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Abstract—We present the first approach to prove non-termi-
nation of integer programs that is based on loop acceleration.
If our technique cannot show non-termination of a loop, it
tries to accelerate it instead in order to find paths to other
non-terminating loops automatically. The prerequisites for our
novel loop acceleration technique generalize a simple yet effective
non-termination criterion. Thus, we can use the same program
transformations to facilitate both non-termination proving and
loop acceleration. In particular, we present a novel invariant
inference technique that is tailored to our approach. An extensive
evaluation of our fully automated tool LoAT shows that it is
competitive with the state of the art.

I. INTRODUCTION

Proving non-termination of integer programs is an important
research topic (e.g., [2, 7, 13, 14, 26, 32, 33, 34, 39, 40]). In
another line of research, under-approximating loop acceleration
is used to analyze safety [30] and runtime complexity [21].
Here, the idea is to replace a loop by code that mimics k loop
iterations, where k is chosen non-deterministically.

Many non-termination techniques first search for a diverging
configuration and then prove its reachability. For the latter,
loop acceleration would be useful, as it allows reasoning about
paths with loops without fixing the number of unrollings. Still,
up to now acceleration has not been used for non-termination
proving.

To fill this gap, we design a novel loop acceleration technique
whose prerequisites generalize a well-known non-termination
criterion. This correspondence is of great value: It allows
us to develop an under-approximating program simplification
framework that progresses incrementally towards the detection
of non-terminating loops and the acceleration of other loops.

After introducing preliminaries in Sect. II, we present our
approach in Sect. III and IV. It eliminates loops via acceleration
and chaining, or by proving their non-termination and replacing
them by a transition to a special symbol ω. If a loop cannot
be eliminated, then we strengthen its guard by synthesizing
suitable invariants. Our approach also handles nested loops by
eliminating inner loops before removing outer loops. Eventually,
this leads to a loop-free program where a trace to ω yields a
witness of non-termination. So our main contributions are:

(a) The applicability of existing under-approximating loop
acceleration techniques is restricted: The technique from [30]
is often inapplicable if the loop condition contains invariants
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and the technique from [21] requires metering functions which
are often challenging to synthesize. Thus, in Sect. III we
present a novel loop acceleration technique that generalizes
[30] and does not require metering functions, and we integrate
it into a program simplification framework inspired by [21].

(b) We combine our approach with a novel invariant inference
technique in Sect. IV. So if the prerequisites of our nonter-
mination criterion and our acceleration technique are violated,
then we try to deduce invariants to make them applicable.

From a practical point of view, we contribute

(c) an implementation in our open-source tool LoAT and
(d) an extensive evaluation of our implementation, cf. Sect. V.

Finally, Sect. VI discusses related work and concludes. All
proofs can be found in the appendix.

II. PRELIMINARIES

We denote vectors x by bold letters and the ith element of x
by xi. Transitions α have the form f(x) −→ g(t) [η]. The left-
hand side lhsα = f(x) consists of α’s source function symbol
srcα = f ∈ Σ and a vector of pairwise different variables
x ⊂ V ranging over Z, where V is countably infinite. The set
of function symbols Σ is finite and we assume that all function
symbols have the same arity (otherwise one can add unused
arguments). We use V(·) to denote all variables occurring in
the argument. A denotes the set of all arithmetic expressions
over V , i.e., expressions built from variables, numbers, and
arithmetic operations like “+”, “·”, etc. The guard guardα = η
is a constraint, i.e., a finite conjunction1 of inequations over A,
which we omit if it is empty. The right-hand side rhsα = g(t)
consists of α’s destination destα = g ∈ Σ and a vector t ⊂ A.
The substitution upα = {x 7→ t} is α’s update.

A substitution is a function σ : V → A. The domain of σ
is dom(σ) = {x ∈ V | σ(x) 6= x} and its range is defined as
rng(σ) = {σ(x) | x ∈ dom(σ)}. We sometimes denote substi-
tutions by sets of key-value pairs {y1 7→ t1, . . . , yk 7→ tk} or
just {y 7→ t}. Then each x ∈ V \ y is mapped to itself. For
every entity e, σ(e) results from replacing all free variables in
e according to σ. If rng(σ) ⊂ Z, then σ is a valuation. A first-
order formula ϕ is valid if it is equivalent to true. Moreover, a
valuation σ is a model of ϕ (or satisfies ϕ, denoted σ |= ϕ) if
σ’s domain contains all free variables of ϕ and σ(ϕ) is valid.

1Note that negations can be expressed by negating inequations directly, and
disjunctions in programs can be expressed using several transitions.
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An integer program T is a finite set of transitions. Their
guards restrict the control flow, i.e., f(x) −→ g(t) [η] is only
applicable if the current valuation of the variables satisfies η.

Example 1 (Integer Program). Consider the function start:
def start(x, y):

while x >= 0: x = x - y; y = y + 1
while y > 0: y = y - x

It corresponds to the following integer program:

α1 : start(x, y) → f(x, y)
α2 : f(x, y) → f(x− y, y + 1) [x ≥ 0]
α3 : f(x, y) → g(x, y) [x < 0]
α4 : g(x, y) → g(x, y − x) [y > 0]

The function symbols f and g represent the first and the second
loop, respectively. The program does not terminate if, e.g., x
and y are initially 0: After applying the first loop twice, y is
2 and x is −1, so that the second loop diverges.

Definition 2 (Integer Transition Relation). A term f(n) where
n ⊂ Z is a configuration. An integer program T induces a
relation →T on configurations: We have s −→T t if there is an
α ∈ T and a model σ of guardα such that V(α) ⊆ dom(σ),
σ(lhsα) = s, and σ(rhsα) = t.2 Then we say that s evaluates
to t. As usual, −→∗T is the transitive-reflexive closure of −→T .

If there is an infinite −→T -evaluation that starts with start(n)
where start ∈ Σ is the canonical start symbol, then T is non-
terminating and start(n) witnesses non-termination of T .

W.l.o.g., start does not occur on right-hand sides. Otherwise,
one can rename start to start′ and add a transition start(x) −→
start′(x). A program T is simplified if srcα = start for all
α ∈ T . So any run of a simplified program has at most length
one.

By definition, integer programs may contain transitions like
f(x) −→ f(x2 ). While evaluations that would not yield integers
get stuck (as, e.g., f( 1

2 ) is not a configuration), our technique
assumes that the arguments of functions are always integers.
Hence, we restrict ourselves to well-formed integer programs.

Definition 3 (Well-Formedness). An integer program T is well
formed if for all transitions α ∈ T and all models σ of guardα
with V(α) ⊆ dom(σ), σ(rhsα) is a configuration.

To ensure that the program is initially well formed, we
just allow integers, addition, subtraction, and multiplication
in the original program.3 While our approach uses program
transformations that may introduce further operations like
division and exponentials, these transformations preserve
well-formedness. We formalize our contributions in terms of
processors.

Definition 4 (Processor). Let ω ∈ Σ be a dedicated fresh
function symbol. A processor proc is a partial function which

2Throughout the paper, we use “=” for semantic (not syntactic) equality
w.r.t. arithmetic, e.g., “f(1 + 2) = f(3)” holds.

3One could also allow expressions like 1
2
·x2 + 1

2
·x in the initial program,

as long as every arithmetic expression maps integers to integers.

maps integer programs to integer programs. It is sound if the
following holds for all T where proc is defined:

if start(n) −→∗proc(T ) ω or
start(n) witnesses non-termination of proc(T ),

then start(n) −→∗T ω or
start(n) witnesses non-termination of T .

If proc preserves well-formedness, then proc is called safe.

So we use the symbol ω to represent non-termination (and
we omit its arguments for readability): If we can transform a
program T into a simplified program T ′ via safe and sound
processors and σ |= guardα for some α ∈ T ′ with rhsα = ω,
then σ(lhsα) witnesses non-termination of T due to Def. 4.

III. SIMPLIFYING INTEGER PROGRAMS

We now present our Contribution (a) by defining suitable
processors. In Sect. III-A, we introduce the notions of invariants
which are the foundation of our loop acceleration technique,
cf. Sect. III-B. The remaining processors of our approach are
used to combine transitions (Sect. III-C) and to finally deduce
non-termination (Sect. III-D).

A. Invariants: Our novel loop acceleration technique relies
on the following notions of invariants. Here, “∀V(T ). ψ”
abbreviates “∀(V(ψ) ∩ V(T )). ψ”, i.e., the quantifier binds
all free variables of ψ that occur in T .

Definition 5 (Invariants). Let α ∈ T . If

∀V(T ). guardα ∧ ϕci =⇒ upα(ϕci) (ci)

is valid, then ϕci is a conditional invariant of α. If

∀V(T ). ϕsi =⇒ upα(ϕsi) (si)

is valid, then ϕsi is a simple (conditional) invariant of α. If
ϕsi is a simple invariant of α and

∀V(T ). ϕsi ∧ upα(ϕmd) =⇒ ϕmd (md)

is valid, then ϕmd is monotonically decreasing for ϕsi and α.

Recall that ϕ is a (standard) invariant of a transition α if ϕ
holds whenever α is applied in a program run. If such a standard
invariant ϕ satisfies (ci), then ϕ is usually called inductive.
In contrast to inductive invariants, a conditional invariant ϕci
does not have to hold when the control flow reaches α, but
if it does, then ϕci still holds after applying α. Conditional
invariants (resp. similar notions) are also used in, e.g., [5, 9, 31,
32, 40]. Monotonic decreasingness is converse to invariance:
ϕmd is preserved when the effect of upα is undone.

We call constraints of the form ϕci ∧ ϕsi ∧ ϕmd monotonic
if ϕci and ϕsi are conditional and simple invariants, and
ϕmd is monotonically decreasing for ϕsi. The reason is that
the characteristic function JϕK with JϕK = 1 ⇐⇒ ϕ and
JϕK = 0 ⇐⇒ ¬ϕ of conditional invariants like ϕci and ϕsi
is monotonically increasing w.r.t. upα and (md) essentially
requires that JϕmdK is monotonically decreasing w.r.t. upα.
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Example 6 (Invariants). For α2 from Ex. 1, y ≥ 0 is a simple
invariant and x ≥ 0 is monotonically decreasing for y ≥ 0, as

∀x, y. y ≥ 0 =⇒ y + 1 ≥ 0 and
∀x, y. y ≥ 0 ∧ x− y ≥ 0 =⇒ x ≥ 0

are valid. Thus, y ≥ 0 is also a conditional invariant. Note
that it is not a standard invariant as there are program runs
where y ≥ 0 is violated when α2 is applied.

B. Loop Acceleration: The key idea of loop acceleration
for a simple loop, i.e., a transition α with srcα = destα, is
to generate a new transition α that captures k iterations of α.
Here, k is a fresh variable whose value can be chosen non-
deterministically. We first use recurrence solving to compute
closed forms for the values of the program variables after a
symbolic number of iterations, i.e., a closed form of upk

α =
upα ◦ . . . ◦ upα︸ ︷︷ ︸

k times

. Then, as in [30], we exploit the following

observation: If guardα holds after k − 1 loop iterations and
upα(guardα) implies guardα (i.e., guardα is monotonically
decreasing), then guardα also holds after k − 2, k − 3, . . . , 0
iterations. Thus, adding upk−1

α (guardα) to guardα ensures
that k only takes feasible values: If σ satisfies upk−1

α (guardα),
then α can be iterated at least σ(k) times.

However, upα(guardα) =⇒ guardα is rarely valid if
guardα contains invariants of α. Thus, our novel loop ac-
celeration technique only requires monotonicity of guardα
instead.

Theorem 7 (Accelerate). Let T be well formed, let α ∈ T
be a simple loop with lhsα = f(x), let k ∈ V be fresh, and
let µ be a substitution such that µ(x) = upk

α(x) holds for
all k > 0. Moreover, let guardα = ϕci ∧ ϕsi ∧ ϕmd be
monotonic. Finally, let deck = {k 7→ k−1} and T = T ∪{α}
where

α = f(x) −→ f(µ(x)) [ϕci ∧ ϕsi ∧ deck (µ(ϕmd)) ∧ k>0] .

Then the processor Accelerate: T 7→ T is safe and sound.

So to construct rhsα, we compute a closed form µ that
expresses k iterations of the loop body as in [21, 30]. To do so,
one can use state-of-the-art recurrence solvers like [1, 27, 41]
to solve the system of recurrence relations x(k+1) = upα(x(k))
with the initial condition x(1) = upα(x).

To see why Accelerate is sound, assume that guardα holds.
As4 ϕsi ⊆ guardα and ϕsi implies upα(ϕsi) by (si), we obtain

upnα(ϕsi) for all n ∈ N. (1)

Thus, as guardα contains deck (µ(ϕmd)) = upk−1
α (ϕmd) and

ϕsi ∧ upα(ϕmd) implies ϕmd by (md), we get

upnα(ϕmd) for all 0 ≤ n < k . (2)

So (1) and (2) imply ϕsi ∧ ϕmd. As ϕci ⊆ guardα and
guardα = ϕci ∧ ϕsi ∧ ϕmd, this means that guardα holds as
well. As guardα implies upα(ϕci) (since ϕci ⊆ guardα and

4In the following, we identify conjunctions and sets of inequations.

ϕci is a conditional invariant), we obtain that upα(ϕci) holds.
Together with (1) and (2) this means that upα(guardα) holds
(if 1 < k ). This in turn implies up2

α(ϕci), etc. Thus, we get

upnα(ϕci) for all 0 ≤ n ≤ k . (3)

Due to (1) – (3), the constraint ϕci ∧ ϕsi ∧ deck (µ(ϕmd))
ensures that guardα = ϕci ∧ ϕsi ∧ ϕmd holds before the
1st, . . . , k th iteration, as desired. Hence, every evaluation with
α can be replaced by k evaluation steps with α. Since guardα
enforces k > 0, every non-terminating run with T can therefore
be transformed into a non-terminating run of T .

Example 8 (Ex. 1 continued). Consider the simple loop α2 of
Ex. 1. As x ≥ 0 is not monotonic, Accelerate is not applicable.
But if we strengthen the guard by adding the simple invariant
y ≥ 0, then x ≥ 0 satisfies (md), cf. Ex. 6. Thus, we can apply
Accelerate with ϕci : true, ϕsi : y ≥ 0, and ϕmd : x ≥ 0.
Sect. IV will show how to find simple invariants like y ≥ 0.

To compute a substitution µ that represents k repeated up-
dates, we solve the recurrence relations y(k+1) = y(k) + 1 and
x(k+1) = x(k) − y(k) with the initial conditions x(1) = x− y
and y(1) = y + 1, resulting in the solutions y(k) = y + k
and x(k) = x − y · k − 1

2 · k
2 + 1

2 · k , i.e., µ = {x 7→
x − y · k − 1

2 · k
2 + 1

2 · k , y 7→ y + k}. Thus, we accelerate
α2 to

α2 : f(x, y) −→ f(x− y · k − 1
2 · k

2 + 1
2 · k︸ ︷︷ ︸

µ(x)

, y + k︸ ︷︷ ︸
µ(y)

) [η]

for η : y ≥ 0︸ ︷︷ ︸
ϕsi

∧ deck (µ(ϕmd)) ∧ k > 0 where deck (µ(ϕmd))

is x− y · (k − 1)− 1
2 · (k − 1)2 + 1

2 · (k − 1) ≥ 0.

C. Chaining: Accelerate only applies to simple loops. To
transform loops with complex control flow into simple loops
and to eventually obtain simplified programs, we use chaining,
a standard technique to combine two transitions f(. . .)→ g(. . .)
and g(. . .)→ h(. . .) to a new transition f(. . .)→ h(. . .) that
captures the effect of both transitions after each other.

Theorem 9 (Chain). Let T be well formed and let α, β ∈ T
where destα = srcβ , the argument lists of lhsα and lhsβ are
equal, and V(α) ∩ V(β) = V(lhsα).5 Let T ◦ = T ∪ {α ◦ β}
with

α ◦ β = lhsα −→ upα(rhsβ)
[
guardα ∧ upα(guardβ)

]
.

Then the processor Chain : T 7→ T ◦ is safe and sound.

Chaining is not only useful to transform complex into simple
loops, but it can also be used to combine a simple loop α with
itself in order to enable loop acceleration and to obtain better
closed forms for upk

α. For example, consider the following
loop, where the sign of x alternates:

αneg : f(x, y)→ f(−x, y − 1) [y > x]

The closed form (−1)k · x for the value of x after k

5Otherwise, one can rename variables without affecting the relation →T .
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iterations involves exponentials even though x does not grow
exponentially. This is disadvantageous, as our implementation
relies on SMT solving, but SMT solvers have limited support
for non-polynomial arithmetic. Moreover, Accelerate is not
applicable, as y > x is non-monotonic. However, this can be
resolved by chaining αneg with itself, which results in

αneg ◦αneg : f(x, y) −→ f(x, y− 2) [y > x ∧ y − 1 > −x] .

This transition can be accelerated to

f(x, y) −→ f(x, y−2 · k)
[
deck (µ(guardαneg◦αneg )) ∧ k > 0

]
where deck (µ(guardαneg◦αneg )) is

y − 2 · (k − 1) > x ∧ y − 2 · (k − 1)− 1 > −x,
i.e., the accelerated transition does not contain exponentials.

So for simple loops α that alternate the sign of a variable
(i.e., where upα(x) = c · x+ t for some x ∈ V(lhsα), c < 0,
and t ∈ A with x /∈ V(t)), we accelerate α ◦ α instead of α.

Chaining can also help to obtain simpler closed forms for
transitions where variables are set to constants. For example,
a closed form for the repeated update of the variable z in

αconst : f(x, y, z)→ f(x− 1, 2, y) [x > 0]

is 0k−1 · y + (1 − 0k−1) · 2, which is again not polynomial.
However, chaining αconst with itself yields

αconst ◦ αconst : f(x, y, z)→ f(x− 2, 2, 2) [x > 1]

(where we simplified the guard), which can be accelerated to

f(x, y, z)→ f(x− 2 · k , 2, 2) [x− 2 · (k − 1) > 1 ∧ k > 0] ,

i.e., the accelerated transition again only contains polynomials.
Finally, chaining can also make acceleration applicable to

loops that permute arguments:

αp : f(x, y)→ f(y − 1, x− 1) [x > 0]

While αp violates the prerequisites of Accelerate,

αp ◦ αp : f(x, y)→ f(x− 2, y − 2) [x > 0 ∧ y − 1 > 0]

can be accelerated to:

f(x, y)→ f(x−2·k , y−2·k)
[
deck (µ(guardαp◦αp)) ∧ k > 0

]
So to handle simple loops α where some variables “stabilize”

(i.e., upnα(z) ∈ Z for some z ∈ V and some n > 1, as in αconst)
or where arguments are permuted (as in αp), we repeatedly
chain α with itself as long as this reduces the size of

{x ∈ V(lhsα) | V(upα(x)) 6= ∅ ∧ x /∈ V(upα(x))}. (4)

D. Proving Non-Termination: To detect non-terminating
simple loops α, we check whether guardα itself is a simple
invariant (i.e., whether the valuations that satisfy guardα
correspond to a recurrent set of the relation →{α}, cf. [26]).

Theorem 10 (Nonterm). Let T be well formed and let α ∈ T
be a simple loop such that guardα is a simple invariant. More-
over, let T ω = T ∪ {αω} where

αω = lhsα −→ ω [guardα] .

Then the processor Nonterm : T 7→ T ω is safe and sound.

Example 11 (Ex. 1 continued). Clearly, y > 0 is not a simple
invariant of α4 from Ex. 1. But if we strengthen the guard by
adding the simple invariant x ≤ 0, then Nonterm is applicable
as y > 0 ∧ x ≤ 0 implies y−x > 0 ∧ x ≤ 0. Thus, we obtain

αω4 : g(x, y) −→ ω [y > 0 ∧ x ≤ 0] .

Again, we will see how to deduce suitable simple invariants
like x ≤ 0 automatically in Sect. IV.

In some cases, chaining also helps to make Nonterm
applicable. To see this, consider the simple loop

αnt : f(x, y)→ f(0, y − x) [y > 0]

where y > 0 is no simple invariant. Chaining it with itself
yields

αnt ◦ αnt : f(x, y)→ f(0, y − x) [y > 0 ∧ y − x > 0] .

As y > 0 ∧ y − x > 0 =⇒ y − x > 0 ∧ y − x − 0 > 0 is
valid, the prerequisites of Nonterm are satisfied and we obtain

f(x, y)→ ω [y > 0 ∧ y − x > 0] .

So in general, we try to apply Nonterm not only to a simple
loop α, but also to α ◦ α. Apart from Nonterm, we also use
SMT solving to check whether a loop has a fixpoint, which is
a standard technique to prove non-termination.

Theorem 12 (Fixpoint). Let T be well formed, let α ∈ T be a
simple loop with lhsα = f(x), and let guardα ∧ x = upα(x)
be satisfiable. Let T fp = T ∪ {αfp} where

αfp = lhsα → ω [guardα ∧ x = upα(x)] .

Then the processor Fixpoint : T 7→ T fp is safe and sound.

For example, {x 7→ 0, y 7→ 1} is a fixpoint of αnt which
satisfies y > 0 and (x, y) = (0, y−x) (i.e., x = 0 ∧ y = y−x).

Alg. 1 shows a streamlined version of the strategy that we use
to apply the presented processors. It combines chaining, loop
acceleration, and our non-termination processors to transform
arbitrary programs into simplified programs. For nested loops,
the elimination starts with the inner loops. Note that deleting
transitions (Steps 2, 3, 5, and 18) is always sound in our setting.

We present the algorithm deduceInvariants for Step 13
in Sect. IV. It creates variants of α by extending guardα with
suitable constraints to make Accelerate or Nonterm applicable.
Step 14 chains α with all preceding transitions that are no
simple loops. Steps 17 and 18 eliminate a function symbol via
chaining. Note that Alg. 1 could have non-terminating runs, as
it may add new transitions in Step 13. However, this turned
out to be unproblematic in our experiments, cf. Sect. V.

Example 13 (Ex. 1 finished). After accelerating α2 in Step
12 (see Ex. 8), Alg. 1 computes

α1 ◦α2 : start(x, y)→ f(x−y ·k − 1
2 ·k

2 + 1
2 ·k , y+k) [η]

4



Input: A program T
Output: A witness for non-termination of T or ⊥

1 while T is not simplified :
2 T ← {α ∈ T | srcα is reachable from start}
3 T ← {α ∈ T | guardα is satisfiable}; S ← ∅
4 while ∃α ∈ T . α is a simple loop :
5 T ← T \ {α}
6 α← α ◦ α if α alternates the sign of a variable
7 αorig ← α
8 do α← α ◦ αorig while it reduces the size of (4)
9 if Nonterm applies to α : α← αω

10 elif Nonterm applies to α ◦ α : α← (α ◦ α)ω

11 elif Fixpoint applies to α : α← αfp

12 elif Accelerate applies to α : α← α
13 else : T ← T ∪ deduceInvariants(α)
14 S ← S ∪ {β ◦ α | β ∈ T , srcβ 6= destβ = srcα}
15 T ← T ∪ S
16 if ∃α, β ∈ T . destα = srcβ = f :
17 T ← T ∪ {α ◦ β | α, β ∈ T , destα = srcβ = f}
18 T ← {α ∈ T | f /∈ {srcα,destα}}
19 if ∃α ∈ T . rhsα=ω ∧ σ |=guardα : return σ(lhsα)
20 else : return ⊥

Algorithm 1: Proving Non-Termination

in Step 14 where η is

y ≥ 0 ∧ x−y ·(k−1)− 1
2 ·(k−1)2 + 1

2 ·(k−1) ≥ 0 ∧ k > 0.

Next, it applies Nonterm to α4 in Step 9 (see Ex. 11) and
chains the resulting transition with α3 in Step 14, which yields

α3 ◦ αω4 : f(x, y)→ ω [x < 0 ∧ y > 0] .

Then, it chains α1 ◦ α2 and α3 ◦ αω4 in Step 17, resulting in

α1 ◦ α2 ◦ α3 ◦ αω4 : start(x, y) −→ ω [ψ]

where ψ is η ∧ x− y · k − 1
2 · k

2 + 1
2 · k < 0︸ ︷︷ ︸

upα1◦α2
(x<0)

∧ y + k > 0︸ ︷︷ ︸
upα1◦α2

(y>0)

.

To prove non-termination, we have to show satisfiability of ψ.
As σ |= ψ for σ = {x 7→ 0, y 7→ 0, k 7→ 2}, the configuration
σ(start(x, y)) = start(0, 0) witnesses non-termination of Ex. 1.

So loop acceleration introduces a new variable k for the
number of loop unrollings. Later, k is instantiated when search-
ing for models of the guards of the simplified transitions which
result from repeated acceleration and chaining. In Ex. 13,
when inferring a model for the guard of α1 ◦ α2 ◦ α3 ◦ αω4 ,
the instantiation k 7→ 2 means that α2 is applied twice in the
corresponding non-terminating run of the original program.

IV. DEDUCING SIMPLE INVARIANTS

In Sect. III, we have seen that we sometimes need to deduce
suitable simple invariants to apply our novel loop acceleration
technique or to prove non-termination. Soundness of adding
constraints to transitions is ensured by the following processor.

Theorem 14 (Strengthen [21]). Let T be well formed, let
α ∈ T , let ϕ be a constraint, and let T • = T ∪ {α•} where

α• = lhsα → rhsα [guardα ∧ ϕ] .

Then the processor Strengthen : T 7→ T • is safe and sound.

The challenge is to find constraints ϕ that help to prove non-
termination. We now explain how to automatically synthesize
suitable simple invariants to strengthen a simple loop α,
cf. Contribution (b) from Sect. I. Our approach iteratively
generates simple invariants such that larger and larger parts of
guardα become monotonic. To this end, it constructs arithmetic
formulas and uses constraint solvers to instantiate their free
variables (or parameters) such that they become valid. This
results in simple invariants that are suitable for strengthening.
Eventually, our technique either fails to synthesize further
invariants or the whole guard becomes monotonic, so that
we can apply Accelerate or even Nonterm (if α’s guard is a
simple invariant).

To synthesize simple invariants, we first compute a maximal
subset ϕi of guardα such that ϕi is a conditional invariant.
However, to apply Accelerate, not all constraints of guardα
need to be conditional invariants, as long as the remaining
constraints are monotonically decreasing. Hence, we next
compute a maximal subset ϕsi of ϕi such that ϕsi is a simple
invariant. Then we can determine a maximal subset ϕmd of
guardα \ϕi which is monotonically decreasing for ϕsi.

A. Generating New Invariants: Let the set of parameters
P ⊂ V be countably infinite and disjoint from the program
variables V(T ). Moreover, let ϕnm = guardα \ (ϕi ∪ ϕmd),
i.e., ϕnm causes non-monotonicity of guardα. For each
inequation ρ ∈ ϕnm, we construct a linear template τρ over
the relevant variables Vρ of ρ, i.e., Vρ is the smallest set such
that V(ρ) ⊆ Vρ, V(ρ′) ∩ Vρ 6= ∅ implies V(ρ′) ⊆ Vρ for each
ρ′ ∈ guardα, and x ∈ Vρ implies V(upα(x)) ⊆ Vρ. So τρ has
the form

∑
x∈Vρ cx · x ≥ c where {cx | x ∈ Vρ} ∪ {c} ⊂ P .

For α4 from Ex. 1, we obtain ϕi = ∅, ϕmd = ∅, and
ϕnm = {y > 0}. As x ∈ upα4

(y), we have Vy>0 = {x, y}.
Hence, τy>0 is cx · x+ cy · y ≥ c where cx, cy, c ∈ P .

To find a valuation of the parameters such that all templates
can be added to ϕsi without violating the definition of simple
invariants, we enforce (si) for ϕsi ∧

∧
ρ∈ϕnm τρ by requiring

∀V(T ). ϕsi ∧
∧

ρ∈ϕnm

τρ =⇒
∧

ρ∈ϕnm

upα(τρ). (τ -si)

So for α4, we search for a valuation of cx, cy, and c that
satisfies

∀x, y. cx ·x+cy ·y ≥ c =⇒ cx ·x+cy ·(y−x) ≥ c. (τ -si-α4)

B. Improving Towards Monotonicity: By construction, the
constraint ϕi ∧ ϕmd is monotonic. Furthermore, (τ -si) ensures
that ϕsi ∧

∧
ρ∈ϕnm τρ is a simple invariant, i.e., we know that

ϕi ∧
∧

ρ∈ϕnm

τρ ∧ ϕmd (5)

is monotonic. Eventually, our goal is to turn guardα into a
simple invariant and apply Nonterm or to make it monotonic
and apply Accelerate. To progress towards this goal incremen-
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tally, we ensure that we can add at least one ρ ∈ ϕnm to (5)
without violating monotonicity. To this end, we enforce that
(ci) or (md) holds for some ρ ∈ ϕnm by requiring:∨
ρ∈ϕnm

∀VT . guardα ∧
∧

ξ∈ϕnm

τ ξ =⇒ upα(ρ) or (some-ci)∨
ρ∈ϕnm

∀VT . ϕsi ∧
∧

ξ∈ϕnm

τ ξ ∧ upα(ϕmd ∧ ρ) =⇒ ρ (some-md)

Note that (some-ci) can also help to apply Nonterm as guardα
is a conditional invariant iff it is a simple invariant.

C. Maximizing the Improvement: It is clearly advantageous
to instantiate the parameters in such a way that as many
inequations from ϕnm as possible can be added to (5) without
violating monotonicity. Hence, we require

∀V(T ). guardα ∧
∧

ξ∈ϕnm

τ ξ =⇒ upα(ρ) or (ρ-ci)

∀V(T ). ϕsi ∧
∧

ξ∈ϕnm

τ ξ ∧ upα(ϕmd ∧ ρ) =⇒ ρ (ρ-md)

for as many ρ ∈ ϕnm as possible, i.e., each ρ ∈ ϕnm gives rise
to a soft requirement (ρ-ci) ∨ (ρ-md). Later, soft requirements
will be associated with weights. We then try to maximize the
weight of all valid soft requirements, but some of them may
be violated. However, all hard requirements like (τ -si) and
(some-ci) ∨ (some-md) must hold.

For α4, ϕnm is a singleton set and hence (some-ci) and
(ρ-ci) resp. (some-md) and (ρ-md) coincide for ρ : y > 0.

(some-ci)/(ρ-ci) :

∀x, y. y > 0 ∧ cx · x+ cy · y ≥ c =⇒ y − x > 0 (ρ-ci-α4)
(some-md)/(ρ-md) :

∀x, y. cx · x+ cy · y ≥ c ∧ y − x > 0 =⇒ y > 0 (ρ-md-α4)

D. Preferring Local Invariants: If we strengthen a transi-
tion α with an inequation ξ, then the case ¬ξ is not covered by
the resulting transition. So we split α relative to ξ, i.e., we also
strengthen α with ¬ξ. However, this increases the size of the
program. Thus, we try to deduce standard invariants whenever
possible, i.e., we try to deduce constraints ξ that are valid
whenever α is applied in a program run so that the case ¬ξ is
irrelevant. To detect such invariants in a modular way, we only
consider local invariants, i.e., constraints whose invariance can
be proven by reasoning about α and all transitions β with
destβ = srcα, whereas all other transitions are ignored. A
similar idea is also used in [32] to synthesize invariants.

Definition 15 (Local Invariants). Let α ∈ T . If ϕli is a condi-
tional invariant of α and for all β ∈ T \{α} with destβ = srcα,

∀V(T ). guardβ ∧ upβ(guardα) =⇒ upβ(ϕli) (li)

is valid, then ϕli is a local invariant of α.

Def. 15 requires that whenever β can be applied (guardβ in
the premise of (li)) and α can be applied afterwards (destβ =
srcα and upβ(guardα) in the premise of (li)), then ϕli must

hold after applying β (which is the conclusion of (li)).
So for α4, x ≤ 0 is clearly a simple invariant, as α4 does

not update x. Moreover, the guard x < 0 of α3 (which is the
only other transition whose destination is srcα4 ) implies x ≤ 0.
Thus, x ≤ 0 is a local invariant of α4.

To guide the search towards local invariants, we add a soft
requirement corresponding to (li) for each ρ ∈ ϕnm:∧
β∈T \{α}
destβ=srcα

∀V(T ). guardβ ∧ upβ(guardα) =⇒ upβ(τρ) (τρ-li)

So for ρ : y > 0 in our example, due to transition α3 we get:

∀x, y. x < 0 ∧ y > 0 =⇒ cx · x+ cy · y ≥ c (τρ-li-α4)

E. Excluding Inapplicable Transitions: So far we do not
exclude solutions that result in inapplicable transitions. To
solve this problem, we add the hard requirement∨
β∈T \{α}
destβ=srcα

∃V(T ). guardβ ∧ upβ(guardα) ∧
∧

ρ∈ϕnm

upβ(τρ). (sat)

So we require that there is a transition β with destβ = srcα
(due to the leading

∨
. . .) and a valuation (due to the existential

quantifier) such that β is applicable (due to guardβ) and α is ap-
plicable afterwards (due to upβ(guardα) ∧

∧
ρ∈ϕnm upβ(τρ),

as we will strengthen α’s guard with
∧
ρ∈ϕnm τρ after instanti-

ating the parameters in the templates). Thus, for α4 we require

∃x, y. x < 0 ∧ y > 0 ∧ cx · x+ cy · y ≥ c (sat-α4)

due to the transition α3.
Alg. 1 essentially compresses each path through a multi-path

loop (e.g., a loop whose body contains case analyses) into a
simple loop via chaining in order to apply Nonterm, Fixpoint,
or Accelerate afterwards. So our technique tends to generate
many simple loops for function symbols that correspond to
entry points of multi-path loops. Therefore, (τρ-li) and (sat)
can result in large formulas, which leads to performance issues.
Hence, our implementation only considers transitions β with
srcβ 6= destβ when constructing (τρ-li) and (sat). Note that
this is uncritical for correctness, as the technique presented in
the current section is only a heuristic to generate constraints
to be added via Strengthen (which is always sound).

F. Preferring Nonterm: Finally, we prefer simple invariants
that allow us to apply Nonterm, our main technique to prove
non-termination. To this end, we add a soft requirement to
prefer solutions where the guard of the resulting strengthened
transition is a conditional invariant whenever ϕmd is empty:

∀V(T ). guardα ∧
∧

ρ∈ϕnm

τρ =⇒
∧

ρ∈ϕnm

upα(ρ) (nt)

In our example, (nt) equals (ρ-ci-α4) as ϕnm is a singleton
set.

G. Algorithm for Inferring Simple Invariants: Alg. 2
summarizes our approach to deduce simple invariants. Here,
the ith entry of the weight vector w corresponds to the weight
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of the ith soft requirement χi and solve(ζ,χ,w) searches
an instantiation σ of the parameters such that σ |= ζ and∑

1≤i≤|χ|
σ|=χi

wi is maximized. We explain how to implement

solve in Sect. IV-H. The weights are chosen in such a way that
a solution σ is preferred over σ′ if σ turns more templates τρ
into local invariants than σ′: The weight m+2 = |ϕnm|+2 of
the formulas resulting from (τρ-li) (where |ϕnm| is the number
of inequations in ϕnm) ensures that each formula from (τρ-li)
has a higher weight than the sum of all other soft requirements
(ρ-ci) ∨ (ρ-md) and (nt).

Input: A simple loop α
Output: A set of strengthened variants of α

1 if ϕnm = ∅ : return ∅
2 else : res← ∅
3 while ϕnm 6= ∅ :
4 i← 0; m← |ϕnm|
5 for ρ ∈ ϕnm :
6 i← i+ 1
7 χi ← (τρ-li); wi ← m+ 2
8 χi+m ← (ρ-ci) ∨ (ρ-md); wi+m ← 1
9 if ϕmd = ∅ : χi+m+1 ← (nt); wi+m+1 ← 1

10 ζ ← (τ -si) ∧ ((some-ci) ∨ (some-md)) ∧ (sat)
11 σ ← solve(ζ,χ,w)
12 return res if solve failed
13 for ρ ∈ ϕnm where σ(τρ) is not a local invariant :
14 res← res ∪ {lhsα → rhsα [guardα∧¬σ(τρ)]}
15 guardα ← guardα ∧

∧
ρ∈ϕnm σ(τρ)

16 return {α} ∪ res
Algorithm 2: deduceInvariants

Note that Step 15 updates guardα in each iteration and
ϕnm is recomputed before checking the condition of the while-
loop in Step 3. Alg. 2 terminates: |ϕnm| decreases in every
iteration due to the hard requirement (some-ci) ∨ (some-md),
which ensures that some ρ ∈ ϕnm becomes part of ϕi or ϕmd.
Moreover, the hard requirement (τ -si) ensures that each σ(τρ)
becomes part of ϕsi, so Alg. 2 never adds elements to ϕnm.

In our example, (τ -si-α4), (ρ-ci-α4), (τρ-li-α4), and (sat-α4)
are valid if cx = −1 and cy = c = 0. Hence, Alg. 2 successful-
ly generates the local invariant −x ≥ 0, i.e., x ≤ 0. Afterwards,
we can apply Nonterm to the strengthened loop as in Ex. 11.

Example 16 (Deducing Simple Invariants for α2). Reconsider
the simple loop α2 from Ex. 1, where ϕi = ϕmd = ∅ and
ϕnm = {x ≥ 0} as α2’s guard x ≥ 0 is not monotonic. Here,
τx≥0 is cx ·x+cy ·y ≥ c as y ∈ V(upα(x)). So (τ -si) becomes

∀x, y. cx · x+ cy · y ≥ c
=⇒ cx · (x− y) + cy · (y + 1) ≥ c. (τ -si-α2)

Again, (some-ci) ∨ (some-md) coincides with (ρ-ci) ∨ (ρ-md)
for ρ : x ≥ 0.
∀x, y. x ≥ 0 ∧ cx · x+ cy · y ≥ c =⇒ x− y ≥ 0 ∨ (ρ-ci-α2)
∀x, y. cx · x+ cy · y ≥ c ∧ x− y ≥ 0 =⇒ x ≥ 0 (ρ-md-α2)

Next, (τρ-li) gives rise to the requirement

∀x, y. x ≥ 0 =⇒ cx · x+ cy · y ≥ c. (τρ-li-α2)

Moreover, (sat) becomes

∃x, y. x ≥ 0 ∧ cx · x+ cy · y ≥ c. (sat-α2)

Finally, (nt) equals (ρ-ci-α2). Thus, the hard requirement ζ is

(τ -si-α2) ∧ ((ρ-ci-α2) ∨ (ρ-md-α2)) ∧ (sat-α2).

The soft requirements are (τρ-li-α2), (ρ-ci-α2)∨(ρ-md-α2), and
(ρ-ci-α2) with weights 3, 1, and 1, respectively. The valuation
σ = {cx 7→ 0, cy 7→ 1, c 7→ 0} satisfies ζ and (ρ-ci-α2) ∨
(ρ-md-α2), but not the other soft constraints. As ζ ∧ (τρ-li-α2)
and ζ ∧ (ρ-ci-α2) are unsatisfiable, σ is an optimal solution.
It corresponds to the simple invariant y ≥ 0. After deducing
it, the strengthened transition can be accelerated as in Ex. 8.

H. Greedy Algorithm for Max-SMT Solving: We now
explain how to implement the function solve that is called
in Alg. 2 to instantiate the parameters in the formulas. Our
implementation is restricted to the case that these formulas are
linear w.r.t. the program variables V(T ). Then the universally
quantified variables can be eliminated by applying Farkas’
Lemma [6, 36]. In this way, we obtain a Max-SMT obligation
over the theory of non-linear integer6 arithmetic. While there
exist powerful Max-SMT solvers [4, 15, 18], we use a
straightforward greedy algorithm based on incremental SMT
solving. This approach turned out to be be more efficient than
sophisticated Max-SMT techniques in our setting, presumably
as it does not aim to find provably optimal solutions.

V. EXPERIMENTS

We implemented our approach in our tool LoAT [21] which
uses the recurrence solver PURRS [1] and the SMT solver
Z3 [15]. It supports the SMT-LIB input format [8] and the
native formats of the tools KoAT [10] and T2 [11]. We
evaluated it on the benchmark suite from the Termination
and Complexity Competition (TermComp [23]) consisting
of 1222 programs (TPDB [38], category Termination of
Integer Transition Systems). All experiments were executed on
StarExec [37] with a timeout of 60 seconds per example.

We first compared our new implementation with our tech-
nique to prove lower complexity bounds of integer programs
from [21] (LoAT LB), which can also deduce non-termination
as a byproduct. LoAT LB proves non-termination in 390 cases,
whereas the new version of LoAT succeeds for 462 examples.

Then, we compared LoAT with two state-of-the-art termina-
tion analyzers for integer programs: VeryMax [5, 32] (resp. its
predecessor CppInv) won the category Termination of Integer
Transition Systems at TermComp in 2014 and 2016 – 2019.
T2 was the winner in 2015. We also tested with our tool
AProVE [22], but excluded it as it uses a similar approach
like T2, but finds fewer non-termination proofs. The remaining
participants of the respective category of TermComp, Ctrl

6Note that rational constants can be eliminated by multiplying with the least
common multiple.
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[29] and iRankFinder [2, 16], cannot prove non-termination.7

We used the TermComp ’19 version of VeryMax and the
TermComp ’17 version of T2 (as T2 has not been developed
further since 2017). Our experiments did not reveal any con-
flicts, i.e., there is no example where one tool proved termi-
nation and another proved non-termination.

LoAT T2 VeryMax
NO 462 420 392
YES 0 607 623

MAYBE 760 195 207
Unique NO 22 9 23
Avg. time 8.3s 8.8s 13.8s
As the table above shows, LoAT proves non-termination

more often than any other tool. According to the second last
row, it solves 22 examples where all other tools fail. Together,
T2 and all TermComp participants succeed on 1130 examples.
So LoAT solves 23.9% of the 92 remaining potentially non-
terminating examples.

The TPDB examples mostly use linear arithmetic and T2
and VeryMax are restricted to such programs [11, 32]. To
evaluate LoAT on examples with non-linear arithmetic, we
also compared with the tool Anant [14], which has been
specifically designed to handle non-linearity. Here, we used
the 29 non-terminating programs with non-linear arithmetic
from the evaluation of [14]. As we were not able to run Anant,
even though the authors kindly provided the source code and
old binaries, we compared with the results presented in [14].

LoAT Anant
NO 24 25

MAYBE 5 4
Unique NO 4 5
Avg. time 0.5s 32.5s
Together, Anant and LoAT prove non-termination of all

examples. LoAT solves one example less than Anant, but it is
significantly faster: It always terminates within less than three
seconds whereas Anant takes up to 4 minutes in some cases.
However, both tools were run on different machines.

Finally, we compared LoAT with the tools from the category
Termination of C Integer Programs at TermComp ’198

(AProVE [22], Ultimate [12], and VeryMax [5, 32]) on the
355 examples from that category of the TPDB. As LoAT cannot
parse C, we coupled it with a version of AProVE that converts
C programs into equivalent integer programs.

LoAT AProVE Ultimate VeryMax
NO 96 99 88 102
YES 0 214 206 212

MAYBE 239 22 41 21
Unique NO 2 0 0 2
Avg. time 3.1s 6.3s 8.7s 5.2s

7iRankFinder can prove non-termination of simple loops [2], but according
to its authors it cannot yet check reachability of diverging configurations.

8Ultimate and AProVE were also the two most powerful tools in the
“termination” category for C programs at SV-COMP ’19 [3].

The results of LoAT are competitive, but it succeeds on less
examples than AProVE and VeryMax. VeryMax and LoAT
are the only tools that find unique non-termination proofs.
Finally, LoAT is the fastest tool, although its runtime includes
AProVE’s conversion from C. However, all tools but LoAT
also spend time on attempting to prove termination, which may
explain their longer runtime.

To explain the discrepancy between the results for integer
programs and for C programs, note that the integer programs
from the TPDB often contain several loops. Here, our loop
acceleration technique is particularly successful, because the
challenge is not only to prove non-termination of one of the
loops, but also to prove its reachability. In contrast, many C
programs from the TPDB consist of a single multi-path loop.
So to prove non-termination, one has to find a suitable pattern
to execute the paths through the loop’s body. To improve the
handling of such examples, we will extend our approach by
control flow refinement techniques [17, 20, 25, 30] in future
work.

See https://ffrohn.github.io/acceleration for a pre-compiled
binary (Linux, 64 bit) of LoAT, tables with detailed results for
all benchmarks, and the full output of the tools for all examples
(the detailed results of Anant can be found in [14]). The source
code of the implementation in our tool LoAT is available at
https://github.com/aprove-developers/LoAT/tree/nonterm.

VI. CONCLUSION AND RELATED WORK

A. Conclusion: We presented the first non-termination
technique based on loop acceleration. It accelerates termi-
nating loops in order to prove reachability of non-terminating
configurations, even if this requires reasoning about program
parts that contain loops themselves. As we use a non-
termination criterion which is a special case of the prerequisites
of our novel loop acceleration technique (see Sect. III), we can
use the same new invariant inference technique (Sect. IV) to
facilitate both loop acceleration and non-termination proving.
The experimental evaluation of our approach shows that it is
competitive with state-of-the-art tools, cf. Sect. V.

B. Related Work: Loop Acceleration is mostly used in over-
approximating settings (e.g., [19, 24, 28, 35]), whereas our
setting is under-approximating. We only know of two other
under-approximating loop acceleration techniques [21, 30]:
One requires metering functions [21], an adaption of ranking
functions, that can be challenging to synthesize. The other [30]
is a special case of Thm. 7 where ϕci = ϕsi = true, which
restricts its applicability in comparison to our approach. To
facilitate acceleration, [30] splits disjunctive guards, which is
orthogonal to our splitting of guards by adding conjuncts (cf.
Sect. IV-D).

Most techniques to prove non-termination first generate las-
sos consisting of a simple loop α and a stem, i.e., a path
from the program’s entry point to α. Then they try to prove
non-termination of these lassos. However, a program with
consecutive or nested loops usually has infinitely many possible
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lassos. In contrast, our program simplification framework yields
a loop-free simplified program with finitely many transitions.

In [26], recurrent sets were proposed to prove non-termina-
tion. A set of configurations is recurrent if each element has
a successor in the set. Hence, a non-empty recurrent set that
contains an initial configuration witnesses non-termination.
There are many techniques to find recurrent sets for simple
loops [2], lassos [7, 13, 26, 40], or more complex sub-programs
[32]. Essentially, our invariant inference technique of Sect. IV
also searches for a recurrent set for a simple loop α. However,
if it cannot find a recurrent set it may still successfully enforce
monotonicity of guardα and hence allow us to accelerate α.

An alternative to recurrent sets is presented in [34]. It
represents infinite runs as sums of geometric series. In general,
we could use any technique to prove non-termination of simple
loops or lassos as an alternative to our non-termination criteria.

Further approaches to prove non-termination are, e.g., based
on Hoare-style reasoning [33] or safety proving [39].

While most related techniques to prove non-termination
focus on linear arithmetic, [14] has been specifically designed
to handle non-linear arithmetic via live abstractions and a
variation of recurrent sets. As shown in Sect. V, our approach
is also competitive on programs with non-linear arithmetic.

C. Future Work: We will integrate control flow refinement
techniques and more powerful non-termination criteria (e.g., to
find disjunctive recurrent sets, which we cannot handle yet). We
will also consider techniques to infer non-linear invariants, as
our current invariant inference is restricted to linear arithmetic.

D. Acknowledgments: We thank Marc Brockschmidt and
Matthias Naaf for important initial discussions.
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APPENDIX

A. Proof of Thm. 7:

Proof. We first show that for any valuation σ, σ |= guardα
implies

σ |= upnα(guardα) for all 0 ≤ n < σ(k). (6)

Let σ be a valuation with σ |= guardα. As ϕsi is a simple
invariant, ϕsi implies upα(ϕsi). Since ϕsi ⊆ guardα, we
obtain

σ |= upnα(ϕsi) for all n ∈ N. (7)

As we also have deck (µ(ϕmd)) ⊆ guardα, we get

σ |= upk−1
α (ϕmd), (8)

by definition of deck and µ.
We now use induction on m to prove

σ |= upk−m
α (ϕmd) for all 1 ≤ m ≤ σ(k). (9)

The induction base m = 1 is immediate due to (8). For the
induction step, let m > 1. Due to the induction hypothesis, we
obtain

σ |= upk−m+1
α (ϕmd). (10)

By (md), we have

σ |= upk−m
α (ϕsi) ∧ upk−m+1

α (ϕmd) =⇒ upk−m
α (ϕmd).

Hence, (10) and (7) imply

σ |= upk−m
α (ϕmd).

This finishes the proof of (9), which is equivalent to

σ |= upnα(ϕmd) for all 0 ≤ n < σ(k). (11)

We now prove9

σ |= upnα(ϕci) for all 0 ≤ n ≤ σ(k) (12)

by induction on n. For the induction base (n = 0) we have
σ |= ϕci since ϕci ⊆ guardα. For the induction step, let n > 0.
Due to the induction hypothesis, we get

σ |= upn−1α (ϕci).

Moreover, we have

σ |= upn−1α (ϕsi)

and
σ |= upn−1α (ϕmd)

due to (7) and (11). As guardα = ϕci ∧ ϕsi ∧ ϕmd, we obtain

σ |= upn−1α (guardα).

As ϕci is a conditional invariant and ϕci ⊆ guardα, guardα
also implies upα(ϕci). Thus, we get

σ |= upnα(ϕci).

9Note that in contrast to the statement (7) for simple invariants, σ |=
upnα(ϕci) does not necessarily hold for all n ∈ N. This is the reason why
we distinguish between simple and conditional invariants and only use simple
invariants in the premise of (md).
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This finishes the proof of (12).
Since, again, guardα = ϕci ∧ ϕsi ∧ ϕmd, (7), (11), and

(12) together imply

σ |= upnα(guardα) for all 0 ≤ n < σ(k),

which finishes the proof of (6).
Thus, we have

σ(lhsα) = f(σ(up0
α(x))) −→∗T f(σ(upσ(k)α (x)))

for any model σ of guardα, where the evaluation takes σ(k) >
0 steps. As

f(σ(upσ(k)α (x))) = f(σ(µ(x))) = σ(rhsα)

by the definition of µ, this shows that any evaluation with α
can be replaced by at least one evaluation step with α. Thus,
every non-terminating evaluation with T can be transformed
into a corresponding non-terminating evaluation with T . Hence,
the processor Accelerate is sound.

The processor is also safe, i.e., T is well formed. The reason
is that by the argumentation above, if σ is a valuation with
σ |= guardα, then the configuration σ(lhsα) can be evaluated
to σ(rhsα) with the well-formed program T and thus, σ(rhsα)
must also be a configuration.

B. Proof of Thm. 9:

Proof. Let σ be a model of guardα ∧ upα(guardβ) with
V(α) ∪ V(β) ⊆ dom(σ). Then σ |= guardα implies
σ(lhsα) →T σ(rhsα) = σ(upα(lhsβ)), as destα = srcβ
and the argument lists of lhsα and lhsβ are equal. From
σ |= upα(guardβ) and the fact that σ ◦ upα is a valuation
due to well-formedness of {α}, we obtain σ ◦ upα |= guardβ .
Thus, we get σ(upα(lhsβ))→T σ(upα(rhsβ)), i.e., we obtain
σ(lhsα◦β) = σ(lhsα) −→∗T σ(upα(rhsβ)) = σ(rhsα◦β), where
the evaluation with T takes two steps. This proves soundness
of Chain. Well-formedness of T ◦ follows from the fact that the
valuation σ◦upα satisfies guardβ and {β} is well formed.

C. Proof of Thm. 10:

Proof. Well-formedness of T ω is trivial. For soundness, let σ
be a valuation with

σ |= guardαω .

It suffices to prove that σ(lhsα) starts a non-terminating run
with T . To this end, we prove σ |= upnα(guardα) for all
n ∈ N by induction on n. The induction base is trivial, as
guardαω = guardα. For the induction step, let n > 0. The
induction hypothesis implies σ |= upn−1α (guardα). As guardα
is a simple invariant, it implies upα(guardα) and we obtain
σ |= upnα(guardα), which finishes the proof of the theorem.

D. Proof of Thm. 12:

Proof. Well-formedness of T fp is trivial. For soundness, let θ
be a valuation with

θ |= guardαfp .

Since guardαfp implies x = upα(x), by induction on n we
obtain that

θ(x) = θ(upnα(x)) holds for all for all n ∈ N.

Hence, θ(lhsα) starts a non-terminating run, because θ◦upnα |=
guardα for all n ∈ N.

E. Proof of Thm. 14:

Proof. The theorem trivially holds, as

σ(lhsα•)→{α•} σ(rhsα•)

clearly implies

σ(lhsα•)→{α} σ(rhsα•).
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