
1

Unification-based Pointer Analysis without
Oversharing

Jakub Kuderski∗, Jorge A. Navas†, and Arie Gurfinkel∗
∗University of Waterloo, Canada

{jakub.kuderski, arie.gurfinkel}@uwaterloo.ca
†SRI International, USA

jorge.navas@sri.com

Abstract—Pointer analysis is indispensable for effectively ver-
ifying heap-manipulating programs. Even though it has been
studied extensively, there are no publicly available pointer anal-
yses that are moderately precise while scalable to large real-world
programs. In this paper, we show that existing context-sensitive
unification-based pointer analyses suffer from the problem of
oversharing – propagating too many abstract objects across
the analysis of different procedures, which prevents them from
scaling to large programs. We present a new pointer analysis
for LLVM, called TEADSA, without such an oversharing. We
show how to further improve precision and speed of TEADSA
with extra contextual information, such as flow-sensitivity at call-
and return-sites, and type information about memory accesses.
We evaluate TEADSA on the verification problem of detecting
unsafe memory accesses and compare it against two state-of-
the-art pointer analyses: SVF and SEADSA. We show that
TEADSA is one order of magnitude faster than either SVF or
SEADSA, strictly more precise than SEADSA, and, surprisingly,
sometimes more precise than SVF.

I. INTRODUCTION

Pointer analysis (PTA) – determining whether a given
pointer aliases with another pointer (alias analysis) or points
to an allocation site (points-to analysis) are indispensable for
reasoning about low-level code in languages such as C, C++,
and LLVM bitcode. In compiler optimization, PTA is used
to detect when memory operations can be lowered to scalar
operations and when code transformations such as code motion
are sound. In verification and bug-finding, PTA is often used
as a pre-analysis to limit the implicit dependencies between
values stored in memory. This is typically followed by a
deeper, more expensive, path-sensitive analysis (e.g., [1], [2],
[3]). In both applications, the efficiency of PTA is crucial since
it directly impacts compilation and verification times, while
precision of the analysis determines its usability. Moderately
precise and efficient PTA is most useful, compared to precise
but inefficient or efficient but imprecise variants.

The problem of pointer analysis is well studied. A survey by
Hind [4] (from 2001!) provides a good overview of techniques
and precision vs cost trade-offs. Despite that, very few prac-
tical implementations of PTA targeting low-level languages
are available. In part, this is explained by the difficulty of
soundly supporting languages that do not provide memory
safety guarantees, allow pointers to fields of aggregates, and
allow arbitrary pointer arithmetic. In this paper, we focus on
the PTA problem for low-level languages.

There are many dimensions that affect precision vs cost
trade-offs of a PTA, including path-, flow-, and (call-
ing) context-sensitivity, modeling of aggregates, and mod-
ularity of the analysis. From the efficiency perspective,
the most significant dimension is whether the analysis is
inclusion-based (a.k.a., Andersen-style [5]) or unification-
based (a.k.a., Steensgaard-style [6]). All other things being
equal, a unification-based analysis is significantly faster than
an inclusion-based one at the expense of producing very
imprecise results. To improve further precision while retaining
its efficiency, a unification-based PTA can be extended with
(calling) context-sensitivity in order to separate local aliasing
created at different call sites. Unfortunately, the combination
of a unification-based analysis with context-sensitivity can
quickly degenerate in a prohibitive analysis.

State-of-the-art implementations of unification-based,
context-sensitive PTA (e.g., DSA [7] and SEADSA [8])
perform the analysis in phases. First, each function is
analyzed in an intra-procedural manner (LOCAL). Second, a
BOTTOM-UP phase inlines callees’ points-to graphs into their
callers. Third, a TOP-DOWN phase inlines callers’ points-to
graphs into their callees. We observed that both BOTTOM-UP
and TOP-DOWN often copy too many foreign objects, memory
objects allocated by other functions that cannot be accessed
by the function at hand, increasing dramatically both analysis
time and memory usage. In fact, we show in Sec. VI that
the majority of analysis runtime is spent on copying foreign
objects. Even worse, due to the imprecise nature of unification-
based PTA and difficulty of analyzing accurately aggregates,
foreign objects can be aliased with other function objects
affecting negatively the precision of the analysis. We refer to
oversharing as the existence of large number of inaccessible
foreign objects during the analysis of a particular function.

In this paper, we present a new pointer analysis for LLVM,
called TEADSA, that eliminates a class of such an oversharing.
TEADSA is a new unification-based PTA implemented on top
of SEADSA. Since TEADSA builds on SEADSA, it remains
modular (i.e., analysis of each function is summarized and
the summary is used at call sites), context-, field-, and array-
sensitive. The first main difference is that TEADSA does
not add oversharing during TOP-DOWN while retaining full
context-sensitivity. This is achieved by not copying foreign
objects coming from callers. This is a major improvement
compared to previous implementations. DSA mitigates the

ar
X

iv
:1

90
6.

01
70

6v
2

 [
cs

.P
L

]
 1

6
A

ug
 2

01
9

oversharing problem by partially losing context-sensitivity.
SEADSA does not tackle this problem since it focuses on
medium-size programs such as the SV-COMP benchmarks [9].

Second, we observed that oversharing can also come from
the LOCAL phase. This is mainly because the local analysis
is flow-insensitive. To mitigate this, we make TEADSA flow-
sensitive but only at call- and return sites. This preserves the
efficiency of the analysis while improving its precision.

Third, we noted that another source of imprecision in
SEADSA is loss of field-sensitivity during analysis of oper-
ations in which determining the exact field being accessed is
difficult and merging that is inherent to its unification nature.
Crucially, in many cases where field-sensitivity is lost, it is
still clear that pointers do not alias if their types are taken into
account. Under strict aliasing rules of the C11 standard, two
pointers cannot alias if they do not have compatible types [10].
By following strict aliasing, we further improve the precision
of TEADSA.

We have evaluated TEADSA against SEADSA and SVF,
a state-of-the-art inclusion-based pointer analysis in LLVM,
on the verification problem of detecting unsafe memory ac-
cesses. Our evaluation shows that TEADSA is one order of
magnitude faster than SEADSA or SVF, strictly more precise
than SEADSA, and sometimes more precise than SVF.

II. OVERVIEW

In this section, we illustrate our approach on a series of
simple examples. Consider a C program P1 in Fig. 1(a)
and its corresponding context-insensitive and flow-insensitive
points-to graph G1 in Fig. 1(b). The nodes of G1 correspond
to registers (ellipses) and groups of abstract memory objects
(rectangles), and edges of G1 represent the points-to relation
between them. As usual, a register is a program variable whose
address is not taken. For example, the local variable s is
a register. Similarily, an abstract object represents concrete
memory objects allocated at a static allocation site, such as an
address-taken global or local variable, or a call to an allocating
function like malloc. For field sensitivity, struct fields
are associated with their own abstract objects. In Fig. 1(a),
we denote corresponding abstract objects in comments. For
example, the local integer variable i is associated with an
abstract object o5, while the struct variable c is associated
with abstract objects u.f0 and u.f8 for its label and val
fields at offset 0 and 8, respectively.

The edges of G1 denote whether a pointer p may point to
an abstract object o, written p 7→ o. Whenever p may point to
multiple abstract objects all of these objects are grouped into
a single (rectangular) node. For instance, x 7→ o1, x 7→ o2,
x 7→ o3, x 7→ o4, or x 7→ {o1, o2, o3, o4} for brevity. We say
that two pointers p1 and p2 alias when they may point to the
same abstract object, written alias(p1, p2).

The graph G1 in Fig. 1(b) corresponds to the Steensgaard
(or unification-based) PTA [6]. This style of PTA ensures an
invariant (I1): whenever there is a pointer p1 and objects oa
and ob such that p1 7→ oa and p1 7→ ob, then for any other
pointer p2 if p2 7→ oa then p2 7→ ob. On one hand, (I1) implies
that Steensgaard PTA can be done in linear time using a union-
find data structure to group objects together. On the other,

Steensgaard PTA is quite imprecise. In our running example,
it deduces that almost all registers of P1 may alias, which
is clearly not the case. For instance, s 7→ {o1, o2, o3, o4} in
Fig. 1(b), even though there is no execution in which s 7→ o1
or s 7→ o4.

A standard way to make the Steensgaard PTA more precise
is to perform the analysis separately for each procedure. This
is referred to as (calling) context-sensitivity. The main idea
is to distinguish local aliasing created at different call sites.
Data Structure Analysis (DSA) [7] is an example of a context-
sensitive Steensgaard PTA. The results of a context-sensitive
Steensgaard PTA on P1 are shown in Fig. 2(a) as four separate
points-to graphs – one for each procedure in P1. An increase
in precision (compared to the PTA in Fig. 1(b)) is visible in
procedures foo, bar, and getStr: the string str4 does not
alias all the other strings. The improvement comes at a cost –
some abstract objects appear in the analysis results of multiple
procedures. For instance, o1, o2, and o3 appear in all 4 graphs.
In the worst case, DSA can grow quadratically in the program
size, which prevents it from scaling to large programs.

In Sec. VI, we show that in DSA the majority of runtime
is often spent on copying foreign abstract objects coming
from other procedures. For example, consider the abstract
objects u.f8 and o5: the procedure foo never accesses the
val field of conf. As shown in Fig. 1(a), u.f8 and o5 are
only accessible in foo through conf and thus should not
appear in the analysis for foo or any of its callees. However,
both u.f8 and o5 are present in the points-to graph for foo in
Fig. 2(a), as computed by a DSA-like PTA. This performance
issue was already observed in [7], but only a workaround that
loses context-sensitivity for global objects was implemented.

In this paper, we show that points-to analysis should refer
only to abstract objects actually used by a procedure. This
includes abstract objects in a procedure and its callees, abstract
objects derived from function arguments, and used global
variables. Thus, foreign abstract objects coming from callers
are not only unnecessary in the final analysis results of their
callees, but needless in the first place. Compared to Fig. 2(a),
in our proposed analysis, Fig. 2(b), function argument accesses
are given separate abstract objects, instead of referring to
(foreign) abstract objects of callees.

Furthermore, we observed that DSA maintains the follow-
ing invariants (I2): if a procedure F1 with p1 7→ o calls
a procedure F2, and there is an interprocedural assignment
to a function argument p2 of F2, p2 := p1, then p2 7→ o;
(I3): if F1 calls F2 and p2 7→ o in F2, and there is an
interprocedural assignment to a pointer p1 in F1 by returning
p2 from F2, p1 := p2, then p1 7→ o. For example, foo calls
getStr in Fig. 1(a), str1 7→ {o1, o2} in getStr, thus
the returned value r 7→ {o1, o2}. (I2) and (I3) are useful to
argue that adding context-sensitivity to Steensgaard preserves
soundness. However, they cause unnecessary propagations of
foreign abstract objects. For instance, even though according
to (I1) it must be that locally str1 7→ {o1, o2} in getStr,
getStr can only return a pointer to o1, as str1 is used in the
return statement, so r 7→ o1 and r 67→ o2 – that violates (I3).

In addition to not introducing foreign abstract object for
arguments, many propagations caused by a local imprecision

1 const char *str1 = "Str1"; // o1

2 const char *str2 = "Str2"; // o2

3 const char *str3 = "Str3"; // o3

4
5 void print(const char *x) {}
6
7 const char *getStr() {
8 const char *p = nondet() ?
9 str1 : str2;

10 print(p);
11 return str1;
12 }
13
14 struct Config
15 { const char *label; int *val; };

16 int foo(struct Config *conf) {
17 const char str4[5] = "Str4";// o4

18 print(str4);
19 const char *r = getStr();
20 print(r);
21 return conf->label == r;
22 }
23
24 int bar() {
25 int i = 42; // o5

26 const char *s = nondet() ?
27 str2 : str3;
28 struct Config c = {s, &i} // u
29 return foo(&c);
30 }

(a)

o1,	o2,	o3,	o4 o5

u
f0 f8

str1 str2 str3

x

str4

p r s

c conf

i

(b)
Fig. 1: Sample C program P1 (a) and its Context-insensitive Points-To Graph G1 (b).

o1,	o2,	o3,	o4

print

x

str1 str2 str3 str4

o1,	o2,	o3r

str1 str2 str3

foo

o5

u
f0 f8

conf

bar

o1,	o2,	o3

getStr

p

str1 str2 str3

o1,	o2,	o3s

str1 str2 str3

o5

u
f0 f8

c

i

o4str4

(a)

print#arg0
AS:	o1,	o2,	o4

print

x

o1r

str1

foo conf

bar

o1,	o2

getStr

p

str1 str2

o2,	o3s

str2 str3

o5

u
f0 f8

c

i

foo#arg0
AS:	uo2,foo#arg0_0

AS:	o2,	o3

o4str4
str2

str1 o1

(b)
Fig. 2: Context-sensitive Points-To Graphs for P1.

1 const int INT_TAG = 0, FLOAT_TAG = 1;
2 typedef struct { int tag; } Element;
3 typedef struct
4 { Element e; int *d; } IElement;
5 typedef struct
6 { Element e; float *d; } FElement;
7
8 void print_int(int);
9 void baz() {

10 int a = 1; // o6

11 float f; // o7

12 IElement e1 = {{INT_TAG}, &a}; // v
13 FElement e2 = {{FLOAT_TAG}, &f}; // w
14 Element *elems[2] = {&e1, &e2}; // x
15
16 for (int i = 0; i < 2; ++i)
17 if (elems[i]->tag == INT_TAG) {
18 IElement *ie = elems[i];
19 int *ip = (int *) ie->d;
20 print_int(*ip);
21 }
22 }

Fig. 3: Sample C program P2.

are avoided by not maintaining (I2) and (I3). Breaking (I2)
allows the analysis to propagate fewer foreign abstract objects
from callers to callees (i.e., top-down), while breaking (I3)
at return sites to reduces the number of maintained foreign
abstract objects coming from callees (i.e., bottom-up).

In this paper, we show that a context-sensitive unification-
based PTA that does not maintain (I2) and (I3) can be refined
with extra contextual information to reduce the number of
foreign abstract objects, as long as the information is valid
for a given source location in the current calling context.

The strict aliasing rules of the C11 standard specify that at
any execution point every memory location has a type, called
effective type. A read from a memory location can only access
a type compatible with its effective type. Consider the program
P2 in Fig. 3: dereferencing the integer pointer ip is only

elems baz

a f

o7

ip
int int* float*

v,	w
f8f8f0

e1 e2

o6

int*

x
f0

Fig. 4: Type-aware Points-To Graph of P2.

allowed when the last type written was int. We use strict
aliasing to improve precision of our PTA.

In order to use types as an additional context, we add an
extra abstract object for any type used with the corresponding
allocation site or its field. As a result, every abstract object has
an associated type tag. Following strict aliasing, two objects
o1 and o2 can alias, only when their type tags are compatible.
In the P2’s points-to graph in Fig. 4, type tags are shown at
the bottom of each abstract object. We maintain soundness
by discovering type tags based only on memory accesses
performed, instead of relying on casts or type declarations.
Alternatively, it is also possible to use externally supplied type
tags (e.g., emitted from a C compiler’s frontend).

Although types increase the number of abstract objects, they
improve the precision of our analysis. For example, consider
the structs e1 and e2 defined in lines 12 and 13 of P2. The
d field of e1 is assigned a pointer to a, while the d field
of e2 is assigned a pointer to f. Because of these memory
writes, we know that e1.d is of type int* and e2.d is
float*. Even though v and w are grouped according to (I1)
as elems 7→ {v.f0.int , w.f0.int}, o6 and o7 do not alias, as

P ::= F+
F ::= fun name(f): r {I+}
I ::= r = alloc() | r = cast T, p |

r = load PT p | store r, PT p |
r = gep PT p, fld | r = callee(p) | return z

T ::= BT ∪ PT
BT ::= int | float | char
PT ::= BT* | BT**
fld ::= a | b

Fig. 5: A simple language.

the abstract objects for e1.d and e2.d differ in type tags:
v.f8.int∗ vs w.f8.float∗.

In summary, our enhancements to the standard context-
sensitive unification-based PTA not only dramatically improve
the performance, but also the precision of the analysis. This
is due to the interaction between improved local reasoning at
call- and return-sites, and the reduction on propagating foreign
abstract objects across functions. We also show that while the
added type-awareness increases the number of abstract objects,
the analysis scales better than a type-unaware one (on our
benchmarks). Interestingly, our proposed PTA is much faster
and usually as precise as the SVF PTA [11], and sometimes
even significantly more precise. Note that SVF is a state-of-the
art, inclusion-based PTA that chooses not to maintain (I1) for
more precision, but is not context-sensitive in order to scale.

III. BACKGROUND

In this section, we present the necessary background to
understand the rest of the paper. We assume a basic un-
derstanding of pointer analysis. We refer interested readers
to [12], [4] for additional exposition.

For presentation, we use a simple LLVM-like language
shown in Fig. 5. The language is used to simplify the pre-
sentation, but our implementation (in Sec. VI) supports full
LLVM bitcode. Our language supports standard pointer and
memory operations, but has no control flow constructs, such
as conditional statements or loops, and defines a function by
an unordered bag of instructions. This simplified setting is
sufficient because our PTA is flow-insensitive – it does not
use control-flow information. Although there are no global
variables, they are modeled by explicitly passing them between
functions. We allow passing and returning multiple values,
modeled as a vector of function arguments and returns, re-
spectively. For simplicity of presentation, we assume that all
allocations create structures with exactly two fields, and that
the size of an allocation is big enough to store any scalar
type, including integers and pointers. New memory objects are
created using the alloc instruction that allocates two fresh
memory objects (one for each field) and returns a pointer to
the first one. The result is saved in a register of type char*,
that can be cast to a desired type with the cast instruction.
Contents of a register is written to memory using store
and read back with load. A sibling memory object I of
an object H corresponding to field a is obtained with the
gep (GetElementPointer) instruction with b as its field
operand; applying the gep to H (or I) with a field operand
a yields H (or I).

In PTA, the potentially infinite set of concrete memory
object is mapped to a finite set of abstract objects. A standard

i : r = alloc()

r 7→ Hi

ALLOC
r = cast PT, p p 7→ H

r 7→ H
CAST

r = load PT p

p 7→ H H 7→ I

r 7→ I
LOAD

store r, PT p

p 7→ I r 7→ H

I 7→ H
STORE

Fig. 6: Inference rules for Inclusion-based PTA: �I.

r = gep PT p, a p 7→ H

r 7→ H
GEP

r = gep PT p, b p 7→ H

fld(H) = a siblingObj (H) = I

r 7→ I
GEP

Fig. 7: Inference rules for Field-Sensitivity: �FLD.

way to identify abstract objects is by their allocation site –
an alloc instruction that created them. A points-to analysis
(PTA) of a program P computes a relation · 7→ ·, called points-
to, between pointers and abstract objects. A PTA is sound if
whenever p 67→ o then there is no execution of P in which p
points to a concrete memory object corresponding to o. We
represent PTAs using inference rules that derive facts of the
7→ relation. A PTA is computed by applying these rules until
saturation. Fig. 6 contains a set of standard inference rules
for the inclusion-based (Andersen-style) context-insensitive
analysis in our language. We let �I represent the rules in Fig. 6
and denote a 7→ fact derivable by applying them exhaustively
on a program P , written: �I `P x 7→ H , where x is a pointer
and H is an abstract object. To support the gep instruction
and make the PTA field-sensitive, we extend �I with additional
rules �FLD shown in Fig. 7.

A unification-based (Steensgaard-style) PTA is obtained by
extending the analysis with additional unification rules �U
shown in Fig. 8, such that �STEENS = �I ∪ �FLD ∪ �U. The
rules �U enforce the invariant (I1) from Sec. II. Note that
�STEENS is less precise than �I ∪�FLD, because altering a PTA
by adding extra inference rules never derives fewer 7→ facts.
A unification-based PTA like �STEENS is typically implemented
using the Union-Find data structure that allows to perform the
abstract objects grouping in (almost) linear time.

IV. KEEP YOUR OBJECTS TO YOURSELF

This section is organized as follows: first, we describe how
to extend the �STEENS PTA to be interprocedural and explain
(calling) context-sensitivity. Next, we show how to extend

r 7→ H r 7→ I

p 7→ I

p 7→ H
INCOMING

H 7→ I H 7→ J

L 7→ J

L 7→ I
INCOMING

r 7→ H H 7→ J

r 7→ I I 7→ K

H 7→ K
OUTGOING

H 7→ I I 7→ K

H 7→ J J 7→ L

I 7→ L
OUTGOING

Fig. 8: Unification rules: �U.

i : fun fn(f): r 0 ≤ k < |f|

fk
fn7−→ V a

i,k V a
i,k

fn7−→ V aa
i,k V b

i,k
fn7−→ V ba

i,k

V aa
i,k

fn7−→ V aa
i,k V ba

i,k
fn7−→ V ba

i,k

V ab
i,k

fn7−→ V ab
i,k V bb

i,k
fn7−→ V bb

i,k

FORMALS

Fig. 9: Inference rules for formal arguments: �FORMALS.

�STEENS to a DSA-style analysis. Using this formulation, we
define the oversharing that happens in DSA, and show a way
to reduce it. Finally, we show how to make the PTA partially
flow-sensitive to further improve both precision and efficiency.
Context-sensitivity. The unification-based PTA �STEENS from
Sec. III is an intraprocedural analysis. It analyzes a single
function at a time and does not reason about other functions.
Interprocedural reasoning requires propagating 7→ between
callers and callees at all call-sites. For simplicity of explana-
tion, we assume that calls are direct, i.e., callees are statically
known, and that functions are not recursive.

A PTA is (calling) context-insensitive when it is interpro-
cedural, but does not distinguish between calls to a func-
tion at different call-sites. For example, a context-insensitive
unification-based PTA would not be able to tell apart str4
and r passed to print in P1, as illustrated in Fig. 1(b). A
context-insensitive unification-based analysis is obtained by
extending �STEENS with rules for interprocedural assignments.

A (calling) context-sensitive PTA provides 7→ facts relative
to the requested calling context. In unification-based analyses,
this is usually achieved by calculating a separate F7−→ relation
for each function F in the analyzed program. DSA is an
example of such an analysis [7]. Although not formally
specified in [7], it is defined by adding rules to �STEENS,
�DSA = �L ∪ �BU ∪ �TD, where �L = �STEENS ∪ �FORMALS.
Formal arguments. To perform a local analysis of a function
F , DSA calculates F7−→ based on instructions in F , includ-
ing function calls. These instructions may access memory
derived from formal arguments. Thus, it is necessary to
introduce additional abstract objects for them. We refer to
this kind of abstract objects as formals, and provide them
for each defined function. Every formal argument of a func-
tion i : fun fn(f): r, fk, has six associated formals:
V a
i,k, V

b
i,k, V

aa
i,k , V

ab
i,k , V

ba
i,k , V

bb
i,k , corresponding to abstract ob-

jects for fields a and b, and abstract objects reachable by
dereferencing each of these two fields. Fig. 9 shows inference
rules �FORMALS that specify how these abstract objects may
point to each other. The rules model precisely only two levels
of indirection. Any memory object obtained by a further
dereference is mapped to the same second-level formal, adding
a cycle. In practice, precision of analysis can be improved by
computing the necessary levels of indirection (e.g., [13], [7],
[8]).
Oversharing. While the local analysis �L only uses abstract
objects from the analyzed function (i.e., coming from alloca-
tion sites in that function or its formals), the rules �BU ∪�TD,
shown in Fig. 10, propagate 7→ facts across functions. They
use a helper function Resolve to map between caller and
callee abstract objects. For any pair of functions F1 and F2,

we refer to the abstract objects defined by F2 and present
in F17−→ as foreign. A foreign object is overshared in F1 if it
is inaccessible by F1, but needlessly appears in the analysis
results of F1.

DSA, as presented in [7], executes three phases of the
analysis for a function F as follows: (a) LOCAL phase for F ;
(b) BOTTOM-UP for each callee of F ; and (c) TOP-DOWN
for each caller of F . This is equivalent to applying the �L
and �BU rules until saturation in a reverse-topological call-
graph order, followed by �TD in a topological order until
saturation. The rules can be soundly applied in this sequence
and no new F7−→ facts can be derived by running any of the
phases again. The original DSA implementation performs
foreign object propagation during both BOTTOM-UP and TOP-
DOWN: BOTTOM-UP copies foreign abstract objects accessi-
ble from formal arguments and returned values from a callee
to its callers, while TOP-DOWN copies all abstract objects
accessible (directly or transitively) from function parameters
(actual arguments) in a caller to its callees, even if they are
unused. We notice that the copying of foreign objects in TOP-
DOWN, required to maintain (I2) from Sec. II, is a major
source of oversharing in DSA. This form of oversharing led
to a workaround in [7] that improves performance at expense
of precision by treating all global variables (major source of
foreign objects) context-insensitively.

Our first contribution is to show that such an oversharing of
foreign abstract objects is unnecessary. All abstract objects of
a function are known after LOCAL and BOTTOM-UP phases:
Theorem 1 (�DSA `P x

F7−→ H) =⇒ ∃y · (�L ∪ �BU `P
y

F7−→ H), where x and y are registers or abstract objects.

Theorem 1 states that no new foreign objects are ever intro-
duced by �TD. The derivable F7−→ facts are always over abstract
objects resolved from callee’s abstract object to caller’s ab-
stract objects. The proof of Theorem 1 follows from the fact
that �L models the operational semantics of our language, and
that our formulation of interprocedural rules explicitly uses the
callee-caller resolution of abstract objects1.

The simplicity of Theorem 1 is solely due to our new
formulation of DSA. Prior works ([7], [15]) miss this, now
obvious fact. With our formulation, it is clear that the role of
TOP-DOWN is to use F7−→ at a call-site and use it to instantiate
a fully-general summary for a callee by introducing necessary
F7−→ between function arguments and formals. If a client of a

PTA requires to know not only F7−→ but also all the mapping
from formals to allocation sites each formal may originate
from, it is possible to maintain such information separately,
without introducing oversharing during TOP-DOWN. Our eval-
uation (Sec. VI) demonstrates that this improves performance
and precision.
Partial Flow-sensitivity. Our second contribution is to identify
additional opportunities to reduce oversharing by increasing
the precision of the analysis at interprocedural assignments
– call- and return-sites. Overall precision of a PTA can be
improved by making the LOCAL phase more precise, or by

1Proofs of all of the theorems are available in the extended version of the
paper [14].

not propagating the local imprecision interprocedurally. In
DSA, a function with an instruction that operates on two
abstract objects can cause these abstract objects to be grouped
in any subsequent function, provided enough interprocedural
assignments. The source of the problem is that DSA preserves
any local grouping of abstract objects by maintaining (I2) and
(I3) from Sec. II. Due to the �U rules, such confusion can
reduce the precision of the whole PTA. For example, once o1
and o2 are grouped together in getStr from Fig. 1(a), in
DSA the grouping is propagated bottom-up to foo and bar.

Flow-sensitivity is a simple way to increase precision of
a PTA at a cost of performance. A flow-sensitive analysis
computes a relation F@i7−−−→ not only at the function level (F),
but also relative to a particular instruction (i) within F .
To improve precision for interprocedural assignments, we
need to know where each function parameter points to at
a particular call- or return-site. For example, in P1 from
Fig. 1(a), str1 getStr@117−−−−−−−→ o1 at the return statement. We
call this refinement partial flow-sensitivity. We present a set
of rules, �PFS in Fig. 11, that combine together with �DSA to
define an analysis called �PFS-DSA. Note that �PFS replaces
the corresponding two rules from �DSA. We assume that
F@i7−−−→ is externally defined and is a (sound) subset of F7−→.
BOTTOM-UP-1 rule of �PFS propagates

callee@j7−−−−−−→ (points-
to information at the return-site) into caller7−−−−→, by resolving
abstract objects across these two functions; formals from
callee get matched with abstract objects passed into it
at the call-site, while allocation sites from callee are
resolved to themselves. Similarly, TOP-DOWN-1 resolves ab-
stract objects reachable from parameters at a call-site into
appropriate formals for the callee.

Partial flow-sensitivity is much cheaper than a (full) flow-
sensitivity, as we do not even need to maintain a separate flow-
sensitive F7−→ at call and return sites. This is because it is often
enough to perform a very cheap local reasoning to determine
that given a local fact p F7−→ o, p 6 F@i7−−−→ o. For instance,
str1 6 getStr@117−−−−−−−→ o2 because the variable name str1 is used
explicitly at the return-site, and the variable str1 is never
reassigned, it must only point to o1 at line 11.

The only difference between �PDF-DSA and �DSA is the use
of the F@i7−−−→ relation instead of F7−→ in BOTTOM-UP and TOP-
DOWN rules, where F@i7−−−→ is a subset of F7−→. Assuming F@i7−−−→
is sound at a call-site (return-site), every F7−→ fact is correctly
propagated by the interprocedural assignment rules.

V. BE AWARE OF YOUR TYPE

The effective type rules of the C11 standard [10, Sec. 6.5]
say that memory is dynamically strongly typed: roughly, a
memory read (load) of an object co is valid only when the
last write (store) to co was of a compatible type. Thus,
pointers of incompatible types do not alias. Other languages,
including C++ and SWIFT, impose similar rules typically
called strict aliasing. Strict aliasing is widely exploited in all
major optimizing compilers. In this paper, we use it to improve
precision of the LOCAL phase of TEADSA.

We assume that a type compatibility relation, v, on types, is
provided as an input to our analysis. For our simple language,
the compatibility relation is defined as a partial order s.t.:

∀τ ∈ T · τ v char ∀τ ∈ PT · τ v char*

That is, char is compatible with all other types, char* is
compatible with all pointer types, and every type is compatible
with itself, but int and float are not compatible. In our
implementation, we use a more sophisticated type lattice to
handle LLVM’s structure types. It is also possible to use the
type lattice of a compiler frontend (e.g., CLANG’s TBAA tags).

Due to the low-level nature of our language, allocations and
function definitions do not specify the types of objects. To
allow untyped allocations and function arguments, we extend
our notion of abstract objects to include object type. For
example, an i : r = alloc() instruction has |fld| × |T |
allocation sites of a form HT

i – one for each field of any
possible type. Similarly, each formal function argument has
|{a,b,aa,ab,ba,bb}| × |T | formals. In our implementation,
we discover abstract object types on demand. We modify the
basic 7→ relation to include the type of the pointed-to abstract
object and disambiguate it from abstract objects of other types.
For example, a fact r T7−→ H means: the register r may point to
the abstract object H of type T . A sample points-to graph for
a type-aware PTA of a program in Fig. 3 is shown in Fig. 4.

Although the type of each register is known statically, we
only require memory operations (load and store) to access
objects using compatible types, while types used in function
calls, cast, and gep instructions are ignored. Instead of
relying on declared types, we discover them at memory
accesses, as shown in type-awareness rules �TY in Fig. 12.
We say that a pointer returned by an alloc may point to any
abstract object for the field a created at this allocation site, and
express that with a char7−−−→ fact, as char is compatible with all
types. A load accesses only the abstract object pointed-to by
the pointer operand if they are of a compatible type. Similarly,
the type of the destination register of a store dictates which
abstract object may be written to. For example, consider a
simple class hierarchy C v B v A, where A is a superclass
of both B and C, while B is a superclass of C. In our
formalization, a load B* p can access both abstract objects
of type A and B, whereas a store v, B* p writes to
abstract objects of type B and C. Such a conservative handling
of memory operations, consistent with the strict aliasing rules
of C11, guarantees soundness of a PTA extended with type-
awareness rules.

The �TY rules replace the rules in �I; we omit the remaining
replacement rules that use T7−→ instead of 7→, as the modifica-
tion is straightforward. Finally, we define �TEADSA to be the
modified set rules �PFS-DSA based on �TY and the T7−→ relation.
Type-awareness improves both the local and global analysis
precision, and in turn further reduces oversharing:

Theorem 2 �PFS-DSA `P x 67→ H =⇒ �TEADSA `P x 6 T7−→ H

Theorem 2 says that �TEADSA is not less precise than �PFS-DSA,
i.e., no points-to relation not present in analysis results for
�PFS-DSA is present in analysis results for �TEADSA. This is

i : y = callee(x) fun(i) = caller j : return z

fun(j) = callee zk
callee7−−−−→ H Resolve(i,H, I)

yk
caller7−−−−→ I

BOTTOM-UP-1

i : y = callee(x) fun(i) = caller Accessible(callee, J)

J
callee7−−−−→ K Resolve(i, J,H) Resolve(i,K, I)

H
caller7−−−−→ I

BOTTOM-UP-2

i : y = callee(x) fun(i) = caller xk
caller7−−−−→ H

j : fun callee(f): r Resolve(i, I,H)

fk
callee7−−−−→ I

TOP-DOWN-1

i : y = callee(x) fun(i) = caller H
caller7−−−−→ I

Resolve(i, J,H) isFormal(J) Resolve(i,K, I) isFormal(K)

J
callee7−−−−→ K

TOP-DOWN-2

Fig. 10: Inference rules for Context-Sensitivity: �BU and �TD.

i : y = callee(x) fun(i) = caller

j : return z fun(j) = callee

zk
callee@j7−−−−−−→ H Resolve(i,H, I)

yk
caller7−−−−→ I

BOTTOM-UP-1

i : y = callee(x) fun(i) = caller

xk
caller@i7−−−−−−→ H

j : fun callee(f): r Resolve(i, I,H)

fk
callee7−−−−→ I

TOP-DOWN-1

Fig. 11: Inference rules for Partial Flow-Sensitivity: �PFS.

i : r = alloc()

r
char7−−−→ Hi

ALLOC

r = load T* p

p
U7−→ H T v U

H
X7−→ I

r
X7−→ I

LOAD

store r, T* p

p
U7−→ H U v T

r
X7−→ I

H
X7−→ I

STORE

Fig. 12: Type-awareness rules: �TY.

because the type-aware rules for load and store are similar
to �I, except that they prevent loads from deriving facts
about stores of incompatible types. With the most conservative
compatibility relation (i.e., all types are compatible), the �TY

would derive exactly the same 7→ facts as �I.

VI. IMPLEMENTATION AND EVALUATION

In this section, we describe our implementation of TEADSA
and compare its scalability and precision against other state-
of-the-art PTAs. To meaningfully compare precision, we de-
veloped a checker for a class of memory safety violations,
and use it to evaluate the PTAs on a set of C and C++
programs. Our implementation, benchmarks, and experiments
are available at https://github.com/seahorn/sea-dsa/releases/
tag/tea-dsa-fmcad19.
Implementation. We implemented TEADSA on top of
SEADSA – a context-, field-, and array-sensitive DSA-style
PTA for LLVM [8]. Our implementation inherits many of the
advantages of SEADSA, including: an effective representation
of 7→ using a union-find data-structure; three analysis passes
(local, bottom-up, top-down); modular analysis of each func-
tion; support for gep instructions with fixed and symbolic
offsets; handling recursion by losing context sensitivity for
strongly connected components in the call graph; and, on-
demand discovery of abstract objects for fields, formals, as

well as their corresponding types. In the evaluation, we de-
virtualize indirect calls. For partial flow-sensitivity, we disam-
biguate pointers that must alias known allocation sites from
other objects in their points-to sets, and do not propagate
stack-allocated abstract objects bottom-up. We use the type
compatibility relation v based on the type tags in the code
such that the type of each structure is the same as the type
of its first (innermost) field. Two types are compatible if they
have the same type tag.
The client. We chose a problem of statically detecting field
overflow bugs. A field-overflow happens when an instruction
accesses a nonexistent field of an object, such that the memory
access is outside of the allocated memory object. For example,
consider the field access in line 19 in Fig. 3 – loading the value
of the field d is not safe if the pointer ie is pointing to an
object of an insufficient size, e.g, o6. To determine whether
a field access through a pointer p causes a field overflow, we
identify the set A of all the allocation sites that p might point
to. Then, any allocation site a ∈ A of an insufficient size
might cause a field overflow. We have implemented such a
field-overflow-checker in SEAHORN [3].
Evaluation. We compare TEADSA with two state-of-the-art
interprocedural PTAs for LLVM: SVF [11] and SEADSA [8].
SVF [11] is a flow-sensitive, context-insensitive, inclusion-
based PTA. We compare against two variants of SVF: the most
precise Sparse Flow-sensitive analysis (SVF Sparse), and the
same analysis with the Wave Diff pre-analysis. As for DSA-
style analyses, we use SEADSA, PFS-SEADSA, and TEADSA
to denote SEADSA, our implementation of �PFS-DSA, and our
implementation of �TEADSA, respectively. Note that we do not
use the DSA implementation from LLVM’s POOL-ALLOC,
as it is not maintained and crashes on many of our examples.

We perform the evaluation on a set of C and C++ programs.
The programs vary in size, ranging from 140kB to 158MB of
LLVM bitcode. All experiments are done on a Linux machine
with two Intel Xeon E5-2690v2 10-core processors and 128GB
of memory. We present performance results of running PTAs
in Table I and precision on the field-overflow detection in
Table II. In the tables, – denotes that an experiment did not
finish within 3 hours or exceeded the 80GB memory limit
and was terminated. To ensure that all PTAs are working in
a consistent environment, we modified SVF to use the same
notion of allocation sites that is used by TEADSA. We asses
the precision of the PTAs using our field-overflow checker. In
Table II, we use Aliases to denote the number of reported
〈allocation site, accessed pointer〉 pairs, and Checks as the

https://github.com/seahorn/sea-dsa/releases/tag/tea-dsa-fmcad19
https://github.com/seahorn/sea-dsa/releases/tag/tea-dsa-fmcad19

number of assertions necessary to show that the analyzed
program is free of field overflow bugs. The lower the numbers,
the more precise a PTA is.

In our experiments, TEADSA is almost always the most
scalable PTA, both in terms of runtime and memory use,
closely followed by PFS-SEADSA. These two analyses scaled
an order of magnitude better than the plain version of
SEADSA. TEADSA was faster than SVF, especially on large
programs like LLVM tools (prefix llvm-), where it finished
in seconds instead of hours. As for precision, TEADSA and
SVF achieved similar results on most of the smaller pro-
grams. TEADSA is strictly more precise than SEADSA, and,
surprisingly, more precise than SVF on C++ programs such
as cass, WEBASSEMBLY tools (prefix wasm-), LLVM tools,
and on the C program htop that uses a C++-like coding style.
When performing a closer comparison of PFS-SEADSA vs
SEADSA, we noticed that the performance improvement can
be attributed to not copying foreign objects during TOP-DOWN
(up to 96% shorter running time on wasm-opt), while partial
flow-sensitivity explains most of the increase in precision (up
to 25% fewer aliases on h264ref).

VII. RELATED WORK

There is a large body of work on points-to analysis, both
for low-level languages and for higher-level languages like
Java. Throughout the paper, we compare with the closest
related work: DSA [7] and SEADSA [8]. In Sec. VI, we
compared empirically with two context-insensitive, inclusion-
based implementations of SVF [11] – a state-of-the-art PTA
framework for LLVM. In the rest of this section, we compare
with other related works.

Sui et al. [13] present a context-sensitive, inclusion-based
pointer analysis, called ICON. The fact that ICON is an
inclusion-based PTA and SEADSA is unification-based makes
it hard to compare them without an experimental evaluation.
Unfortunately, ICON is not part of the SVF framework and its
implementation is not publicly available. Therefore, comparing
experimentally is not possible.

The precision of inclusion-based pointer analyses can
be improved by flow-sensitivity (e.g. [16], [17]). However,
unification-based PTA are always flow-insensitive to retain
their efficiency. In our work, we improve a context-sensitive,
unification-based PTA by making it flow-sensitive only at call
and return statements. This allows us to improve the precision
of the analysis without jeopardizing its efficiency.

Using types to improve precision of a PTA is not
new. Structure-sensitive PTA [18] extends a whole-program,
inclusion-based PTA with types. The analysis is object and
type-sensitive ([19]). This work is orthogonal to ours. The
main purpose of type sensitivity is to distinguish multiple
abstract memory objects from a given (untyped) heap alloca-
tion (e.g., malloc) based on their uses. This avoids aliasing
among objects that are originated from the same allocation
wrapper or a factory method. We do not tackle this problem.
Instead, we use types to avoid unrealized aliasing under
the strict aliasing rules. We mitigate the problem of using
allocation wrappers by inlining memory allocating functions.

Rakamaric and Hu [20] use DSA ability to track types for an
efficient encoding of verification conditions (VC) for program
analysis. Their approach differs significantly from ours. They
do not tackle the problem of improving the precision of a
pointer analysis using types. Instead, they extract useful type
information from a PTA to produce more efficient VCs.

VIII. CONCLUSION

We identify a major deficiency of context-sensitive
unification-based PTA’s, called oversharing, that affects both
scalability and precision. We present TEADSA– a DSA-style
PTA that eliminates a class of oversharing during the TOP-
DOWN analysis phase and further reduces it using flow-
sensitivity at call- and return-sites, and typing information.
Our evaluation shows that avoiding such an oversharing makes
the analysis much faster than DSA, as well as more precise
than DSA on our program verification problem. The results are
very promising – TEADSA compares favorably against SVF in
scalability in the presented benchmarks, and sometimes shows
even better precision results.

Acknowledgments. This material is based upon work sup-
ported by US NSF grants 1528153 and 1817204 and the Office
of Naval Research under contract no. N68335-17-C-0558 and
by an Individual Discovery Grant from the Natural Sciences
and Engineering Research Council of Canada. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the Office of Naval Research.

REFERENCES

[1] H. Yan, Y. Sui, S. Chen, and J. Xue, “Spatio-temporal context reduction:
a pointer-analysis-based static approach for detecting use-after-free
vulnerabilities,” in Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May
27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, Eds. ACM, 2018, pp. 327–337. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180178

[2] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint:
fast and precise sparse value flow analysis for million lines of code,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, Philadelphia, PA,
USA, June 18-22, 2018, 2018, pp. 693–706.

[3] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The
seahorn verification framework,” in Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I, ser. Lecture Notes
in Computer Science, D. Kroening and C. S. Pasareanu, Eds.,
vol. 9206. Springer, 2015, pp. 343–361. [Online]. Available:
https://doi.org/10.1007/978-3-319-21690-4_20

[4] M. Hind, “Pointer analysis: haven’t we solved this problem yet?”
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis For Software Tools and Engineering, PASTE’01,
Snowbird, Utah, USA, June 18-19, 2001, J. Field and G. Snelting,
Eds. ACM, 2001, pp. 54–61. [Online]. Available: https://doi.org/10.
1145/379605.379665

[5] L. O. Andersen, “Program Analysis and Specialization for the C Pro-
gramming Language,” Ph.D. dissertation, DIKU, University of Copen-
hagen, 1994.

[6] B. Steensgaard, “Points-to analysis in almost linear time,” in
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’96. New
York, NY, USA: ACM, 1996, pp. 32–41. [Online]. Available:
http://doi.acm.org/10.1145/237721.237727

http://doi.acm.org/10.1145/3180155.3180178
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/379605.379665
http://doi.acm.org/10.1145/237721.237727

Program
Bitcode
Size
[kB]

Results
Wave Diff SVF Sparse SEADSA PFS-SEADSA TEADSA

Runtime
[s]

Memory
[MB]

Runtime
[s]

Memory
[MB]

Runtime
[s]

Memory
[MB]

Runtime
[s]

Memory
[MB]

Runtime
[s]

Memory
[MB]

sqlite 140 <1 106 <1 135 <1 57 <1 19 <1 19
bftpd 268 <1 114 <1 133 <1 50 <1 24 <1 24
htop 320 <1 216 7 483 <1 242 <1 49 <1 37
cass 1,384 <1 399 1 453 1 375 <1 45 <1 46
wasm-dis 1,420 6 1,041 122 4,594 1 618 <1 169 <1 98
openssl 1,504 1 706 2 792 1 683 <1 59 <1 58
wasm-as 1,824 10 1,428 195 8,249 2 1,162 <1 248 <1 149
h264ref 2,468 6 1,655 7 1,784 5 2,323 <1 183 <1 197
tmux 2,996 1 586 3 696 1 649 <1 144 <1 125
wasm-opt 3,520 36 2,784 960 33,138 51 23,339 1 1,507 1 308
llvm-dis 11,232 1,640 9,964 – – – – 18 4,587 16 3,254
llvm-as 14,012 4,892 15,377 – – – – 24 7,130 19 4,100
llvm-opt 16,012 9,104 19,633 – – – – 55 20,555 27 8,319
rippled 157,804 – – – – – – 379 55,691 308 25,626

TABLE I: Performance of different PTAs.

Program
Bitcode
Size
[kB]

Results
Wave Diff SVF Sparse SEADSA PFS-SEADSA TEADSA

Checks Aliases Checks Aliases Checks Aliases Checks Aliases Checks Aliases
sqlite 140 <1k <1k <1k <1k 1k 3k 1k 3k 1k 3k
bftpd 268 <1k <1k <1k <1k <1k 1k <1k 1k <1k <1k
htop 320 24k 26k 24k 26k 110k 110k 109k 109k 9k 11k
cass 1,384 1k 7k 1k 7k 12k 14k 3k 12k <1k 3k
wasm-dis 1,420 136k 253k 132k 241k 616k 634k 539k 558k 119k 132k
openssl 1,504 <1k 2k <1k 2k <1k 4k <1k 4k <1k 4k
wasm-as 1,824 248k 424k 243k 412k 933k 957k 823k 849k 293k 317k
h264ref 2,468 <1k 38k <1k 37k 21k 174k 15k 148k 3k 34k
tmux 2,996 8k 17k 8k 17k 403k 422k 391k 410k 333k 350k
wasm-opt 3,520 724k 1,196k 718k 1,174k 8,851k 8,637k 7,632k 7,466k 603k 645k
llvm-dis 11,232 6,107k 6,842k – – – – 4,358k 4,391k 1,097k 1,404k
llvm-as 14,012 12,198k 13,866k – – – – 8,992k 9,017k 2,138k 2,470k
llvm-opt 16,012 16,346k 17,140k – – – – 47,174k 47,421k 9,551k 13,878k
rippled 157,804 – – – – – – 130,957k 129,910k 47,415k 47,848k

TABLE II: Precision of different PTAs.

[7] C. Lattner and V. S. Adve, “Automatic pool allocation: improving
performance by controlling data structure layout in the heap,” in
Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, Chicago, IL, USA, June 12-15,
2005, V. Sarkar and M. W. Hall, Eds. ACM, 2005, pp. 129–142.
[Online]. Available: https://doi.org/10.1145/1065010.1065027

[8] A. Gurfinkel and J. A. Navas, “A context-sensitive memory model for
verification of C/C++ programs,” in Static Analysis - 24th International
Symposium, SAS 2017, New York, NY, USA, August 30 - September 1,
2017, Proceedings, ser. Lecture Notes in Computer Science, F. Ranzato,
Ed., vol. 10422. Springer, 2017, pp. 148–168. [Online]. Available:
https://doi.org/10.1007/978-3-319-66706-5_8

[9] D. Beyer, “Automatic verification of C and java programs: SV-COMP
2019,” in Tools and Algorithms for the Construction and Analysis of
Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part
III, ser. Lecture Notes in Computer Science, D. Beyer, M. Huisman,
F. Kordon, and B. Steffen, Eds., vol. 11429. Springer, 2019, pp. 133–
155. [Online]. Available: https://doi.org/10.1007/978-3-030-17502-3_9

[10] ISO, ISO/IEC 9899:2011 Information technology — Programming
languages — C. Geneva, Switzerland: International Organization for
Standardization, Dec. 2011. [Online]. Available: http://www.iso.org/iso/
iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853

[11] Y. Sui and J. Xue, “SVF: interprocedural static value-flow analysis
in LLVM,” in Proceedings of the 25th International Conference on
Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016,
A. Zaks and M. V. Hermenegildo, Eds. ACM, 2016, pp. 265–266.
[Online]. Available: http://doi.acm.org/10.1145/2892208.2892235

[12] Y. Smaragdakis, G. Balatsouras et al., “Pointer analysis,” Foundations
and Trends® in Programming Languages, vol. 2, no. 1, pp. 1–69, 2015.

[13] Y. Sui, S. Ye, J. Xue, and J. Zhang, “Making context-sensitive inclusion-
based pointer analysis practical for compilers using parameterised
summarisation,” Softw., Pract. Exper., vol. 44, no. 12, pp. 1485–1510,
2014. [Online]. Available: https://doi.org/10.1002/spe.2214

[14] J. Kuderski, “Scalable context-sensitive pointer analysis for LLVM,”
Master’s thesis, University of Waterloo, 2019. [Online]. Available:
https://hdl.handle.net/10012/14875

[15] R. Madhavan, G. Ramalingam, and K. Vaswani, “A framework
for efficient modular heap analysis,” Foundations and Trends in
Programming Languages, vol. 1, no. 4, pp. 269–381, 2015. [Online].
Available: https://doi.org/10.1561/2500000020

[16] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions
of lines of code,” in Proceedings of the CGO 2011, The 9th International
Symposium on Code Generation and Optimization, Chamonix, France,
April 2-6, 2011, 2011, pp. 289–298.

[17] Y. Sui, P. Di, and J. Xue, “Sparse flow-sensitive pointer analysis for
multithreaded programs,” in Proceedings of the 2016 International Sym-
posium on Code Generation and Optimization, CGO 2016, Barcelona,
Spain, March 12-18, 2016, 2016, pp. 160–170.

[18] G. Balatsouras and Y. Smaragdakis, “Structure-sensitive points-to
analysis for C and C++,” in Static Analysis - 23rd International
Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016,
Proceedings, ser. Lecture Notes in Computer Science, X. Rival,
Ed., vol. 9837. Springer, 2016, pp. 84–104. [Online]. Available:
https://doi.org/10.1007/978-3-662-53413-7_5

[19] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your

https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1007/978-3-319-66706-5_8
https://doi.org/10.1007/978-3-030-17502-3_9
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://doi.acm.org/10.1145/2892208.2892235
https://doi.org/10.1002/spe.2214
https://hdl.handle.net/10012/14875
https://doi.org/10.1561/2500000020
https://doi.org/10.1007/978-3-662-53413-7_5

contexts well: Understanding object-sensitivity,” in Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’11. New York, NY, USA:
ACM, 2011, pp. 17–30. [Online]. Available: http://doi.acm.org/10.1145/
1926385.1926390

[20] Z. Rakamaric and A. J. Hu, “A scalable memory model for
low-level code,” in Verification, Model Checking, and Abstract
Interpretation, 10th International Conference, VMCAI 2009, Savannah,
GA, USA, January 18-20, 2009. Proceedings, ser. Lecture Notes
in Computer Science, N. D. Jones and M. Müller-Olm, Eds.,
vol. 5403. Springer, 2009, pp. 290–304. [Online]. Available:
https://doi.org/10.1007/978-3-540-93900-9_24

http://doi.acm.org/10.1145/1926385.1926390
http://doi.acm.org/10.1145/1926385.1926390
https://doi.org/10.1007/978-3-540-93900-9_24

	I Introduction
	II Overview
	III Background
	IV Keep Your Objects to Yourself
	V Be Aware of Your Type
	VI Implementation and Evaluation
	VII Related Work
	VIII Conclusion
	References

