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Abstract—Stateful model checking creates numerous states 
which need to be stored and checked if already visited. One 
option for such storage is a hash map and this has been used 
in many model checkers. In particular, we are interested in the 
performance of concurrent hash maps for use in multi-core model 
checkers with a variable state vector size. Previous research 
claimed that open addressing was the best performing method 
for the parallel speedup of concurrent hash maps. However, here 
we demonstrate that chaining lends itself perfectly for use in a 
concurrent setting.

We implemented 12 hash map variants, all aiming at multi-
core efficiency. 8 of our implementations support variable-length 
key-value pairs. We compare our implementations and 22 other 
hash maps by means of an extensive test suite. Of these 34 hash 
maps, we show the representative performance of 11 hash maps.

Our implementations not only support state vectors of variable 
length, but also feature superior scalability compared with 
competing hash maps. Our benchmarks show that on 96 cores, 
our best hash map is between 1.3 and 2.6 times faster than 
competing hash maps, for a load factor under 1. For higher load 
factors, it is an order of magnitude faster.

Index Terms—concurrency, data structure, hash map, high- 
performance, multi-threaded, thread-safe, model checking

I .  INTRODUCTION

Stateful Model checkers store visited states. This has the 
advantage of being able to detect whether a state has already 
been visited, such that it need not be visited again. For storage 
of these states, options include hash maps [1], compression 
trees [2] and binary decision diagrams [3] to name a few.

Some model checkers make use of prevalent multi-core 
hardware by supporting multiple concurrent threads. Storage 
and checking of states thus additionally involves communica­
tion between threads.

Software model checkers that support the verification of 
programs that manipulate stack or heap memory can benefit 
from a fast hash table that can store variable-length states. The 
latter is required because the stack and heap of a program can 
grow or shrink, so not all states have the same size.

In this paper, we want to investigate the option of using 
a hash map for the purpose of multi-core software model 
checking. To this end, we do not require deletion or resizing 
from the hash map. However, we need the hash map to be 
thread-safe and to allow variable-length keys to be stored.

Fig. 1 Bucket collision: where to insert Bobbi’s age?

A. Hash maps for storage

Hash maps are data structures that are used to map a key to 
a value. They are mainly useful when the set of all possibles 
keys is large or sparse. In a hash map, a hash function maps 
the large domain of the keys to a smaller domain. For example, 
one could add the ASCII values of all characters in a string 
together, modulo 256. This would give a number in the range 
[0,256). Thus, we can represent a hash map using the simple 
array of 256 elements. Subsequently, if we were to insert the 
age of Alice, who is 26, into this hash map, her age would 
end up at position 222 in the array, because (65 + 108 + 105 + 
99 + 101) mod 256 = 222.

However, a problem arises when we want to insert the age 
of Bobbi. The hash function we just thought of maps his name 
to 222 too, as (66 + 111 + 98 + 98 + 105) mod 256 = 222. This 
is called a bucket collision: two keys map to the same position 
(bucket) in the array. In this case it is even a hash collision, 
since the keys map to the same hash. Figure 1 depicts the 
problem of where to put the node of Bobbi. In our example 
the hash function was chosen quite poorly: a lot of names 
share the same hash, causing many bucket collisions.

Bucket collisions are undesired, since two entries map to the 
same bucket and thus one of them needs to be put somewhere 
else. This increases the probe count for that entry: to put it 
into the hash map or to detennine whether it is in the hash 
map requires multiple probes, i.e. checks if a bucket contains 
a specific key. Probes are expensive operations because they 
access the main memory and can cause cache misses.

B. Concurrent hash maps

There has been ample research about hash maps, 
both single-threaded and multi-threaded. Single-threaded re­
search [4], [5] focuses on limiting memory overhead and 
algorithmic improvements in how to resolve bucket collisions.
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In a multi-threaded application, where multiple threads 
operate on the same hash map concurrently, resolving bucket 
collisions is more complicated [6], [7], [8]. This is due to 
the nature of running threads concurrently: special atomic 
operations have to be used to avoid the hash map from 
becoming inconsistent or corrupt.

C. Contributions

The two main contributions presented in this paper are 1) 
an extensive comparison of a number of hash maps; 2) a new 
set of high-performance hash map implementations supporting 
variable-length key-value pairs. For our use case, our best 
hash map outperforms all competition. In addition to these, we 
convey the knowledge that chaining hash maps are perfectly 
suited for multi-core model checkers, contrary to what was 
previously believed [1].

We analyze and compare our implementations and 22 other 
hash maps by means of an extensive test suite. During the 
test, we capture hardware events and analyze them using 
Intel® VTune™ Amplifier. The result is an extensive dataset 
of statistics on 34 hash maps.

In Sections II and III we provide a background in hardware 
architecture and hash maps in general. In Section IV we 
describe how we implemented our hash maps and in Sec­
tion V we discuss related research and related hash maps. 
In Section VI we explain the experimental comparison of all 
hash maps and Sections VII and VIII show the results for two 
test scenarios. We conclude and list possible future avenues 
of exploration in Section IX.

II. B a c k g r o u n d  o n  h a r d w a r e  a r c h i t e c t u r e

Computer hardware has evolved greatly in the past 70 
years. From a simple single processor with a single core 
and single memory bus connected to a single memory bank, 
to a vastly complex machine with many processors, caches, 
memory busses and memory banks. It is an ever-increasingly 
interesting held for high-performance software.

1) Memory cache: The need for caches is due to the 
memory wall [9]: the CPU is getting faster and faster than the 
memory. Modem processors have a cache hierarchy between 
the cores of the processor and the main memory, to hide the 
latency of the much slower main memory: cache memory is 
significantly faster than main memory. When a value is not 
in the cache, it needs to be obtained from the slower main 
memory. This is called a cache miss.

2) Inter-thread communication: Because of physical limi­
tations, the performance of CPUs is not increased by increas­
ing the clock speed, but instead by adding more cores that 
can seemingly work independently. However, having multiple 
cores adds complexity not only to the hardware, but to the 
software as well. Multiple threads can run on multiple cores 
concurrently and in parallel. Correct coimnunication becomes 
paramount: many interleavings of memory operations are 
possible and all of them need to be correct. Special memory 
instruction, such as compare-and-swap (CAS) and memory 
barriers, are expensive to execute, so they need to be kept 
to a minimum for high performance.

III. H a s h  m a p s : h o w  t o  r e s o l v e  c o l l i s i o n s

There are many ways to implement a hash map [10]. The 
main distinction is how bucket collisions, such as the one 
between Alice and Bobbi in the introduction, are handled. One 
way is to just try a different bucket in the array that hosts the 
hash map. This is called open addressing. Another technique 
to solve a bucket collision is to link the new entry to the 
entry already in the bucket; this is aptly named chaining. In a 
chaining hash map, every bucket is a linked list of entries.

A. Open addressing

Open addressing does not use a chain of entries, avoiding 
the need for a next held per entry as can be seen in fig. 2a.

In theory, this requires less memory. In practice, the fuller 
an open addressing hash map gets, the worse it performs, so 
a margin is required. On a bucket collision, the next bucket 
can be determined for example by linear probing, quadratic 
probing, cuckoo hashing and rehashing.

1) Linear probing: The simplest way to find an empty 
bucket is by linearly probing the buckets, starting from the 
bucket collision, until we find one that is empty.

However, linear probing is susceptible to clustering. Clus­
tering happens when a group of nearby buckets are occupied. 
When a bucket is full, it also increases the probe count for 
inserts to the bucket before it, if that one is full as well.

2) Quadratic probing: Quadratic probing refers to that the 
next bucket is determined by skipping an increasing number 
of buckets. In the hh probe, we try the r th  bucket after the 
first, starting at 0. This lowers the effect of clustering, because 
there is increased space between buckets.

3) Cuckoo hashing: Cuckoo hashing [5] uses multiple 
hash functions. An element can only be found at the indices 
provided by these hash functions. If all of these locations are 
already used, one of them is taken out and the new element 
takes its place. The taken out element is reinserted similarly.

To be able to guarantee the constant-time lookup, there is 
an upper limit on how full the hash map can be. For two hash 
functions, this is 50%. If it is higher, due to collisions, the 
recursive rehashing can take significantly longer.

4) Rehashing: When a bucket collision occurs, it is also an 
option to attempt a rehash of the key or modify the hash in a 
deterministic way. It is vital that the rehash or modification be 
done deterministically in order to check if the key is already 
in the hash map. The modification can be done differently for 
nearby buckets, mitigating clustering even further.

B. Chaining

Each bucket, in addition to an entry, has a next held. 
When an entry is to be inserted in a bucket where already 
an entry resides, the entry is linked using the next held. In 
other words, every bucket is a linked list of entries, as can be 
seen in hg. 2b.

This has the advantage that there is no clustering due 
to neighboring buckets: bucket collisions are solved by just 
appending them to the linked list. The downside of this is that 
every linked in element requires a pointer and thus increases 
the memory footprint and accessing may cause a cache miss.
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Fig. 2 Memory layouts for various hash map implementations. A dark (blue) fill indicates a null pointer

(a) Memory layout for an open addressing hash map (b) Memory layout for a chaining hash map (c) Memory layout for a chaining hash map with cache buckets

IV. H a s h  M a p  D e s i g n  C o n s i d e r a t i o n s

Cache misses are expensive because the load operation 
needs to be serviced by the much slower main memory. In 
order to implement high-perfonnance hash maps, we need 
to take this into account. Our implementations use existing 
algorithms, but are implemented with high-perfonnance con- 
cunency in mind. As such, we try to minimize the number of 
cache misses and the number of expensive memory operations 
that synchronize cores, such as CAS and memory baniers.

Moreover, the concunent hash maps we implemented ad­
here to the C++11 memory model. We make use of C++11 
release and acquire memory barriers. The C++11 compiler 
maps these to the hardware memory model and thus the hash 
maps can run conectly on all platfonns supported by the 
compiler. For the implementation of our hash maps we refer 
to our Github repository1.

A. Hash function

The hash function is an important part of a hash map, for it 
represents where to start probing for an empty bucket. Thus, 
it is vital that the hash function distributes keys as unifonnly 
as possible over the buckets, to minimize bucket collisions.

We tried various hash functions: FNV-la, SDBM,
MurmurHash3,MurmurHash64A, and SuperFastHash. 
Of these, MurmurHash64A yielded the best perfonnance, so 
we used this hash function for all tests.

B. Allocator for entries

Both chaining and open addressing hash maps use a special­
ized allocator for variable-length and fixed-length key-value 
pairs that do not fit in a single word. This allocator allocates a 
slab of memory for each thread, to avoid issues with concur­
rency. For chaining, a thread can write to memory allocated 
by another thread, but only to link in an entry. Allocating 
memory with this allocator is simply done by increasing a 
pointer by the number of bytes required and then returning 
the old value of that pointer. Since there is an allocator per 
thread, this can be done without expensive synchronization 
instructions. This design contributes to the speedup of our 
implementations. Figure 2 illustrates the memory layout for 
the hash maps and the allocator.

This allocator is not used for hash maps that map integers 
to integers. There, keys and values are stored in situ.

'Data and code can be found at https://github.coni/bergfi/hashmap/

C. Optimizations

1) 16 upper bits: To identify the address where a key-value 
pair is stored, 48 bits is adequate. These 48 bits can index the 
slab allocated by the allocator. We can use the upper 16 bits to 
store a 16-bit version of the hash. We obtain this by combining 
the four 16-bit segments of the 64-bit hash of a key using x o r. 
Then, we store this 16-bit hash in the 64-bit pointer that points 
to the key-value pair. Thus, when searching for a key, we can 
first compare this 16-bit hash before following the pointer and 
comparing the key itself. This can save a significant number 
of loads and thus cache misses.

2) Cache-aware: Instead of indexing at the bucket level, 
first we index at the cache bucket level. A cache bucket is a 
group of buckets that fit precisely on one cache line2. This can 
be combined with various probing methods. We implemented 
linear and quadratic probing. Within the cache bucket, we start 
at the bucket we would have started at if we would have 
indexed at the bucket level. We continue linearly, wrapping 
at the end of the cache line, until we reach the start bucket. 
If by now we have not found the bucket we needed, we go to 
the next cache bucket.

D. Implemented variants for experimentation

In order to detennine the important factors influencing 
parallel speedup, we implemented 12 hash maps: 4 chaining, 
4 open addressing and 4 open addressing in-situ, without 
an allocator, to establish a base line. Each 4 implement 
different optimizations, coded by the following suffixes: Q: 
the hash map uses quadratic probing instead of linear; U: the 
optimized use of upper-bits, explained in Section IV-C1; C: 
the hash map uses a cache-awareness optimization, explained 
in Section IV-C2; We also experimented with I): the use of 
one double word CAS instead of two single-word CAS, but 
this did not improve perfonnance.

To avoid cluttering the results, we show only the best hash 
map in their category: ChainU , OpenAddrQCU -*� and 
InsituQU (cf. Table I). For open addressing, cache-aware 
quadratic probing with linear probing within cache lines was 
the most perfonnant. For both chaining and open addressing, 
using the upper-bits for a 16-bit hash yielded improvement.

For chaining, attempting to make it cache-aware by using 
a cache-line as link in the chain (see fig. 2c) degraded 
perfonnance, so the simple version was faster.

2 A cache line is usually 64 bytes and would thus fit 8 buckets
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Table I Of the 34 hash maps we tested we show results of these 11 hash maps. The first 3 we implemented, the other 8 we use 
for comparison, “best” refers to the hash maps being tested using our test suite and they outperformed others in their group.

Name Key Value Probing Features /  Comment
OpenAddrQCU variable variable open: quadratic + linear Best of all 4 open addressing implementations

s ChainU variable variable chaining Best of all 4 chaining implementations
@ InsituQU 48-bit 64-bit open: quadratic Best of all 4 in situ implementations

dbsll [1] constant unique int open: rehash + linear unique int given by the hash map
N TBB [11] constant constant chaining Intel TBB’s concurrent_hash_map

TBBA [11] constant constant chaining As TBB, but with the allocator of this paper
S libcuckoo [12], [13] constant constant cuckoo libcuckoo with TBB’s scalable allocator

JunctiomCrude [14] 64-bit 64-bit open: linear Best of all Junction hash maps
H Michael [15], [16] 64-bit 64-bit sorted chaining Part of LibCDS library, NOGC, no counter

Skiplist [17], [16] 64-bit 64-bit skip list Part of LibCDS library, NOGC, no counter
g Folly [18] 64-bit 64-bit open: quadratic Hash map focusing on insertion perfonnance

V. RELATED W O R K

Hash maps have been extensively researched, both single- 
threaded [4], [5] and multi-threaded [6], [7], [8]. Generally, 
the research focused on a hash map with support for deletion 
of entries. Since our purpose is stateful multi-core model 
checking, we focus on the f indOrPut perfonnance of hash 
maps and do not require support for deletion or resizing.

We compared our 12 implementations to 22 variants from 
mainly seven competitors, totaling 34 hash maps. Of these, 
we only display for each competitor the most perfonnant one, 
according to our test suite. These are listed in Table I. While 
most focus on mapping 64-bit keys to 64-bit values, some 
support any constant-length keys. In order to investigate the 
effect of using different memory allocators, we also linked 
some of the competitor hash maps with our own memory 
allocator. The hash maps we used for comparison are:

• Intel TBB’s concurrent_hash_map [11] is part of 
the Threading Building Blocks library. This popular con­
currency library provides hash maps with support for any 
constant-length key-value pairs. We test with both their 
scalable allocator and the allocator in this paper

• Junction [14] is a library made by Preshing containing 
hash maps with interesting implementations. While he 
did not publish a paper on this matter, he explains his 
hash maps in his blog post.

• libcuckoo [12] is a library implementing cuckoo hashing 
and supports constant-length key-value pairs.

• dbsll [1] is a hash map created with the purpose of 
mapping constant-length vectors to a unique integer, so 
the user cannot store a chosen value.

. From the CDS [16] library we measured the perfonnance 
of the Michael Map using the Michael list and the 
Skiplist . Both are without item counter and are the 
NOGC versions, which stands for no garbage collection, 
i.e. they are append only. This levels the playing held, as 
our hash maps are also append only.

• Facebook’s Folly AtomicHashMap -*� [18]. This is a hash 
map with a focus on high-perfonnance and is advertised 
as being 2x -  4x faster than TBB While entries can 
be deleted, the used memory is not reclaimed.

In addition to these, we tried testing Cache Line Hash Table 
(CLHT) [6], but this hash map could not complete our test 
within a day. Smaller tests CLHT managed, but was still not 
able to beat our implementations. We also tried the concunent 
hash set of DIVINE [19], but it had a similar problem.

The Grow Table library [7] consists of hash maps for general 
purpose, e.g. they support deletion and growing, but they 
only support integers for keys and values. We focus on the 
perfonnance of f  indOrPut of vector data and do not require 
deletion. Additionally, we analyze all hash maps we tested 
using Intel® VTune™ Amplifier3, to explain the perfonnance 
of the hash maps. When putting their hash maps through our 
test suite, the perfonnance was erratic and surprisingly low. 
We refer to our online data-set for the precise numbers.

Like us, the focus of dbsll [1] was to maximize 
findOrPut perfonnance without support for deletion, to 
increase the multi-threaded perfonnance of the model checker 
LTSMIN. This makes dbsll our primary competitor and 
gives us a base line for the perfonnance that is achievable. 
However, where they assumed open addressing to be superior 
to chaining, we implemented both and came to a different 
conclusion. They also only support constant-length vectors as 
keys, whereas our implementations support variable-length.

Feature-wise, the chunk table of LTSMIN (not dbsll -•-) is 
the only competitor, because it is the only other hash map 
supporting variable-length keys. However, its perfonnance is 
two orders of magnitude lower, so we did not include it.

A. Other related work

Oortwijn et al. have investigated distributed hash maps [20] 
with the same goal of optimizing the throughput of 
findOrPut. These hash maps span not only multiple cores, 
but multiple computers.

Wijs et al. researched implementing hash maps on the GPU 
for the purpose of state space exploration [21], GPUs use 
streaming multiprocessors that perfonn a single instruction on 
multiple data (SIMD), allowing great parallelism.

Tries [22] are an interesting data structure with a similar 
goal to hash maps. There has been extensive research, com­
paring [23] them, even in a concurrent setting [24],

3https://software.intel.com/en-us/intel-vtune-amplifier-xe
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VI. T e s t  S e t u p

We want to measure the perfonnance offindOrPut under 
various conditions in order to detennine which hash map 
is best suited for multi-core model checking. To this end 
with have a test scenario that inserts 64-byte vectors. We use 
constant-size key-value pairs in order to compare to other hash 
maps, because our competitors do not support variable-length.

In addition to this, we have a test scenario inserting 64- 
bit integers. We add this test to be able to compare to 
even more hash maps. Of this test, we provide an analysis 
using Intel® VTune™ Amplifier. The results are discussed in 
Sections VII and VIII. Here we explain our test setup.

A. How we tested

For both scenarios, a single test run contains a single test 
data preparation phase and 7 tunes the following steps are 
performed:

1) Setup phase of the hash map under test, where for 
example memory is allocated. Hash map is initialized 
to 228 buckets;

2) Insertion phase: data is inserted using f  indOrPut:
228 • l key-value pairs are inserted, l is the load factor;

3) Verification phase: all inserted data is obtained from the 
hash map using get and verified to be complete;

4) Clean up phase, where the hash map is deleted and its 
memory freed.

Each thread has its own equally sized segment of the 
generated data, ensuring all generated data is inserted for each 
test run, regardless of number of threads.

B. Performance and Analysis

This single test run is executed two tunes: once without 
any analysis to measure the perfonnance and once with 
Intel® VTune™ Amplifier using the Memory Access anal­
ysis. We do this separately so VTune does not influence the 
perfonnance numbers. VTune uses the profiling data gathered 
by the Intel CPU and processes these hardware events into a 
perfonnance analysis. It collects infonnation such as number 
of cache misses, number of store operations, and many more. 
We pause the gathering of data when not in the insertion phase, 
such that the numbers shown are only for the insertion phase.

C. Test scenarios

1) 64-byte vector —> integer: This test inserts 64-byte 
vectors as keys, which each map to an integer. During the 
setup phase, this test generates a number of unique 64-byte 
vectors. We test the influence of the number of threads and 
the load factor. For this test we do not separately control the 
collision rate, so it depends on the load factor.

We tested with inserting 50% duplicates as well, causing 
findOrPut to make an insertion only 50% of the tune. The 
results of those tests showed a similar pattern as inserting 
unique keys, so we did not include them here.

2) integer —> integer: This test inserts integer keys, map­
ping them to integer values. For this test, we want to investi­
gate the influence of collisions. To achieve this, the hash map 
uses the identity function as hash function and each threads 
inserts I  elements, {/(/) : ( ) < / < / } ,  where

/(/)  = h[(i mod {Ilcf) + I � t) + � B

where c is the desired collision ratio, B is the number of 
buckets, h is the hash function (not the identity), t is the 
thread ID. Note that 1 < c and thread IDs start at 0 and 
are incremented by one. For example, B = 32, I  = 8, c = 2, 4 
threads, inserting 1 and 5 cause a collision, among others.

The collision ratio indicates the number of inserts per 
bucket. The collisions happen in the same thread, so two 
threads do not compete for the same bucket, but they still 
compete for the cache line the bucket is in. We also ran a few 
experiments where two or more threads do compete for the 
same bucket and this showed similar results.

D. Environment

The hardware we ran our experiments on is “caserta”4, a 
Dell R930 with 2TiB of RAM and four E7-8890-v4 CPUs. 
Each CPU has 24 cores, 60MiB of L3 cache and 512GiB of 
RAM, offering 96 physical cores in total and 192 cores using 
hyper-threading. Hyper-threading is an Intel® technology that 
makes a single physical core appear as two logical cores to 
the operating system [25].

We ran our experiments on Ubuntu 16.04 GNU/Linux 4.4.0- 
116. All tests are compiled and linked using GCC 8.0.1.

The tests are executed in such a manner that threads are 
spread out over the cores, meaning that each CPU is assigned 
a fair share of threads. This approach has two main advantages. 
Firstly, there is more cache available, as each CPU has its own 
cache, resulting in potentially fewer cache misses. Secondly, 
the memory is allocated evenly over all memory banks5, 
providing uniform access for all threads. If the threads would 
be clustered on one CPU, the access would be non-uniform, as 
our use case is a single large hash map that spans all available 
memory. VTune confirmed this by indicating that memory 
accesses were roughly 75% to memory banks on other CPUs

We attempted to create an equal environment for all hash 
map implementations, such that the perfonnance of the hash 
map itself is the most significant factor in the results. All hash 
maps use MurmurHash64A as the hash function for vectors.

The entire test suite took 1105 hours (~46 days) of wall- 
clock tune to execute, gather data and the processing of 
this data. The data gathered constitutes 7.2TiB of hardware 
events. The summary of this data and all generated graphs are 
available online6, including the code that was benchmarked.

Sponsored by 3TU Big Software on the Run project, http://www.3tu-bsr.nl/
5 The Linux kernel allocates physical memory for a large region of virtual 

memory when a CPU writes to it and in the memory banks of that CPU [26],
6Data and code can be found at https://github.com/bergfi/hashmap/
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Load factor .5 Load factor .99 96 threads

Fig. 3 Results for scenario 1, inserting pseudo random 64-byte keys into 228 buckets. Load factors indicate the number of
f i n d O r P u t  (FOP) operations. The results for 192 threads are with use of hyper-threading. For a legend, see Table I.

VII. 64-BYTE VECTOR —> INTEGER RESULTS

Figure 3 shows the findOrPut and get perfonnance 
of inserting 64-byte vectors. The first thing we notice is the 
significant difference between hash maps (3a). TBB -*� is not 
well-suited for our use case, as it is an order of magnitude 
slower than other hash maps. Even using our allocator yields 
only a minor increase in perfonnance, in TBBA

While libcuckoo shows better perfonnance for a .5 load 
factor, it is still more than a factor 3 slower. OpenAddrQCU -*� 
and ChainU are quite evenly matched (3a). For load factors 
higher than .95, ChainU *� shows that chaining is better able 
to deal with an increased number of bucket collisions (3b).

For load factors above 1, open addressing hash maps dbsll 
and OpenAddrQCU -*� cannot compete, because they do not 
support growing, libcuckoo does support growing and the 
results conhnn that it grows when the size doubles. However, 
this is where chaining gains the most ground: ChainU is an 
order of magnitude faster than other hash maps (3c).

The perfonnance for the verification phase (3d) varies much 
less, with only a factor 3 between the fastest and the slowest. 
For .99 load factor we again see ChainU �* outperfonning all 
other hash maps (3e). Hyper-threading seems to have a more 
positive impact on get than on findOrPut.

Looking at the influence of load factor (3f), TBB -*� even 
outperfonns libcuckoo *  As the load factor increases, the 
get perfonnance of all hash maps seem to converge.

In summary, chaining outperfonns open (quadratic + linear) 
by an order of magnitude for load factors above 1, while on 
par for lower load factors. Our ChainU beats all competitor 
hash maps in findOrPut perfonnance by 1.3x-2.6x.

VIII. INTEGER —> INTEGER RESULTS

Figure 4 shows the results for scenario 2. Figures 4a, 4g 
and 4m show the perfonnance of the insertion phase, while 
varying the number of threads, load factor, and collision 
ratio, respectively. The other graphs show statistics gathered 
with Intel® VTune™ Amplifier. We will go through each 
perfonnance graph separately, explaining the perfonnance by 
examining the statistics. Note that the pattern they show is 
most important, as they are based on sampling.

For an in-depth explanation of all statistics we refer to 
the VTune manual, but we explain a few essentials here. LI 
bound is the percentage of loads serviced by LI cache. A 
high value here can indicate high contention. Average Latency 
is the average number of clock cycles a load has to wait. A 
high number can indicate contention or a large number of 
accesses to remote (on other CPU) cache or memory. The 
memory bound percentage roughly indicates the amount of 
time a CPU core is stalled with loads in-flight. A high number 
can indicate contention or waiting on data from memory.

A. Influence o f number o f threads

As in scenario 1, TBB -*� does not scale in the number of 
threads. With the perfonnance statistics, we see that TBB 
has a much higher LI bound (4b). According to the manual, 
this may indicate a high contention. While the implementation 
uses a lock per bucket, that alone cannot account for the 
contention [11], TBB -*� does keep track of the exact size of 
the hash map using a single atomic integer. All threads modify 
this single integer for every insert, so this can account for the 
high LI bound. We tried TBB without the size counter
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Fig. 4 Results for scenario 2, inserting integers into 228 buckets, measuring the insertion phase. For a legend, see Table I.
Testing the influence of the number of thread for load factor .5, collision ratio 1

(a)
le l2

g  l e l l

le lO

(d )

Number of threads (log scale)

r-

r

*==1 1-  1 - 1 i  1
, ^

�¥—¥—

75

i 50

25

/

2 4 8 16 24 48 96 192
Number of threads (log scale)

2 4 8 16 24 48 96 192
Number of threads (log scale)

2 4 8 16 24 48 96 192
Number of threads (log scale) (f)

2 4 8 16 24 48 96
Number of threads (log scale)

192

Testing the influence of the load factor for 96 threads, collision ratio 1

Testing the influence of the number of collisions for 96 threads, load factor .95

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly  by th e  au th o rs and  FM CAD, Inc. 52



and this improved the perfonnance, but only by 30%. Using 
our allocator in TBBA � has a small effect, allowing a lower 
number of loads (4d), but with a higher latency (4c).

Hash map Michael suffers from increased LI bound 
with an increased number of threads as well, even causing 
degradation of perfonnance. Here the cause is not a coimnon 
element counter, since we explicitly disabled that. We tried 
Michael *- with TBB’s allocator as well, but this did not 
change the perfonnance.

The worst perfonning hash map is Skiplist . It has an 
order of magnitude higher number of loads and cache misses 
than most other hash maps. This is expected as the algorithm 
requires many loads that are often on different cache lines [17].

The reason libcuckoo *  and Junction:Crude Eb do not gain 
perfonnance above 48 threads is that the loads suffer from 
increased latency (4c) and memory bound (4f). This seems 
to indicate the threads are fighting each other over the cache 
lines: libcuckoo *  locks two buckets to perfonn its cuckoo 
hashing [13] and Junction:Crude Eb uses linear probing [14], 
which is susceptible to clustering.

Overall, chaining ChainU perfonns slightly better than 
open OpenAddrQCU even approaching InsituQU -+\

B. Influence o f load factor

Again this is where ChainU *  scores the highest over­
all, showing the potential of chaining (4g). Below 5% it 
is outperformed by a number of hash maps, but above 5% 
only by the integer-only InsituQU It outperfonns its open 
addressing counter-part OpenAddrQCU which features the 
same allocator, and the main competitor dbsll For loads 
above 100% it is roughly an order of magnitude faster.

OpenAddrQCU -*� outperfonns dbsll -*� for loads between 
.05 and .75, but above .75 dbsll has the upper hand. This 
shows rehashing + linear probing is better able to deal with 
increased loads than quadratic + linear.

On the opposite side we again see Skiplist suffering from 
high number of loads (4j) and cache misses (4k). TBB is 
only slightly ahead in tenns of perfonnance. Interestingly, for 
load factors above 1 the hash map Michael suffers relatively 
less from LI bound (4h) and this shows in the perfonnance.

JunctiomCrude — outperfonns all others below 5%. How­
ever, for increased loads the perfonnance quickly drops off. 
Again the load latency (4i) seems the cause. This is interesting, 
because it has generally the lowest number of loads (4j).

C. Influence o f collisions

All hash maps suffer when collisions increase, but Folly 
handles these the easiest (4m). This seems to be because the 
number of cache misses is increasing only slightly (4o).

Notable is the jump in perfonnance of libcuckoo *  from 2 
to 4 collision rate. With collision rate 2, there is one collision 
per bucket, which often can be put into the bucket detennined 
by the alternative hash function. Resolving another collision 
on the same bucket means rehashing some data. This can be 
seen in the jump in the number of loads as well (4n).

Overall, chaining and open addressing are similarly affected 
by collisions in tenns of perfonnance.

D. Reflection

Combining the perfonnance graphs of tig. 3 and tig. 4 
we see that chaining and open addressing perfonn similarly 
for load factors below 1, if we look at ChainU *  and 
OpenAddrQCU -*\ For higher load factors, open addressing 
either cannot compete, e.g. dbsll or must incur a significant 
perfonnance penalty to resize the map, e.g. libcuckoo *

The influence of the used allocator is briefly evaluated, but 
not researched at length. For comparison between chaining 
and open addressing we use our hash map implementations. 
These use the same allocator, making the comparison fair in 
tenns of the allocator used.

For comparisons with competitor hash maps, we evaluated 
the combination as a whole, dbsll has a similar allocator 
in tenns of perfonnance, but can be statically allocated since 
it only supports constant-sized keys. We tried TBB’s scalable 
allocator in other hash maps, but this did not yield a significant 
change. Besides TBB �*�, we tried our allocator in libcuckoo �*�, 
without a significant change either. We also tried our allocator 
in Michael +-, but we could not get that to work.

A good algorithm is half the work. For conect high- 
perfonnance concunency, the implementation is as important.

IX. C o n c l u s i o n

We implemented 12 concunent hash map variants, focusing 
on insertion and retrieval perfonnance and not supporting 
deletion or growing. Of these 12 hash maps, 8 support 
variable-length key-value pairs and 4 support only integers. 
Additionally, we made an extensive comparison with in total 
34 hash maps7, of which we showed 11. We analyzed what 
makes a fast concunent hash map by examining hardware 
events using Intel® VTune™ Amplifier.

Contrary to what was believed previously [1], chaining lends 
itself perfectly for a concunent setting. In fact, the overall best 
hash map implementation we tested is ChainU , perfonning 
similarly to the best open addressing hash map OpenAd­
drQCU “*� for load factors under 1 and beating competing 
hash maps by 1.3x-2.6x. For higher load factors, ChainU 
is an order of magnitude faster than competing hash maps.

A. Future Work

Since the result of this paper is directly applicable to multi­
core model checking, it is also applicable to planning [27]. In 
planning as model checking, plans are generated akin to state 
space exploration.

We implemented a version of our hash maps that support 
deletion of entries, but we did not perfonn our extensive 
analysis on this. Preliminary findings show the perfonnance 
is on par, but more analysis is required.

Even without deletion, the chaining hash map presented 
in this paper will be used in a software multi-core model 
checker we are currently implementing. We target multi­
threaded LLVM IR assembly code. Therefore, the support for 
variable-length key-value pairs is a requirement in order to 
support a growing stack and heap.

7Data and code can be found at https://github.coni/bergfi/hashmap/
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