣI ,ΣO′ , δD◦S , λD◦S), where
QS = Q× S, the initial state is qs0 = (q0, s0), the transition
function is δD◦S : QS × ΣI → QS, and the output function
is λD◦S .

Given a state qs = (q, s), the next state qs′ = (q′, s′) is
computed by δD◦S(qs, σI) as follows: q′ = δD(q, σI) and
s′ = δS(s, σI◦λD(σI)), and σO′ is computed by λD◦S(qs, σI)
as follows: λS(s, σI ◦ λD(σI)).

If there are multiple ways of changing O to O′ to satisfy
ϕ(I,O′), the shield must choose the one with minimum
difference between O and O′. The difference may be measured
in Hamming Distance [7]: when D |= ϕ, HD(O,O′) = 0; and
when D 6|= ϕ, HD(O,O′) is minimized.

Example Consider the following two formulas in LTL [31]:

G
(
A⇒ B1

)
G
(
A ∧ X(¬A) ⇒ B2UA

)
where G means Globally, X means Next, U means Until,
Boolean variable A is an input signal, while B1 and B2 are
output signals of D. Fig. 2 shows the corresponding automaton
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Fig. 2. Boolean safety specification.
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Fig. 3. Boolean shield for Properties in Fig. 2.

representation, where 0 is the initial state and 2 is an unsafe
state. Note that the transition labels are on the edges.

Fig. 3 shows the shield generated by existing techniques [7],
[22], [43], which takes signals A, B1 and B2 as input, and
return the modified signals B′1 and B′2 as output. Here, labels
are on nodes instead of edges: they are conditions under which
transitions go to destination nodes. Furthermore, B1 = B′1
means the two signals have the same value.

The shield ensures that A, the input signal of D, and
B′1, B

′
2, the modified output signals of D, always satisfy the

specification in Fig. 2. At the same time, the deviation between
B1, B2 and B′1, B

′
2 is minimized.

The red dashed edge in Fig. 3 illustrates a scenario where D
violates the specification by setting B2 to false while moving
from a state where A is true to a state where A is false, as
represented by the red dashed edge in Fig. 2. The shield, upon
detecting this violation, responds instantaneously by setting
B′2 to true. It allows the specification to be satisfied by the
modified output (B′2). As for B′1, whose value does not matter,
the shield maintains B′1 = B1 to minimize the deviation.

III. TECHNICAL CHALLENGES

Using a Boolean shield to generate real-valued correction
signals has two problems: realizability of the Boolean predi-
cates, and quality of the real-valued signals.

A. Realizability of the Boolean Predicates
The Boolean specification in Section II are abstractions

of the real-valued LTL properties below, which in turn are
abstractions of properties of an automotive powertrain control
system [19] expressed in Signal Temporal Logic (STL [27]).

G
(
l=power ⇒ |µ| < 0.2

)
G
(
l=power ∧ X(l=normal) ⇒

(
|µ| < 0.02

)
U
(
l=power

))

0

0.2

0.4

0.6

μ

system erroneous output output w/ only LP solver practical shield output

Fig. 4. Importance of the smoothness in real-valued correction signals.

The input signal l denotes the system mode, which may
be normal or power. The output signal µ is the normalized
error of the air-fuel (A/F) ratio inside an internal combustion
engine. Let λ be the A/F ratio and λref be a reference value,
then µ = (λ− λref )/λref . Since µ affects other parts of the
systems, it must be kept in certain regions depending on the
system mode.

The first property says that |µ| should stay below 0.2 in the
power mode. The second property says that, after the system
changes from the power mode to the normal mode, |µ| should
stay below 0.02. In the Boolean versions, A denotes whether
the system is in the power mode, while B1 and B2 denote
|µ| < 0.2 and |µ| < 0.02, respectively. The combination ¬B1∧
B2 is unrealizable, because |µ| cannot be both greater than 0.2
and less than 0.02.

However, the shield synthesized by existing methods is not
aware of this problem, and thus may produce combinations
of Boolean values that are not realizable in the real domain.
As shown by the red edge in Fig. 3: if the shield’s input is
¬A∧¬B1∧¬B2, the shield’s output will be ¬B′1∧B′2, despite
that |µ′| ≥ 0.2 ∧ |µ′| < 0.02 is unsatisfiable.

We solve this problem by checking the compatibility of the
predicates at the synthesis time, to guarantee their realizability
at run time. Details will be presented in Section IV.

B. Quality of the Real-valued Output
Even if the Boolean values are realizable, the real-valued so-

lution computed by a generic solver may not be of high quality.
Assume that all predicates are linear arithmetic constraints,
the output of a Boolean shield would be a conjunction of
constraints. As shown in Fig. 1, the back-end may convert O′,
the Boolean output, to O′r, the real-valued output, by solving
a linear programming (LP) problem.

Consider G(A ⇒ B), which abstracts G
(
l = power ⇒

|µ| < 0.2
)
. Suppose the original system’s output violates the

property |µ| < 0.2 as shown by the blue line in Fig. 4, where
the two erroneous values are in the middle. The correction
computed by an LP solver may be any of the infinitely many
values in the interval (-0.2, +0.2), including -0.19 and 0.
However, neither of these two values may be acceptable in
a real system, which expects the signal to be stable, not
arbitrary.

Ideally, we want to generate real-valued signals that are
smooth, and consistent with physical laws of the environment,
e.g., the green line in Fig. 4. Toward this end, we leverage
a utility function, γ, to impose robustness in addition to
correctness constraints. With both types of constraints, the LP
solver can generate values of high quality.



Algorithm 1 Synthesizing a realizable Boolean shield Sbool from ϕr .
1: Let P be the set of predicates over real-valued variables in ϕr ;
2: Let ϕ, I , O, O′ be Boolean abstractions of ϕr , Ir , Or , O′r via P;
3: function SYNTHESIZEBOOL ( P , I , O, O′ )
4: Q(I,O′)← GENCORRECTNESSMONITOR(ϕ)
5: E(I,O,O′)← GENERRORAVOIDINGMONITOR(ϕ)
6: G ← Q ◦ E
7: W ← COMPUTEWINNINGSTRATEGY(G)
8: R(I,O)← GENRELAXATIONAUTOMATON(P, I,O,W)
9: F(O′)← GENFEASIBILITYAUTOMATON(R)

10: Gr ←W ◦R ◦ F
11: ωr ← COMPUTEWINNINGSTRATEGY(Gr )
12: Sbool(I,O,O′)← IMPLEMENTSHIELD(ωr )
13: return Sbool
14: end function

We also propose a technique to speed up the computation
of real values. The intuition is that system dynamics may
be approximated using (linear) regression, which predicts the
current value of a signal based on its values in the recent past.
Thus, we develop a fast runtime prediction unit to guess the
value, followed by a fast validation unit to check its validity. If
the predicted value is valid, it will serve as the shield’s output.
Otherwise, we invoke the LP solver. Details will be presented
in Section V.

IV. SYNTHESIZING THE BOOLEAN SHIELD

In this section, we present our method for ensuring the
realizability of the shield’s output signals. The idea is to
check the compatibility of predicates inside the game-based
algorithm for synthesizing the Boolean shield. To improve
efficiency, we check predicate combinations only when they
are involved in compute the winning strategy.

Algorithm 1 shows the procedure, where blue highlighted
lines address the realizability issue while the remainder fol-
lows the classic algorithm in the prior work [7], [22], [43].
First, it creates P , the set of predicates from the real-valued
specification ϕr. Then, it uses P to compute a Boolean
abstraction of ϕr, denoted ϕ. Next, it uses ϕ to formulate
a two-player safety game G where the antagonist controls I
and O, the protagonist controls O′, and W is the winning
region where the protagonist may win the game.

Since the construction of the safety game G is part of the
prior work, we refer to Bloem et al. [7] and Wu et al. [43]
for details. Here, it suffices to say that G is a synchronous
composition of E , an error-avoiding monitor that outlines all
possible ways in which the antagonist may introduce errors in
O and the protagonist may introduce corrections in O′, and
Q, a correctness monitor that ensures ϕ(I,O′) always holds.

Since a winning strategy in W may not be realizable
in the real domain, our next step is to compute a strategy
ωr based on W while ensuring correction signals produced
by ωr are always realizable. Toward this end, we introduce
two additional automata: the feasibility automaton F(O′) and
the relaxation automaton R(I,O). Specifically, F is used to
identify and remove the infeasible edges in ω, i.e., corrections
in O′ with no real-valued solutions. R is used to identify and
remove the unrealistic errors in I and O, i.e., errors that are
impossible and thus will not occur in the first place.

In other words, F restricts the search to realizable solutions,
and R allows us to have more freedom while computing the

winning strategy. Thus, the new game Gr is a composition of
W , R and F . Based on the winning strategy ωr computed
from Gr, we can construct a shield Sbool that is guaranteed to
be realizable at run time.

In the remainder of this section, we illustrate the details
while focusing on the highlighted lines in Algorithm 1.

A. Computing the Predicates
P is the set of predicates over real-valued signals used in

ϕr, where ϕr is expressed in Signal Temporal Logic (STL).
In addition to the LTL operators, STL also has dense time
intervals associated with temporal operators and constraints
over real-valued variables.

Consider the STL formulas below, which come from the
powertrain control system [19] without modification.

G[τs,T ]

(
l=power⇒ |µ| < 0.2

)
G[τs,T ]

(
l=power ∧ X(l=normal)⇒ G[η, ς

2
]

(
|µ| < 0.02

))
Here, G[τ1,τ2] is the temporal operator augmented with time
interval [τ1, τ2], l is the system mode, and µ is the normalized
error of the air-fuel ratio. The first property says that |µ| should
stay below 0.2 immediately after the system switch to the
power mode, i.e., between time τs and time T . The second
property says that, when it switches from the power mode to
the normal mode, |µ| should settle down to below 0.02 after
time η and before time ς

2 .
To compute P , first, we convert each time interval to a

conjunction of linear constraints, e.g., by using a time variable
t to represent the bounds in intervals [τs, T ] and [η, ς2 ].

T1: (t ≥ τs) T2: (t ≤ T )
T3: (t ≥ η) T4: (t ≤ ς

2 )

Next, we convert the constraints over real-valued variables to
predicates. From the running example, we will produce the
following predicates:

L1: (l = power) L2: (l = normal)
M1: (|µ| < 0.2) M2: (|µ| < 0.02)

B. Computing the Boolean Abstractions
After the set P of predicates is computed, we use it to

compute the Boolean abstractions of ϕr, Ir, Or and O′r. This
step is straightforward. To compute ϕ from ϕr, we traverse
the abstract syntax tree (AST) of ϕr and, for each AST node n
that corresponds to a real-valued predicate P ∈ P , we replace
P with a new Boolean variable vP .

To compute I from Ir, we traverse the predicates in P
and, for each predicate Q ∈ P defined over some real-
valued signals in Ir, we add a new Boolean variable vQ to
I . Similarly, O and O′ are also computed from Or and O′r by
creating new Boolean variables.

C. Computing the Relaxation Automaton
The relaxation automaton R aims to identify impossible

combinations of I and O values, and since they will never
occur in the shield’s input, there is no need to make corrections
in the shield’s output. There may be two reasons why a value
combination is impossible:



impossible

(¬T1 ∧ T2) ∨ (M1 ∨ ¬M2)

(¬M1 ∧M2) ∨ (¬T1 ∧ ¬T2)

¬T2

True

T1 ∧ T2

T1 ∧ T2

T1 ∧ ¬T2

T1 ∧ ¬T2

¬T1

¬T1 ∨ T2

Fig. 5. Relaxation automaton R(I,O): impossible means the system D will
not allow the state to be reached, and the shield S can treat it as don’t care.

infeasible

(M ′1 ∨ ¬M ′2)

(¬M ′1 ∧M ′2)

True

Fig. 6. Feasibility automaton F(O′): infeasible means the state is unrealiz-
able, and the shield S must avoid the related edges while generating solutions.

1) The values of real-valued predicates are incompatible,
e.g., as in |µ| < 0.02 and |µ| > 0.2.

2) The values are not consistent with physical laws of
the environment, e.g., time never travels backward. For
example, with respect to the time interval [τs, T ], the
transition from T1 ∧ T2 to ¬T1 ∧ T2 is impossible.

In addition, our method allows users to provide more con-
straints to characterize physical laws of the environment or
their understanding of the behaviors of the system D.

States in the relaxation automaton R are divided into
two types: normal states and impossible states. Here, normal
means the I/O behavior of the system D may occur, whereas
impossible means it will never occur. Since impossible I/O
behavior will never occur in the shield’s input, the shield may
treat it as don’t-care and thus have more freedom to compute
the winning strategy.

Example Fig. 5 shows the relaxation automaton for our
running example. Here, the dashed edges come from the
physical laws (time never travels backward), while the solid
edges comes from the compatibility of real-valued predicates
defined over l and µ. In particular, the combination ¬M1∧M2
is identified as impossible, because |µ| cannot be greater than
0.2 and less than 0.02 at the same time.

To check the compatibility of the predicate values, concep-
tually, one can iterate through all possible value combinations
for the predicates in P , and check each combination with
an LP solver. If the combination is unsatisfiable (UNSAT)
according to the LP solver, we say it is impossible. However, in
our actual implementation, the compatibility checking is per-
formed significantly more efficiently, due to the use of variable
partitioning and UNSAT cores. First, P may be divided into
subgroups, such that predicates from different subgroups do
not interfere with each other. Therefore, value combinations
may be computed via Cartesian products. Second, when a

value combination is proved to be unsatisfiable, we compute
its UNSAT core, i.e., a minimal subset that itself is UNSAT.
By leveraging these UNSAT cores, we can significantly speed
up the checking of value combinations.

D. Computing the Feasibility Automaton
The feasibility automaton F aims to capture the combina-

tions of O′ values that are unrealizable in the real domain.
Similar to R, states in F are divided into two types: normal
and infeasible. Here, normal means the value combinations
are realizable in the real domain, whereas infeasible means
the value combinations may be unrealizable.

Fig. 6 shows an example feasibility automaton for the run-
ning example: all predicates are the primed versions because
they are defined over O′ signals, which are part of the modified
output of the shield. Upon ¬M ′1∧M ′2, the automaton goes into
the infeasible state, because ¬(|µ′| < 0.2)∧ (|µ′| < 0.02) has
no real-valued solution.

While this is rare, a value combination may depend on real-
valued signals not only in the shield’s output (O′r) but also in
the input (Ir). Let such a value combination be denoted by
φ(Ir, O

′
r). Whether φ is guaranteed to be realizable can be

decided using an SMT solver, by checking the validity of the
formula ∀Ir.∃O′r.φ(Ir, O

′
r).

Subsequently, during our computation of the winning strat-
egy ωr, we need to avoid such unrealizable combinations.

E. Solving the Constrained Game
The new safety game Gr is defined as the composition of

W , the winning region of the Boolean game G, the relaxation
automaton R, and the feasibility automaton F . We tweak the
winning region automatonW by adding an unsafe state for all
edges going out of W . Here, composition means the standard
synchronous product, where a state transition exists only if it is
allowed by all three components (W , R and F). Furthermore,
safe states of Gr are either (1) states that are both safe in W
and feasible in F , or (2) states that are impossible in R.

More formally, assume that FW is the set of unsafe states
related to the winning region W , FF is the set of infeasible
states of the feasibility automaton F , and FR is the set of the
impossible states of the relaxation automaton R. The set of
safe states in the new game Gr is defined as (¬FW ∧¬FF )∨
FR.

Finally, we solve Gr using standard algorithms for safety
games, e.g., Mazala [28], which are also used in the prior
work [7], [22], [43]. The result is a winning strategy ωr,
which in turn may be implemented as a reactive component
Sbool . Note that Sbool is a Mealy machine that takes I and O
signals as input and returns the modified O′ signals as output.
Furthermore, due to the use of R and F , the output of Sbool
is guaranteed to be realizable at run time.

V. GENERATING THE REAL-VALUED SIGNALS

In this section, we present our method for computing the
real-valued signals (O′r) at run time, based on the Boolean
shield’s output (O′).

Algorithm 2 shows the details of our method, which needs
Ir, Or, O′r, the set P of predicates, Sbool , and a utility function
γ, which is used to evaluate the quality of the real-valued



Algorithm 2 Computing real-valued correction signals at run time.

1: function COMPUTEREALVALUES( Ir , Or , O′r , P , Sbool , γ)
2: I,O ← GENBOOLEANABSTRACTION(Ir, Or,P)
3: O′ ← GENBOOLEANSHIELDOUTPUT(Sbool , I, O)
4: if O′ = O then
5: O′r = Or
6: else
7: O′r ← PREDICTION(Hist)
8: if ¬ SATISFIABLE(P, O′, O′r) then
9: model←LPSOLVE(P, γ, O′)

10: O′r ← model
11: end if
12: end if
13: Hist← Hist ∪ {O′r}
14: end function

solution. First, real values in Ir and Or are transformed to
Boolean values in I and O. Then, they are used by Sbool
to compute new values in O′. When O′ and O have the
same Boolean value, meaning the shield does not make any
correction, O′r and Or will also have the same real value; in
this case, no computation is needed (Line 5). However, when
O′ and O have different values, we need to recompute the real
values in O′r (Lines 7-11).

A. Robustness Optimization
Since the output of the Boolean shield is an assignment of

the Boolean predicates in O′, and each predicate corresponds
to a linear constraint of the form Σki=1aixi ≤ 0, conceptually,
the real values in O′r can be computed by solving the linear
programming (LP) problem.

However, naively invoking the LP solver does not always
produce a high-quality solution. Instead, we develop the fol-
lowing optimization to improve the quality of the solution.
Specifically, we restrict the LP problem using a robustness
constraint derived from the utility function γ. While there
may be various ways of defining robustness, especially in the
context of STL [12], [15], a straightforward way that works
in practice is to ensure the signal is smooth (see Fig. 4).

That is, we restrict the LP problem using the objective
function

min
(
|vali −

N∑
k=1

vali−k

N
|
)

where vali denotes the current value (at the i-th time step)
and vali−k, where k = 1, 2, . . . , denotes the value in the
recent past. The above function aims to minimize the distance
between vali and the (moving) average of the previous N
values, stored in Hist (Line 13).

B. Value Prediction and Validation
While the robustness constraint improves the quality of the

real-valued solution, it also increases the computational cost
of LP solving. To reduce the computational cost, we develop
a two-phase optimization for computing the solution.

First, we predict the value of a signal using standard
regression algorithms based on the historical values of the
signal in the immediate past (Line 7 in Algorithm 2). Here,
the procedure PREDICTION leverages historical values stored
in Hist. Since the signal is expected to be smooth, standard
linear or non-linear regression can be very accurate in practice.

Next, we validate the predicted value (Line 8). This is
accomplished by plugging the predicted value for O′r into
the combination of Boolean predicates defined by P and the
values of signals in O′. If it is valid, the value is accepted as
the final output, and invocation of the LP solver is avoided.
Note that the time taken to perform prediction and validation
is significantly smaller than that of the LP solving.

Only when the predicted value is not valid, we invoke the
LP solver (Line 9). Even in this case, the response time is fast
because we can use the same LP solver for validation and LP
solving. Due to incremental computation inside the solver, the
solution used for validation, which is often close to the final
solution, can help speed up LP solving.

VI. EXPERIMENTS

We have implemented our method as a tool that takes the
automaton representation of a safety specification as input and
returns a real-valued shield as output. Internally, we solve the
safety game using Mazala’s algorithm [28] implemented sym-
bolically using CUDD [1], and use the LP solver integrated
in Z3 [11] for prediction, validation and constraint solving.
For evaluation purposes, the shield is implemented as a C
program and is executed at every time step. Each execution
has two phases: (1) generating Boolean values for signals in
O′, and (2) generating real values for signals in O′r.

Benchmarks We evaluated our tool on seven sets of
benchmarks, including automotive powertrain control [19],
autonomous driving [35], adaptive cruise control [29], multi-
drone fleet control [30], generic control [20], blood glucose
control [39], and water tank control [2]. In all benchmarks,
the original specification was given in STL, which has both
timing and real-valued constraints.

Table I shows the benchmark statistics, including the appli-
cation name, the property, a short description, and the corre-
sponding STL formula. For brevity, we omit the automaton
representations. We conducted experiments on a computer
with Intel i5 3.1GHz CPU, 8GB RAM, and the Ubuntu 14.04
operating system. Our experiments were designed to answer
the following questions: (1) Is our tool efficient in synthesizing
the real-valued shield? (2) Is the shield effective in preventing
safety violations? (3) Are the real-valued signals produced by
the shield of high quality?

Experimental Results Table II shows the results of our shield
synthesis procedure. Columns 1-3 show the property name, the
number of states of the specification, and the number of real-
valued signals in Ir and Or, respectively. Column 4 shows the
number of predicates defined over signals in Ir and Or. Based
on these predicates, Boolean signals in I and O are created;
Column 5 shows the number of these signals. Column 6
shows the number of conflicting constraints captured by the
relaxation and feasibility automata, respectively. Column 7
shows the synthesis time. Columns 8-9 show the number of
states of the Boolean shield, and the number of real-valued
constraints to be solved at run time.

Table III shows the performance of the shields. For each
shield, we generated input signals (for Ir and Or) based on the
system description: some input signals satisfy the specification
while others do not. By measuring the response time of the



TABLE I
STATISTICS OF THE BENCHMARK APPLICATIONS.

Application Property STL Formula and Description

R26 In normal mode, permitted overshoot/undershoot is always less than 0.05
G[τs,T ]

(
l=normal⇒ |µ| < 0.05

)
R27 In normal mode, overshoot/undershoot less than 0.02 within the settling time

G[τs,T ]

(
rise(a)|fall(a)⇒ G[η, ς

2
]

(
|µ| < 0.02

))
Powertrain R32 From power to normal, overshoot/undershoot less than 0.02 within settling time

G[τs,T ]

(
l=power ∧ X(l=normal)⇒ G[η, ς

2
]

(
|µ| < 0.02

))
R33 In power mode, permitted overshoot or undershoot should be less than 0.2

G[τs,T ]

(
l=power⇒ |µ| < 0.2

)
R34 Upon startup/sensor failure, overshoot/undershoot <0.1 within the settling time

G[τs,T ]l=startup|sensor fail ∧ rise(a)|fall(a)⇒ G[η, ς
2

]

(
|µ| < 0.1

))
D1 Vehicle should keep a steady speed Vs when there is no collision risk

Autonomous G
(
|yegok − xadvk | >= 4

)
⇒ G

(
|vegok − Vs| < ε

)
Driving D2 Vehicle should come to stop for at least 2 second when there is collision risk

G
(
|yegok − xadvk | < 4

)
⇒ G[0,2]

(
|vegok | < 0.1

)
A1 Keep a safe distance with lead vehicle: G

(
pos lead[t]− pos ego[t] > Ds

)
Cruise A2 Achieve cruise velocity if there is a comfortable distance
Control

(
pos lead[t]− pos ego[t] > Dc

)
U[0,10]

(
|v ego[t]− v cruise[t]| < ε

)
A3 Vehicle should never travel backward: G

(
v ego[t] >= 0

)
A4 Vehicle doesnt halt unless lead vehicle halts:

G
(
v lead[t] > 0

)
⇒ G

(
v ego[t] > 0

)
Q1 Drone flies to goal point if no obstacles are on the way:

Quadrotor G
(
Obs(posquad,posobs)⇒ ωg > 0)

)
Control Q2 Avoiding obstacles:G¬Obs(posquad,posobs)⇒(

ωḡ > 0 ∧ G
(
Dis(posquad,posobs) < ε⇒ ωg = 0

))
C1 After settling, output error should be less than set value εb:

General G
(

x[t]⇒ G[10,∞]

(
| y[t]−yref

yref
| < εb

))
Control C2 Output error should be [ε⊥, ε>] in settling time:

G
(

x[t]⇒ G[0,20]

(
ε⊥ < y[t]−yref

yref
< ε>

))
C3 Output should achieve reference value within rise time:

G
(

x[t]⇒ F[0,rise time]

(
| y[t]−yref

yref
| < εr

))
Glucose
Control

B1 Having meal within t1 minutes after taking the bolus is safe. A bolus must be
taken after t2 minutes of having meal, if it is not yet taken:
G
(
F[0,t1+t2](B > c2) ∨ G[t1,t1+t2]

(
M > c1 ⇒ F[0,t2](B > c2)

))
Water Tank W1 Turn on inflow and turn off outflow switch when water level is low (l < 4)
Control G

(
l < 4⇒ G[0,3](flowout = 0 ∧ 1 < flowin < 2)

)
W2 Turn on outflow and turn off inflow switch when water level is high (l > 93)

G
(
l > 93⇒ G[0,3](flowin = 0 ∧ 0 < flowout < 1)

)

TABLE II
RESULTS OF OUR NEW SHIELD SYNTHESIS PROCEDURE.

Name Specification Synthesis Tool Shield S
states |Ir|/|Or| |PI |/|PO| |I|/|O| |R|/|F| time(s) states constrs

R26+R27 8 1/1 2/2 5/2 2/1 0.16 25 2+2
R32+R33 9 1/1 2/2 5/2 2/1 0.15 28 2+2
R26+R27+R32
+R33+R34

23 1/1 2/4 5/4 12/11 1.15 158 4+2

D1 6 3/1 5/3 6/3 53/5 0.15 19 3+2
D2 5 3/1 2/3 3/3 5/5 0.21 30 3+2
D1+D2 14 3/1 5/3 6/3 53/5 0.8 164 3+2
A1+A3+A4 3 3/1 2/2 2/3 1/1 0.08 8 2+0
A2+A3+A4 4 4/1 3/3 3/3 4/4 0.1 15 3+0
A1+A2+A3+A4 7 4/1 4/3 4/4 8/4 0.55 48 3+0
Q1+Q2 5 1/2 1/2 2/2 0/0 0.08 7 2+0
C1+C2+C3 19 2/1 3/4 3/4 13/11 0.52 118 4+2
B1 5 3/1 5/1 5/1 14/0 0.1 6 1+0
W1+W2 6 1/2 2/2 2/2 1/0 0.1 10 2+2

shield under these input signals, and the quality of corrections
made by the shield, we hope to evaluate its effectiveness.

In this table, Column 1 shows the property name. Column 2
shows the size of the C program that implements the shield.
Column 3 shows the response time of the Boolean shield on
input signals that do not violate the specification. Columns 4-
5 show the response time on input signals that violate the
specification. Among these columns, prediction means the
real-valued solution was successfully computed by a linear
regression, whereas constraint solving means prediction failed
and the solution was computed by the LP solver.

Overall, the time to compute real-valued correction signals
is within 0.5 ms when D 6|= ϕ, and less than 1 us when D |= ϕ.
In the latter case, the shield does not need to make correction
at all. In both cases, the response time is always bounded and
fast enough for the target applications.

TABLE III
RESULTS OF EVALUATING RUNTIME PERFORMANCE OF THE SHIELD.

Name Implementation Shield Response Time
(LoC) Boolean step (us) prediction step (us) constraint solving (us)

R26+R27 745 0.3 293.3 336.8
R32+R33 748 0.41 256.5 333.9
R26+R27+R32
+R33+R34

1446 0.8 245.0 279.8

D1 781 0.45 177.2 164.7
D2 853 0.5 313.5 329.0
D1+D2 2242 0.8 318.3 202.4
A1+A3+A4 539 0.37 164.3 212.7
A2+A3+A4 632 0.49 281.7 431.5
A1+A2+A3+A4 940 0.45 291.7 290.1
Q1+Q2 556 0.18 299.2 313.5
C1+C2+C3 1037 0.5 299.4 395.2
B1 623 0.31 225.4 313.4
W1+W2 608 0.57 295.3 222.1
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Fig. 7. Automotive powertrain system simulation (w/ and w/o the shield).

Case Study 1: Powertrain Control System To validate the
effectiveness of our approach, we integrated the shield into
the simulation model of the powertrain control system. Then,
we compared the system performance with and without the
shield. Fig. 7 shows the simulation results, where our shield
was synthesized from the system properties 26, 27, 32, 33
and 34 as described in Jin et al. [19]. Recall that µ is the
normalized error of the A/F ratio and µref is a reference value.

The green dashed line indicates the safe region, which varies
as the system switches between different modes (transition
events are highlighted with black dotted line). The red dashed
line represents violations of the specification by the Or signals.
The solid red line represents corrections made in O′r. The
result shows that our shield can always produce real-valued
correction to keep µ in the safe region.

Recall that the goal of using a shield is not to correct the
flawed design D itself, which includes the overshot plant;
instead, the goal is to avoid the negative impact of D’s output.
Here, the output signal µ may be used by other components
of the system.

Case Study 2: Autonomous Driving Fig. 8 shows the
simulation results of an autonomous driving system [35] with
and without our shield. Here, an ego vehicle is put into
a nondeterministic environment that includes an adversarial
vehicle, and the two cars are crossing an intersection. The ego
vehicle is protected by a shield synthesized from D1+D2 in
Table I. The three plots, from top to bottom, are for distances
to the intersection, velocities, and accelerations of the two
vehicles. The x-axis represents the time in seconds.

The adversarial vehicle drives straight through the intersec-
tion at a constant speed. The ego vehicle, in contrast, may
change speed to avoid collision. From t = 0s to t = 5s,
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Fig. 8. Position, velocity and acceleration in autonomous driving simulation.

since the distance between the two vehicles is large, the ego
vehicle maintains a steady speed (set to 2m/s initially). At
t = 5s, based on the safety specification, it is supposed to
come to a stop (for at least 2s or when there is no collision
risk). However, since we injected an error at t = 6s (in red
dashed line), there is an unexpected acceleration and, without
the shield, there would have been a collision.

The blue lines show the behavior of the ego vehicle after
corrections are made by the shield. Clearly, its behavior
satisfies the requirements: it stops at the intersection to allow
the adversarial vehicle to pass safely. Furthermore, the real-
valued correction made by the shield is successfully predicted
using linear regression, and the predicted values satisfy not
only the safety but also the robustness requirements.

VII. RELATED WORK

As we have mentioned earlier, prior work on shield syn-
thesis has been restricted to the Boolean domain. Specifically,
Bloem et al. [7] introduced the notion of shield together with
a synthesis algorithm, which minimizes the deviation between
O and O′ under the assumption that no two errors occur
within k steps. Wu et al. [43] improved the algorithm to deal
with burst error. That is, if more errors occur within the k-
step recovery period, instead of entering a fail-safe state, they
keep minimizing the deviation. Könighofer et al. [22] further
improved the shield while Alshiekh et al. [2] leveraged it to
improve the performance of reinforcement learning. However,
none of the existing techniques dealt with the realizability
problems associated with real-valued signals.

There is also a large body of work on reactive synthesis [6],
[14], [32], [41] and controller synthesis [17], [24], [34], [35].
The goal is to synthesize D from a complete specification Ψ,
or the control sequences for D to satisfy Ψ. In both cases, the
complexity depends on D. This is a more challenging problem,
for two reasons. First, specifying all aspects of the system
requirement may be difficult. Second, even if Ψ is available,

synthesizing D from Ψ is difficult due to the inherent double
exponential complexity of the synthesis problem. Our method,
in contrast, treats D as a blackbox while focusing on a small
subset ϕ ⊆ Ψ of safety-critical properties. This is why shield
synthesis may succeed where conventional reactive synthesis
fails.

Renard et al. [36] proposed a runtime enforcement method
for timed automata, but assumed that controllable input events
may be delayed or suppressed, whereas our method does not
require such an assumption. Bauer et al. [4] and Falcone et
al. [16] studied various types of temporal logic properties that
may be monitored or enforced at run time. Renard et al. [37]
also leveraged Büchi games to enforce regular properties with
uncontrollable events. Our work is orthogonal in that it tackles
the realizability and efficiency problems associated with real-
valued signals. Furthermore, we focus on safety while leaving
liveness properties and hyper-properties [8], [10], [18] for
future work.

An important feature of the shield synthesized by our
method is that it always makes corrections instantaneously,
without any delay. Therefore, it differs from a variety of
solutions that allow delayed corrections. In some cases, for
example, buffers may be allowed to store the erroneous output
temporarily, before computing the corrections [16], [23], [40].
In this context, the notion of edit-distance is more relevant. Yu
et al. [45], for example, proposed a technique for minimizing
the edit-distance between two strings, but the technique re-
quires the entire input be stored in a buffer prior to generating
the output. However, when the buffer size reduces to zero,
these existing techniques would no longer work.

Runtime enforcement is related to, but also different from,
the various software techniques for error avoidance. For ex-
ample, failure-oblivious computing [25], [38] was used to
allow software applications to execute through memory errors;
temporal properties [26], [46] were leveraged to control thread
schedules to avoid runtime failures of concurrent software.
However, these techniques are not designed to target cyber-
physical systems with real-valued signals, where corrections
are expected to be made instantaneously, i.e., in the same time
step when errors occur.

VIII. CONCLUSIONS

We have presented a method for synthesizing real-valued
shields to enforce the safety of cyber-physical systems. The
method relies on a principled technique at the synthesis time
to rule out impossible and infeasible scenarios and ensure
the realizability of real-valued corrections at run time. We
also proposed optimizations to speed up the computation
and improve the quality of the solution. We have evaluated
our method on a number of applications, including case
studies with an automotive powertrain control system and
an autonomous driving system. Our results demonstrate the
effectiveness of the method in enforcing safety properties of
cyber-physical systems.
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[14] Rüdiger Ehlers and Ufuk Topcu. Resilience to intermittent assumption
violations in reactive synthesis. In International Conference on Hybrid
Systems: Computation and Control, pages 203–212, 2014.

[15] Georgios E. Fainekos and George J. Pappas. Robustness of temporal
logic specifications. In International Workshops on Formal Approaches
to Software Testing and Runtime Verification, pages 178–192, 2006.

[16] Yilès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can
you verify and enforce at runtime? International Journal on Software
Tools for Technology Transfer, 14(3):349–382, 2012.

[17] Samira S Farahani, Vasumathi Raman, and Richard M Murray. Robust
model predictive control for signal temporal logic synthesis.

[18] Azadeh Farzan and Anthony Vandikas. Automated hypersafety verifica-
tion. In International Conference on Computer Aided Verification, pages
200–218, 2019.

[19] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda,
and Ken Butts. Powertrain control verification benchmark. In Interna-
tional Conference on Hybrid Systems: Computation and Control, 2014.
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and Sanjit A Seshia. Reactive synthesis from signal temporal logic spec-
ifications. In International Conference on Hybrid Systems: Computation
and Control, pages 239–248. ACM, 2015.

[36] Matthieu Renard, Yliès Falcone, Antoine Rollet, Srinivas Pinisetty,
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