
Concurrent Chaining Hash Maps for
Software Model Checking

Freark I. van der Berg
Formal Methods and Tools

University o f Twente, Enschede, The Netherlands
f.i.vanderberg@utwente.nl

Jaco van de Pol
Aarhus University, Dept, o f CS, Denmark

University o f Twente, Enschede, The Netherlands
jaco@cs.au.dk

Abstract—Stateful model checking creates numerous states
which need to be stored and checked if already visited. One
option for such storage is a hash map and this has been used
in many model checkers. In particular, we are interested in the
performance of concurrent hash maps for use in multi-core model
checkers with a variable state vector size. Previous research
claimed that open addressing was the best performing method
for the parallel speedup of concurrent hash maps. However, here
we demonstrate that chaining lends itself perfectly for use in a
concurrent setting.

We implemented 12 hash map variants, all aiming at multi-
core efficiency. 8 of our implementations support variable-length
key-value pairs. We compare our implementations and 22 other
hash maps by means of an extensive test suite. Of these 34 hash
maps, we show the representative performance of 11 hash maps.

Our implementations not only support state vectors of variable
length, but also feature superior scalability compared with
competing hash maps. Our benchmarks show that on 96 cores,
our best hash map is between 1.3 and 2.6 times faster than
competing hash maps, for a load factor under 1. For higher load
factors, it is an order of magnitude faster.

Index Terms—concurrency, data structure, hash map, high-
performance, multi-threaded, thread-safe, model checking

I . INTRODUCTION

Stateful Model checkers store visited states. This has the
advantage of being able to detect whether a state has already
been visited, such that it need not be visited again. For storage
of these states, options include hash maps [1], compression
trees [2] and binary decision diagrams [3] to name a few.

Some model checkers make use of prevalent multi-core
hardware by supporting multiple concurrent threads. Storage
and checking of states thus additionally involves communica­
tion between threads.

Software model checkers that support the verification of
programs that manipulate stack or heap memory can benefit
from a fast hash table that can store variable-length states. The
latter is required because the stack and heap of a program can
grow or shrink, so not all states have the same size.

In this paper, we want to investigate the option of using
a hash map for the purpose of multi-core software model
checking. To this end, we do not require deletion or resizing
from the hash map. However, we need the hash map to be
thread-safe and to allow variable-length keys to be stored.

Fig. 1 Bucket collision: where to insert Bobbi’s age?

A. Hash maps for storage

Hash maps are data structures that are used to map a key to
a value. They are mainly useful when the set of all possibles
keys is large or sparse. In a hash map, a hash function maps
the large domain of the keys to a smaller domain. For example,
one could add the ASCII values of all characters in a string
together, modulo 256. This would give a number in the range
[0,256). Thus, we can represent a hash map using the simple
array of 256 elements. Subsequently, if we were to insert the
age of Alice, who is 26, into this hash map, her age would
end up at position 222 in the array, because (65 + 108 + 105 +
99 + 101) mod 256 = 222.

However, a problem arises when we want to insert the age
of Bobbi. The hash function we just thought of maps his name
to 222 too, as (66 + 111 + 98 + 98 + 105) mod 256 = 222. This
is called a bucket collision: two keys map to the same position
(bucket) in the array. In this case it is even a hash collision,
since the keys map to the same hash. Figure 1 depicts the
problem of where to put the node of Bobbi. In our example
the hash function was chosen quite poorly: a lot of names
share the same hash, causing many bucket collisions.

Bucket collisions are undesired, since two entries map to the
same bucket and thus one of them needs to be put somewhere
else. This increases the probe count for that entry: to put it
into the hash map or to detennine whether it is in the hash
map requires multiple probes, i.e. checks if a bucket contains
a specific key. Probes are expensive operations because they
access the main memory and can cause cache misses.

B. Concurrent hash maps

There has been ample research about hash maps,
both single-threaded and multi-threaded. Single-threaded re­
search [4], [5] focuses on limiting memory overhead and
algorithmic improvements in how to resolve bucket collisions.

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly by th e au th o rs and FM CAD, Inc. 46

In a multi-threaded application, where multiple threads
operate on the same hash map concurrently, resolving bucket
collisions is more complicated [6], [7], [8]. This is due to
the nature of running threads concurrently: special atomic
operations have to be used to avoid the hash map from
becoming inconsistent or corrupt.

C. Contributions

The two main contributions presented in this paper are 1)
an extensive comparison of a number of hash maps; 2) a new
set of high-performance hash map implementations supporting
variable-length key-value pairs. For our use case, our best
hash map outperforms all competition. In addition to these, we
convey the knowledge that chaining hash maps are perfectly
suited for multi-core model checkers, contrary to what was
previously believed [1].

We analyze and compare our implementations and 22 other
hash maps by means of an extensive test suite. During the
test, we capture hardware events and analyze them using
Intel® VTune™ Amplifier. The result is an extensive dataset
of statistics on 34 hash maps.

In Sections II and III we provide a background in hardware
architecture and hash maps in general. In Section IV we
describe how we implemented our hash maps and in Sec­
tion V we discuss related research and related hash maps.
In Section VI we explain the experimental comparison of all
hash maps and Sections VII and VIII show the results for two
test scenarios. We conclude and list possible future avenues
of exploration in Section IX.

II. B a c k g r o u n d o n h a r d w a r e a r c h i t e c t u r e

Computer hardware has evolved greatly in the past 70
years. From a simple single processor with a single core
and single memory bus connected to a single memory bank,
to a vastly complex machine with many processors, caches,
memory busses and memory banks. It is an ever-increasingly
interesting held for high-performance software.

1) Memory cache: The need for caches is due to the
memory wall [9]: the CPU is getting faster and faster than the
memory. Modem processors have a cache hierarchy between
the cores of the processor and the main memory, to hide the
latency of the much slower main memory: cache memory is
significantly faster than main memory. When a value is not
in the cache, it needs to be obtained from the slower main
memory. This is called a cache miss.

2) Inter-thread communication: Because of physical limi­
tations, the performance of CPUs is not increased by increas­
ing the clock speed, but instead by adding more cores that
can seemingly work independently. However, having multiple
cores adds complexity not only to the hardware, but to the
software as well. Multiple threads can run on multiple cores
concurrently and in parallel. Correct coimnunication becomes
paramount: many interleavings of memory operations are
possible and all of them need to be correct. Special memory
instruction, such as compare-and-swap (CAS) and memory
barriers, are expensive to execute, so they need to be kept
to a minimum for high performance.

III. H a s h m a p s : h o w t o r e s o l v e c o l l i s i o n s

There are many ways to implement a hash map [10]. The
main distinction is how bucket collisions, such as the one
between Alice and Bobbi in the introduction, are handled. One
way is to just try a different bucket in the array that hosts the
hash map. This is called open addressing. Another technique
to solve a bucket collision is to link the new entry to the
entry already in the bucket; this is aptly named chaining. In a
chaining hash map, every bucket is a linked list of entries.

A. Open addressing

Open addressing does not use a chain of entries, avoiding
the need for a next held per entry as can be seen in fig. 2a.

In theory, this requires less memory. In practice, the fuller
an open addressing hash map gets, the worse it performs, so
a margin is required. On a bucket collision, the next bucket
can be determined for example by linear probing, quadratic
probing, cuckoo hashing and rehashing.

1) Linear probing: The simplest way to find an empty
bucket is by linearly probing the buckets, starting from the
bucket collision, until we find one that is empty.

However, linear probing is susceptible to clustering. Clus­
tering happens when a group of nearby buckets are occupied.
When a bucket is full, it also increases the probe count for
inserts to the bucket before it, if that one is full as well.

2) Quadratic probing: Quadratic probing refers to that the
next bucket is determined by skipping an increasing number
of buckets. In the hh probe, we try the r th bucket after the
first, starting at 0. This lowers the effect of clustering, because
there is increased space between buckets.

3) Cuckoo hashing: Cuckoo hashing [5] uses multiple
hash functions. An element can only be found at the indices
provided by these hash functions. If all of these locations are
already used, one of them is taken out and the new element
takes its place. The taken out element is reinserted similarly.

To be able to guarantee the constant-time lookup, there is
an upper limit on how full the hash map can be. For two hash
functions, this is 50%. If it is higher, due to collisions, the
recursive rehashing can take significantly longer.

4) Rehashing: When a bucket collision occurs, it is also an
option to attempt a rehash of the key or modify the hash in a
deterministic way. It is vital that the rehash or modification be
done deterministically in order to check if the key is already
in the hash map. The modification can be done differently for
nearby buckets, mitigating clustering even further.

B. Chaining

Each bucket, in addition to an entry, has a next held.
When an entry is to be inserted in a bucket where already
an entry resides, the entry is linked using the next held. In
other words, every bucket is a linked list of entries, as can be
seen in hg. 2b.

This has the advantage that there is no clustering due
to neighboring buckets: bucket collisions are solved by just
appending them to the linked list. The downside of this is that
every linked in element requires a pointer and thus increases
the memory footprint and accessing may cause a cache miss.

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly by th e au th o rs and FM CAD, Inc. 47

Fig. 2 Memory layouts for various hash map implementations. A dark (blue) fill indicates a null pointer

(a) Memory layout for an open addressing hash map (b) Memory layout for a chaining hash map (c) Memory layout for a chaining hash map with cache buckets

IV. H a s h M a p D e s i g n C o n s i d e r a t i o n s

Cache misses are expensive because the load operation
needs to be serviced by the much slower main memory. In
order to implement high-perfonnance hash maps, we need
to take this into account. Our implementations use existing
algorithms, but are implemented with high-perfonnance con-
cunency in mind. As such, we try to minimize the number of
cache misses and the number of expensive memory operations
that synchronize cores, such as CAS and memory baniers.

Moreover, the concunent hash maps we implemented ad­
here to the C++11 memory model. We make use of C++11
release and acquire memory barriers. The C++11 compiler
maps these to the hardware memory model and thus the hash
maps can run conectly on all platfonns supported by the
compiler. For the implementation of our hash maps we refer
to our Github repository1.

A. Hash function

The hash function is an important part of a hash map, for it
represents where to start probing for an empty bucket. Thus,
it is vital that the hash function distributes keys as unifonnly
as possible over the buckets, to minimize bucket collisions.

We tried various hash functions: FNV-la, SDBM,
MurmurHash3,MurmurHash64A, and SuperFastHash.
Of these, MurmurHash64A yielded the best perfonnance, so
we used this hash function for all tests.

B. Allocator for entries

Both chaining and open addressing hash maps use a special­
ized allocator for variable-length and fixed-length key-value
pairs that do not fit in a single word. This allocator allocates a
slab of memory for each thread, to avoid issues with concur­
rency. For chaining, a thread can write to memory allocated
by another thread, but only to link in an entry. Allocating
memory with this allocator is simply done by increasing a
pointer by the number of bytes required and then returning
the old value of that pointer. Since there is an allocator per
thread, this can be done without expensive synchronization
instructions. This design contributes to the speedup of our
implementations. Figure 2 illustrates the memory layout for
the hash maps and the allocator.

This allocator is not used for hash maps that map integers
to integers. There, keys and values are stored in situ.

'Data and code can be found at https://github.coni/bergfi/hashmap/

C. Optimizations

1) 16 upper bits: To identify the address where a key-value
pair is stored, 48 bits is adequate. These 48 bits can index the
slab allocated by the allocator. We can use the upper 16 bits to
store a 16-bit version of the hash. We obtain this by combining
the four 16-bit segments of the 64-bit hash of a key using x o r.
Then, we store this 16-bit hash in the 64-bit pointer that points
to the key-value pair. Thus, when searching for a key, we can
first compare this 16-bit hash before following the pointer and
comparing the key itself. This can save a significant number
of loads and thus cache misses.

2) Cache-aware: Instead of indexing at the bucket level,
first we index at the cache bucket level. A cache bucket is a
group of buckets that fit precisely on one cache line2. This can
be combined with various probing methods. We implemented
linear and quadratic probing. Within the cache bucket, we start
at the bucket we would have started at if we would have
indexed at the bucket level. We continue linearly, wrapping
at the end of the cache line, until we reach the start bucket.
If by now we have not found the bucket we needed, we go to
the next cache bucket.

D. Implemented variants for experimentation

In order to detennine the important factors influencing
parallel speedup, we implemented 12 hash maps: 4 chaining,
4 open addressing and 4 open addressing in-situ, without
an allocator, to establish a base line. Each 4 implement
different optimizations, coded by the following suffixes: Q:
the hash map uses quadratic probing instead of linear; U: the
optimized use of upper-bits, explained in Section IV-C1; C:
the hash map uses a cache-awareness optimization, explained
in Section IV-C2; We also experimented with I): the use of
one double word CAS instead of two single-word CAS, but
this did not improve perfonnance.

To avoid cluttering the results, we show only the best hash
map in their category: ChainU , OpenAddrQCU -*� and
InsituQU (cf. Table I). For open addressing, cache-aware
quadratic probing with linear probing within cache lines was
the most perfonnant. For both chaining and open addressing,
using the upper-bits for a 16-bit hash yielded improvement.

For chaining, attempting to make it cache-aware by using
a cache-line as link in the chain (see fig. 2c) degraded
perfonnance, so the simple version was faster.

2 A cache line is usually 64 bytes and would thus fit 8 buckets

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly by th e au th o rs and FM CAD, Inc. 48

Table I Of the 34 hash maps we tested we show results of these 11 hash maps. The first 3 we implemented, the other 8 we use
for comparison, “best” refers to the hash maps being tested using our test suite and they outperformed others in their group.

Name Key Value Probing Features / Comment
OpenAddrQCU variable variable open: quadratic + linear Best of all 4 open addressing implementations

s ChainU variable variable chaining Best of all 4 chaining implementations
@ InsituQU 48-bit 64-bit open: quadratic Best of all 4 in situ implementations

dbsll [1] constant unique int open: rehash + linear unique int given by the hash map
N TBB [11] constant constant chaining Intel TBB’s concurrent_hash_map

TBBA [11] constant constant chaining As TBB, but with the allocator of this paper
S libcuckoo [12], [13] constant constant cuckoo libcuckoo with TBB’s scalable allocator

JunctiomCrude [14] 64-bit 64-bit open: linear Best of all Junction hash maps
H Michael [15], [16] 64-bit 64-bit sorted chaining Part of LibCDS library, NOGC, no counter

Skiplist [17], [16] 64-bit 64-bit skip list Part of LibCDS library, NOGC, no counter
g Folly [18] 64-bit 64-bit open: quadratic Hash map focusing on insertion perfonnance

V. RELATED W O R K

Hash maps have been extensively researched, both single-
threaded [4], [5] and multi-threaded [6], [7], [8]. Generally,
the research focused on a hash map with support for deletion
of entries. Since our purpose is stateful multi-core model
checking, we focus on the f indOrPut perfonnance of hash
maps and do not require support for deletion or resizing.

We compared our 12 implementations to 22 variants from
mainly seven competitors, totaling 34 hash maps. Of these,
we only display for each competitor the most perfonnant one,
according to our test suite. These are listed in Table I. While
most focus on mapping 64-bit keys to 64-bit values, some
support any constant-length keys. In order to investigate the
effect of using different memory allocators, we also linked
some of the competitor hash maps with our own memory
allocator. The hash maps we used for comparison are:

• Intel TBB’s concurrent_hash_map [11] is part of
the Threading Building Blocks library. This popular con­
currency library provides hash maps with support for any
constant-length key-value pairs. We test with both their
scalable allocator and the allocator in this paper

• Junction [14] is a library made by Preshing containing
hash maps with interesting implementations. While he
did not publish a paper on this matter, he explains his
hash maps in his blog post.

• libcuckoo [12] is a library implementing cuckoo hashing
and supports constant-length key-value pairs.

• dbsll [1] is a hash map created with the purpose of
mapping constant-length vectors to a unique integer, so
the user cannot store a chosen value.

. From the CDS [16] library we measured the perfonnance
of the Michael Map using the Michael list and the
Skiplist . Both are without item counter and are the
NOGC versions, which stands for no garbage collection,
i.e. they are append only. This levels the playing held, as
our hash maps are also append only.

• Facebook’s Folly AtomicHashMap -*� [18]. This is a hash
map with a focus on high-perfonnance and is advertised
as being 2x - 4x faster than TBB While entries can
be deleted, the used memory is not reclaimed.

In addition to these, we tried testing Cache Line Hash Table
(CLHT) [6], but this hash map could not complete our test
within a day. Smaller tests CLHT managed, but was still not
able to beat our implementations. We also tried the concunent
hash set of DIVINE [19], but it had a similar problem.

The Grow Table library [7] consists of hash maps for general
purpose, e.g. they support deletion and growing, but they
only support integers for keys and values. We focus on the
perfonnance of f indOrPut of vector data and do not require
deletion. Additionally, we analyze all hash maps we tested
using Intel® VTune™ Amplifier3, to explain the perfonnance
of the hash maps. When putting their hash maps through our
test suite, the perfonnance was erratic and surprisingly low.
We refer to our online data-set for the precise numbers.

Like us, the focus of dbsll [1] was to maximize
findOrPut perfonnance without support for deletion, to
increase the multi-threaded perfonnance of the model checker
LTSMIN. This makes dbsll our primary competitor and
gives us a base line for the perfonnance that is achievable.
However, where they assumed open addressing to be superior
to chaining, we implemented both and came to a different
conclusion. They also only support constant-length vectors as
keys, whereas our implementations support variable-length.

Feature-wise, the chunk table of LTSMIN (not dbsll -•-) is
the only competitor, because it is the only other hash map
supporting variable-length keys. However, its perfonnance is
two orders of magnitude lower, so we did not include it.

A. Other related work

Oortwijn et al. have investigated distributed hash maps [20]
with the same goal of optimizing the throughput of
findOrPut. These hash maps span not only multiple cores,
but multiple computers.

Wijs et al. researched implementing hash maps on the GPU
for the purpose of state space exploration [21], GPUs use
streaming multiprocessors that perfonn a single instruction on
multiple data (SIMD), allowing great parallelism.

Tries [22] are an interesting data structure with a similar
goal to hash maps. There has been extensive research, com­
paring [23] them, even in a concurrent setting [24],

3https://software.intel.com/en-us/intel-vtune-amplifier-xe

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly by th e au th o rs and FM CAD, Inc. 49

VI. T e s t S e t u p

We want to measure the perfonnance offindOrPut under
various conditions in order to detennine which hash map
is best suited for multi-core model checking. To this end
with have a test scenario that inserts 64-byte vectors. We use
constant-size key-value pairs in order to compare to other hash
maps, because our competitors do not support variable-length.

In addition to this, we have a test scenario inserting 64-
bit integers. We add this test to be able to compare to
even more hash maps. Of this test, we provide an analysis
using Intel® VTune™ Amplifier. The results are discussed in
Sections VII and VIII. Here we explain our test setup.

A. How we tested

For both scenarios, a single test run contains a single test
data preparation phase and 7 tunes the following steps are
performed:

1) Setup phase of the hash map under test, where for
example memory is allocated. Hash map is initialized
to 228 buckets;

2) Insertion phase: data is inserted using f indOrPut:
228 • l key-value pairs are inserted, l is the load factor;

3) Verification phase: all inserted data is obtained from the
hash map using get and verified to be complete;

4) Clean up phase, where the hash map is deleted and its
memory freed.

Each thread has its own equally sized segment of the
generated data, ensuring all generated data is inserted for each
test run, regardless of number of threads.

B. Performance and Analysis

This single test run is executed two tunes: once without
any analysis to measure the perfonnance and once with
Intel® VTune™ Amplifier using the Memory Access anal­
ysis. We do this separately so VTune does not influence the
perfonnance numbers. VTune uses the profiling data gathered
by the Intel CPU and processes these hardware events into a
perfonnance analysis. It collects infonnation such as number
of cache misses, number of store operations, and many more.
We pause the gathering of data when not in the insertion phase,
such that the numbers shown are only for the insertion phase.

C. Test scenarios

1) 64-byte vector —> integer: This test inserts 64-byte
vectors as keys, which each map to an integer. During the
setup phase, this test generates a number of unique 64-byte
vectors. We test the influence of the number of threads and
the load factor. For this test we do not separately control the
collision rate, so it depends on the load factor.

We tested with inserting 50% duplicates as well, causing
findOrPut to make an insertion only 50% of the tune. The
results of those tests showed a similar pattern as inserting
unique keys, so we did not include them here.

2) integer —> integer: This test inserts integer keys, map­
ping them to integer values. For this test, we want to investi­
gate the influence of collisions. To achieve this, the hash map
uses the identity function as hash function and each threads
inserts I elements, {/(/) : () < / < / } , where

/(/) = h[(i mod {Ilcf) + I � t) + � B

where c is the desired collision ratio, B is the number of
buckets, h is the hash function (not the identity), t is the
thread ID. Note that 1 < c and thread IDs start at 0 and
are incremented by one. For example, B = 32, I = 8, c = 2, 4
threads, inserting 1 and 5 cause a collision, among others.

The collision ratio indicates the number of inserts per
bucket. The collisions happen in the same thread, so two
threads do not compete for the same bucket, but they still
compete for the cache line the bucket is in. We also ran a few
experiments where two or more threads do compete for the
same bucket and this showed similar results.

D. Environment

The hardware we ran our experiments on is “caserta”4, a
Dell R930 with 2TiB of RAM and four E7-8890-v4 CPUs.
Each CPU has 24 cores, 60MiB of L3 cache and 512GiB of
RAM, offering 96 physical cores in total and 192 cores using
hyper-threading. Hyper-threading is an Intel® technology that
makes a single physical core appear as two logical cores to
the operating system [25].

We ran our experiments on Ubuntu 16.04 GNU/Linux 4.4.0-
116. All tests are compiled and linked using GCC 8.0.1.

The tests are executed in such a manner that threads are
spread out over the cores, meaning that each CPU is assigned
a fair share of threads. This approach has two main advantages.
Firstly, there is more cache available, as each CPU has its own
cache, resulting in potentially fewer cache misses. Secondly,
the memory is allocated evenly over all memory banks5,
providing uniform access for all threads. If the threads would
be clustered on one CPU, the access would be non-uniform, as
our use case is a single large hash map that spans all available
memory. VTune confirmed this by indicating that memory
accesses were roughly 75% to memory banks on other CPUs

We attempted to create an equal environment for all hash
map implementations, such that the perfonnance of the hash
map itself is the most significant factor in the results. All hash
maps use MurmurHash64A as the hash function for vectors.

The entire test suite took 1105 hours (~46 days) of wall-
clock tune to execute, gather data and the processing of
this data. The data gathered constitutes 7.2TiB of hardware
events. The summary of this data and all generated graphs are
available online6, including the code that was benchmarked.

Sponsored by 3TU Big Software on the Run project, http://www.3tu-bsr.nl/
5 The Linux kernel allocates physical memory for a large region of virtual

memory when a CPU writes to it and in the memory banks of that CPU [26],
6Data and code can be found at https://github.com/bergfi/hashmap/

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly by th e au th o rs and FM CAD, Inc. 50

Load factor .5 Load factor .99 96 threads

Fig. 3 Results for scenario 1, inserting pseudo random 64-byte keys into 228 buckets. Load factors indicate the number of
f i n d O r P u t (FOP) operations. The results for 192 threads are with use of hyper-threading. For a legend, see Table I.

VII. 64-BYTE VECTOR —> INTEGER RESULTS

Figure 3 shows the findOrPut and get perfonnance
of inserting 64-byte vectors. The first thing we notice is the
significant difference between hash maps (3a). TBB -*� is not
well-suited for our use case, as it is an order of magnitude
slower than other hash maps. Even using our allocator yields
only a minor increase in perfonnance, in TBBA

While libcuckoo shows better perfonnance for a .5 load
factor, it is still more than a factor 3 slower. OpenAddrQCU -*�
and ChainU are quite evenly matched (3a). For load factors
higher than .95, ChainU *� shows that chaining is better able
to deal with an increased number of bucket collisions (3b).

For load factors above 1, open addressing hash maps dbsll
and OpenAddrQCU -*� cannot compete, because they do not
support growing, libcuckoo does support growing and the
results conhnn that it grows when the size doubles. However,
this is where chaining gains the most ground: ChainU is an
order of magnitude faster than other hash maps (3c).

The perfonnance for the verification phase (3d) varies much
less, with only a factor 3 between the fastest and the slowest.
For .99 load factor we again see ChainU �* outperfonning all
other hash maps (3e). Hyper-threading seems to have a more
positive impact on get than on findOrPut.

Looking at the influence of load factor (3f), TBB -*� even
outperfonns libcuckoo * As the load factor increases, the
get perfonnance of all hash maps seem to converge.

In summary, chaining outperfonns open (quadratic + linear)
by an order of magnitude for load factors above 1, while on
par for lower load factors. Our ChainU beats all competitor
hash maps in findOrPut perfonnance by 1.3x-2.6x.

VIII. INTEGER —> INTEGER RESULTS

Figure 4 shows the results for scenario 2. Figures 4a, 4g
and 4m show the perfonnance of the insertion phase, while
varying the number of threads, load factor, and collision
ratio, respectively. The other graphs show statistics gathered
with Intel® VTune™ Amplifier. We will go through each
perfonnance graph separately, explaining the perfonnance by
examining the statistics. Note that the pattern they show is
most important, as they are based on sampling.

For an in-depth explanation of all statistics we refer to
the VTune manual, but we explain a few essentials here. LI
bound is the percentage of loads serviced by LI cache. A
high value here can indicate high contention. Average Latency
is the average number of clock cycles a load has to wait. A
high number can indicate contention or a large number of
accesses to remote (on other CPU) cache or memory. The
memory bound percentage roughly indicates the amount of
time a CPU core is stalled with loads in-flight. A high number
can indicate contention or waiting on data from memory.

A. Influence o f number o f threads

As in scenario 1, TBB -*� does not scale in the number of
threads. With the perfonnance statistics, we see that TBB
has a much higher LI bound (4b). According to the manual,
this may indicate a high contention. While the implementation
uses a lock per bucket, that alone cannot account for the
contention [11], TBB -*� does keep track of the exact size of
the hash map using a single atomic integer. All threads modify
this single integer for every insert, so this can account for the
high LI bound. We tried TBB without the size counter

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly by th e au th o rs and FM CAD, Inc. 51

Fig. 4 Results for scenario 2, inserting integers into 228 buckets, measuring the insertion phase. For a legend, see Table I.
Testing the influence of the number of thread for load factor .5, collision ratio 1

(a)
le l2

g l e l l

le lO

(d)

Number of threads (log scale)

r-

r

*==1 1- 1 - 1 i 1
, ^

�¥—¥—

75

i 50

25

/

2 4 8 16 24 48 96 192
Number of threads (log scale)

2 4 8 16 24 48 96 192
Number of threads (log scale)

2 4 8 16 24 48 96 192
Number of threads (log scale) (f)

2 4 8 16 24 48 96
Number of threads (log scale)

192

Testing the influence of the load factor for 96 threads, collision ratio 1

Testing the influence of the number of collisions for 96 threads, load factor .95

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly by th e au th o rs and FM CAD, Inc. 52

and this improved the perfonnance, but only by 30%. Using
our allocator in TBBA � has a small effect, allowing a lower
number of loads (4d), but with a higher latency (4c).

Hash map Michael suffers from increased LI bound
with an increased number of threads as well, even causing
degradation of perfonnance. Here the cause is not a coimnon
element counter, since we explicitly disabled that. We tried
Michael *- with TBB’s allocator as well, but this did not
change the perfonnance.

The worst perfonning hash map is Skiplist . It has an
order of magnitude higher number of loads and cache misses
than most other hash maps. This is expected as the algorithm
requires many loads that are often on different cache lines [17].

The reason libcuckoo * and Junction:Crude Eb do not gain
perfonnance above 48 threads is that the loads suffer from
increased latency (4c) and memory bound (4f). This seems
to indicate the threads are fighting each other over the cache
lines: libcuckoo * locks two buckets to perfonn its cuckoo
hashing [13] and Junction:Crude Eb uses linear probing [14],
which is susceptible to clustering.

Overall, chaining ChainU perfonns slightly better than
open OpenAddrQCU even approaching InsituQU -+\

B. Influence o f load factor

Again this is where ChainU * scores the highest over­
all, showing the potential of chaining (4g). Below 5% it
is outperformed by a number of hash maps, but above 5%
only by the integer-only InsituQU It outperfonns its open
addressing counter-part OpenAddrQCU which features the
same allocator, and the main competitor dbsll For loads
above 100% it is roughly an order of magnitude faster.

OpenAddrQCU -*� outperfonns dbsll -*� for loads between
.05 and .75, but above .75 dbsll has the upper hand. This
shows rehashing + linear probing is better able to deal with
increased loads than quadratic + linear.

On the opposite side we again see Skiplist suffering from
high number of loads (4j) and cache misses (4k). TBB is
only slightly ahead in tenns of perfonnance. Interestingly, for
load factors above 1 the hash map Michael suffers relatively
less from LI bound (4h) and this shows in the perfonnance.

JunctiomCrude — outperfonns all others below 5%. How­
ever, for increased loads the perfonnance quickly drops off.
Again the load latency (4i) seems the cause. This is interesting,
because it has generally the lowest number of loads (4j).

C. Influence o f collisions

All hash maps suffer when collisions increase, but Folly
handles these the easiest (4m). This seems to be because the
number of cache misses is increasing only slightly (4o).

Notable is the jump in perfonnance of libcuckoo * from 2
to 4 collision rate. With collision rate 2, there is one collision
per bucket, which often can be put into the bucket detennined
by the alternative hash function. Resolving another collision
on the same bucket means rehashing some data. This can be
seen in the jump in the number of loads as well (4n).

Overall, chaining and open addressing are similarly affected
by collisions in tenns of perfonnance.

D. Reflection

Combining the perfonnance graphs of tig. 3 and tig. 4
we see that chaining and open addressing perfonn similarly
for load factors below 1, if we look at ChainU * and
OpenAddrQCU -*\ For higher load factors, open addressing
either cannot compete, e.g. dbsll or must incur a significant
perfonnance penalty to resize the map, e.g. libcuckoo *

The influence of the used allocator is briefly evaluated, but
not researched at length. For comparison between chaining
and open addressing we use our hash map implementations.
These use the same allocator, making the comparison fair in
tenns of the allocator used.

For comparisons with competitor hash maps, we evaluated
the combination as a whole, dbsll has a similar allocator
in tenns of perfonnance, but can be statically allocated since
it only supports constant-sized keys. We tried TBB’s scalable
allocator in other hash maps, but this did not yield a significant
change. Besides TBB �*�, we tried our allocator in libcuckoo �*�,
without a significant change either. We also tried our allocator
in Michael +-, but we could not get that to work.

A good algorithm is half the work. For conect high-
perfonnance concunency, the implementation is as important.

IX. C o n c l u s i o n

We implemented 12 concunent hash map variants, focusing
on insertion and retrieval perfonnance and not supporting
deletion or growing. Of these 12 hash maps, 8 support
variable-length key-value pairs and 4 support only integers.
Additionally, we made an extensive comparison with in total
34 hash maps7, of which we showed 11. We analyzed what
makes a fast concunent hash map by examining hardware
events using Intel® VTune™ Amplifier.

Contrary to what was believed previously [1], chaining lends
itself perfectly for a concunent setting. In fact, the overall best
hash map implementation we tested is ChainU , perfonning
similarly to the best open addressing hash map OpenAd­
drQCU “*� for load factors under 1 and beating competing
hash maps by 1.3x-2.6x. For higher load factors, ChainU
is an order of magnitude faster than competing hash maps.

A. Future Work

Since the result of this paper is directly applicable to multi­
core model checking, it is also applicable to planning [27]. In
planning as model checking, plans are generated akin to state
space exploration.

We implemented a version of our hash maps that support
deletion of entries, but we did not perfonn our extensive
analysis on this. Preliminary findings show the perfonnance
is on par, but more analysis is required.

Even without deletion, the chaining hash map presented
in this paper will be used in a software multi-core model
checker we are currently implementing. We target multi­
threaded LLVM IR assembly code. Therefore, the support for
variable-length key-value pairs is a requirement in order to
support a growing stack and heap.

7Data and code can be found at https://github.coni/bergfi/hashmap/

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly by th e au th o rs and FM CAD, Inc. 53

Re f e r e n c e s

[1] A. W. Laarman, J. C. van de Pol, and M. Weber, "Boosting multi-core
reachability performance with shared hash tables," in Proceedings o f the
10th International Conference on Formal Methods in Computer-Aided
Design, Lugano, Switzerland, N. Sharygina and R. Bloem, Eds. USA:
IEEE Computer Society, October 2010, pp. 247-256.

[2] ------ , "Parallel recursive state compression for free," in Proceedings o f
the 18th International SPIN Workshop, SPIN 2011, Snow Bird, Utah,
ser. Lecture Notes in Computer Science, A. Groce and M. Musuvathi,
Eds., vol. 6823. berlin: Springer Verlag, July 2011, pp. 38-56.

[3] T. van Dijk, E. M. Hahn, D. N. Jansen, Y. Li, T. Neele, M. Stoelinga,
A. Turrini, and L. Zhang, "A comparative study of bdd packages
for probabilistic symbolic model checking," in Dependable Software
Engineering: Theories, Tools, and Applications, X. Li, Z. Liu, and W. Yi,
Eds. Cham: Springer International Publishing, 2015, pp. 35-51.

[4] P.-A. Larson, "Dynamic hash tables," Commun. ACM, vol. 31, no. 4,
pp. 446-457, Apr. 1988. [Online], Available: http://doi.acm.org/10.
1145/42404.42410

[5] R. Pagh and F. F. Rodler, "Cuckoo hashing," J. Algorithms,
vol. 51, no. 2, pp. 122-144, May 2004. [Online], Available:
http://dx.doi.org/10.1016/j.jalgor.2003.12.002

[6] T. A. David, R. Guerraoui, T. Che, and V. Trigonakis, "Designing ascy-
compliant concurrent search data structures," p. 23, 2014, authors appear
in alphabetical order.

[7] T. Maier, P. Sanders, and R. Dementiev, "Concurrent hash tables: Fast
and general?!!)," CoRR, vol. abs/1601.04017, 2016. [Online], Available:
http://arxiv.org/abs/1601.04017

[8] N. L. Scouarnec, "Cuckoo++ hash tables: High-performance hash
tables for networking applications," CoRR, vol. abs/1712.09624, 2017.
[Online], Available: http://arxiv.org/abs/1712.09624

[9] W. A. Wulf and S. A. McKee, "Hitting the memory wall: implications
of the obvious," ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20-24, 1995.

[10] D. P. Mehta and S. Sahni, Handbook O f Data Structures And Applica­
tions (Chapman & Hall/Crc Computer and Information Science Series.).
Chapman & Hall/CRC, 2004.

[11] Intel, "Threading building block's concurrent hash map documentation,"
https://software.intel.com/en-us/node/506191, October 2018.

[12] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman, 'Algorithmic
improvements for fast concurrent cuckoo hashing," in Proceedings o f
the Ninth European Conference on Computer Systems, ser. EuroSys
'14. New York, NY, USA: ACM, 2014, pp. 27:1-27:14. [Online],
Available: http://doi.acm.org/10.1145/2592798.2592820

[13] ------ , "libcuckoo git repository," https://github.com/efficient/libcuckoo,
December 2018.

[14] J. Preshing, "Junction hash map blog post," http://preshing.com/
20160201/new-concurrent-hash-maps-for-cpp/, October 2018.

[15] M. M. Michael, "High performance dynamic lock-free hash tables
and list-based sets," in Proceedings o f the Fourteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, ser. SPAA '02.
New York, NY, USA: ACM, 2002, pp. 73-82. [Online], Available:
http://doi.acm.org/10.1145/564870.564881

[16] L. authors, "Libcds git repository," https://github.com/khizmax/libcds,
December 2018.

[17] M. Herlihy and N. Shavit, The Art o f Multiprocessor Programming. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[18] Facebook, "Folly git repository," https://github.com/facebook/folly/, De­
cember 2018.

[19] J. Barnat, P. Rockai, V. Still, and J. Weiser, "Fast, dynamically-sized
concurrent hash table," in Model Checking Software, B. Fischer and
J. Geldenhuys, Eds. Cham: Springer International Publishing, 2015,
pp. 49-65.

[20] W. Oortwijn, T. van Dijk, and J. van de Pol, "A distributed hash table
for shared memory," in Parallel Processing and Applied Mathematics,
ser. Lecture Notes in Computer Science, R. Wyrzykowski, E. Deelman,
J. Dongarra, K. Karczewski, J. Kitowski, and K. Wiatr, Eds. Springer,
9 2015, pp. 15-24, eemcs-eprint-26785.

[21] A. Wijs and D. Bosnacki, "Gpuexplore: Many-core on-the-fly state space
exploration using gpus," in Tools and Algorithms fo r the Construction
and Analysis o f Systems, E. Abraham and K. Havelund, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 233-247.

[22] R. De La Briandais, "File searching using variable length keys,"
in Papers Presented at the the March 3-5, 1959, Western Joint
Computer Conference, ser. IRE-AIEE-ACM '59 (Western). New
York, NY, USA: ACM, 1959, pp. 295-298. [Online], Available:
http://doi.acm.org/10.1145/1457838.1457895

[23] P. G. Jensen, K. G. Larsen, and J. Srba, "Ptrie: Data structure for
compressing and storing sets via prefix sharing," in Theoretical Aspects
o f Computing - ICTAC 2017, D. V. Hung and D. Kapur, Eds. Cham:
Springer International Publishing, 2017, pp. 248-265.

[24] M. Areias and R. Rocha, "A lock-free hash trie design for concurrent
tabled logic programs," Int. J. Parallel Program., vol. 44, no. 3,
pp. 386-406, Jun. 2016. [Online], Available: http://dx.doi.org/10.1007/
sl0766-014-0346-1

[25] "Hyper-threading technology architecture and microarchitecture," http:
//www.cs. virginia.edu/~mc2zk/cs451/vol6iss l_art01.pdf, Intel Corpora­
tion, February 2002.

[26] "Linux kernel numa memory policy," https://www.kernel.org/doc/
Documentation/vm/numajnemory_policy.txt, October 2018.

[27] F. Giunchiglia and P. Traverso, "Planning as model checking," in Recent
Advances in A l Planning, S. Biundo and M. Fox, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 1-20.

ISBN: 978-0-9835678-9-9. C opyright owned jo in tly by th e au th o rs and FM CAD, Inc 54

