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Abstract—Networks-on-chip (NoCs) have become a new chip
design paradigm as the size of transistors continues to shrink.
Globally-asynchronous locally-synchronous (GALS) on-chip net-
works are proposed for solving issues such as large clock tree
distribution and signal delay variations. More interestingly, for
the GALS networks using m-of-n delay-insensitive interconnect,
the asynchronous interconnect not only can be used for on-chip
interconnection, but also provides a simple, direct and power-
saving solution for off-chip interconnection.

This paper presents an asynchronous interface FIFO design
to improve throughput over asynchronous inter-chip links using
2-of-7 Non-Return-to-Zero (NRZ) encoding in an existing many-
core system. The proposed design is suitable for implementation
on commodity FPGAs without using the limited global clock
buffer resources, but involves using the FPGA to implement
asynchronous circuits. The interface FIFO is constructed from
the transition detectors themselves rather than by employing a
separate buffer in the more conventional fashion. The proposed
solution has been demonstrated in an existing system and is
suitable for adaptation to other asynchronous m-of-n NRZ coding
protocols for high-throughput communication.

I. INTRODUCTION

Packet switched network-on-chip (NoC) [1] [2] architec-
tures are proposed to replace bus-based networks for the
integration of a large number of design blocks. These blocks
are often confined to different clock domains for easy timing
closure; thus passing the signals between different clock
domains has become a normal design practice.

Globally-asynchronous locally-synchronous (GALS) net-
works [3] are proposed to solve the problems of large clock
tree distribution, delay variations and dynamic power con-
sumption. The delay-insensitive m-of-n asynchronous protocol
[4] can be used in GALS systems to simplify the imple-
mentation of on-chip network interconnect, as well as inter-
chip connection. However, chip-to-chip communication is a
critical factor and the more important objectives are latency,
throughput and power consumption [5]. In this paper, we
investigate the delay-insensitive asynchronous communication
scheme in an existing many-core GALS system [6]. Each chip
in the system has 6 asynchronous links that can be used to
connect multiple chips in a hexagonal mesh. The asynchronous
link is bidirectional and comprises two independent channels,
a transmitter (Tx) and a receiver (Rx), as shown in Figure 1.

The channels are implemented with a 2-of-7 non-return-to-
zero (NRZ) encoding [7] to minimise the number of transitions
required; a single NRZ ‘acknowledge’ wire completes the
handshake cycle. The 2-of-7 protocol was chosen for the
implementation because it has higher bit-transfer rate per wire
than the traditional dual-rail and 1-of-4 encodings. Therefore,
each link has 16 wires in total for both channels. These links
can be connected between the custom chips across a PCB
without timing concerns.

FPGAs can be used to interface multiple asynchronous
links and accumulate the communication speed. However,
commodity FPGAs are optimised for synchronous designs.
It is therefore important to capture the NRZ asynchronous
signals and convert them into a more tractable form as
soon as possible. A second conversion, from the synchronous

Fig. 1: A 2-of-7 asynchronous link

domain of a receiving FPGA back to an asynchronous link,
is also performed. The following descriptions apply primarily
to the buffer leading from the asynchronous domain to the
synchronous transmitter. An analogous process, in practice less
complex because the data translation is easier, can be used
between the synchronous receiver and the asynchronous links
on the destination PCB.

For digital designs, synchronisation is required to handle the
metastability problem [8] [9] from external asynchronous sig-
nals and prevent the synchronous circuit entering a metastable
state. Using a pair (or more) of flip-flops in series is a
simple approach to synchronisation. Figure 2 shows two-stage
synchronisers inserted in an asynchronous communication
circuit forming a handshaking loop. This type of synchroniser
imposes a delay which is large enough to be unacceptable in
the cycle time of each flit. If a 4-phase hand-shake protocol
is applied, the cycle time is doubled because an extra loop is
required to finish the return-to-zero handshaking phases.

Fig. 2: An asynchronous communication handshaking loop

II. RELATED WORK

The performance issue of interfacing between different
circuit domains has become one of the main problems to
overcome in various GALS networks. A number of researchers
have investigated the designs of reliable high-speed GALS
network interfaces. Dolkin et al. analyse the synchronisation
issues [10] in GALS systems. A bi-synchronous interface
FIFO for two clocked domains in a GALS system is pro-
posed by Panades et al. [11]. Asynchronous-to-synchronous
and synchronous-to-asynchronous interfaces using conven-
tional FIFOs [12] for Return-to-Zero (RZ) synchronisation
were developed by Beigne et al. [13] [14]. A fast transmitter
from synchronous to asynchronous domains by employing a
predictive sending scheme is also investigated by Yousefzadeh
et al [15].



This paper presents a complete interface FIFO design
between asynchronous and synchronous domains for high-
throughput NRZ synchronisation. In contrast to previous work,
the proposed design works for the NRZ protocol and is suitable
for the implementation on commodity FPGAs.

III. POTENTIAL SYNCHRONISER DESIGNS

Figure 3 shows the base design, which is completely syn-
chronous. This solution synchronises the NRZ data at the
input. A synchronous level-sensitive edge detection circuit is
implemented in the subsequent module. When a valid flit is
detected, the circuit enables the memory block to latch the
data and acknowledge the circuit.

Fig. 3: Immediate synchronisation

Practice reveals that the throughput of this design is lim-
ited. This is because the round-trip latency is impacted by
the synchroniser. Let’s consider an example with an FPGA
running at 300 MHz, a 2-of-7 code that transfers 4 bits data per
transaction and a latency of 8 ns on both sides, then the transfer
rate would be not more than 1/(2 ∗ (3.33 ns ∗ 2 + 8 ns)). The
asynchronous link functions correctly but becomes a network
bottleneck.

A more promising approach is to use a FIFO buffer allowing
asynchronous insertion (and acknowledgement) of each flit
with the synchronisation latency ‘concealed’ between this and
the synchronous read process. This removes the synchronisa-
tion penalty from the cycle at peak throughput; the response
of the asynchronous controller is still the critical timing factor
which can be minimised.

Fig. 4: Synchronising through a conventional FIFO

A speedup solution using a FIFO is shown in Figure 4. Here
the flit insertion into the FIFO is asynchronous and the flit
removal from the FIFO is synchronous; the synchronisation
(not explicitly shown) is done between the two pointers to

indicate the status of the FIFO, such as whether the buffer is
empty or not.

This approach requires the construction of self-timed cir-
cuits on the FPGA. In the cycle described above the incoming
signal triggers a series of sequential steps.

1) Two transitions arrive (asynchronously, independently)
on input wires. Each active input signal is translated
into a level using an edge detector (more details in
Section III-A).

2) A completion detector (Section III-B) identifies that a
complete flit has been received, synchronising the two
input signals.

3) The input code is copied into a conventional asyn-
chronous FIFO

4) The appropriate FIFO pointer is incremented.
5) The acknowledge signal is toggled; The edge detector is

reset in parallel – in this case using a self-timed pulse.

A. Transition-sensitive asynchronous Edge Detector
A custom fault-tolerant edge detection circuit was proposed

by Shi et al. [7]. A functionally equivalent implementation can
be constructed using D-type flip-flops (Figure 5), of which
the FPGA has an abundant supply. In this circuit, inputs are
connected to logic one and the circuit is driven by the signal’s
transition. The upper D-type flip-flop is used to detect a rising
edge of the transition signal and the bottom D-type flip-flop
detects a falling edge. Once the first valid transition is detected,
the output is asserted. After the circuit is reset, it will be ready
for detecting the next transition. However, the output signal
will not be de-asserted until the circuit is reset, therefore any
glitches between the first asserted output and the circuit reset
will be tolerated, giving the circuit the fault-tolerant feature.
This edge-detector also performs the function of converting
the 2-phase input into a 4-phase output. The circuit needs to
be reset by a 4-phase signal because the reset of a D-type
flip-flop is level sensitive.

Fig. 5: One-bit transition-sensitive edge detector on FPGA

B. Two-of-Seven Flit Detector and Coding Protocol
The flit detector combines the outputs from seven edge

detectors with a ‘completion detector’ circuit to validate the
arrival of a single flit. Each edge detector also contains a reset
signal which is not explicitly shown in the diagram. In the
2-of-7 coding protocol, there are 21 possible symbols. From
among these symbols, 16 are chosen to encode 4-bit values
and a further one is used for the EoP (End of Packet) signal.
Table I shows the 2-of-7 coding table which is designed to
simplify the logic needed to detect a complete flit, and the
corresponding completion detector is shown in Figure 6.

C. Non-Return-to-Zero Acknowledge signal
To finish the communication cycle, a Gray [16] encoded

pointer is designed to generate the 2-phase acknowledge
signal. The signal can be generated from the parity (exclusive-
OR tree) of the pointer and the Gray encoded pointer can be
used for synchronisation.



TABLE I: 2-of-7 coding table

Value
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 EoP

6th - - - - - - - - T T T T - - - - T
5th - - - - T T T T - - - - - - - - T
4th T T T T - - - - - - - - - - - - -
3rd - - - T - - - T - - - T - - T T -
1st - T - - - T - - - T - - T T - - -
2nd - - T - - - T - - - T - - T T - -
0th T - - - T - - - T - - - T - - T -

Fig. 6: Two-of-seven flit detector

D. Design concerns of using a conventional asynchronous
FIFO

Employing a FIFO (Figure 4) increases the communication
throughput because the asynchronous circuits can acknowl-
edge the asynchronous link without stalling for synchroni-
sation. The asynchronous circuit is designed with as few
components as possible to minimise the delay impact in
the critical path. This relieves the bottleneck between the
asynchronous link and the synchronous circuit.

However, there are a number of concerns in implementing
such circuits in an FPGA typically intended for synchronous
designs, and supported by tools which rely on clock assump-
tions. Manual intervention can be necessary to alleviate several
types of potential problems with the FPGA placement.

Timing constraints need to be satisfied, such as flip-flop set-
up and hold times, without introducing inordinate delays. For
example, the incoming code is held in the set of edge detectors
and its validity is indicated by the completion detector; the data
must reach the FIFO and be set up before the completion-
detected edge arrives, otherwise the set-up time is violated.
When the edge detectors are reset, the pulse must reach all
flip-flops intact – and be removed before a subsequent input
can arrive.

One way of alleviating the ‘clocking’ of the input registers
could be to use the clock distribution networks of the FPGA.
However the latency of these would be inordinately high, and
there would not be enough of these networks for interfacing
multiple asynchronous links.

Glitch control is also a potential problem. Synchronous
designs can afford to neglect the possibility of glitches;
asynchronous designs cannot always do so and it is important
to prevent their possibility in control circuits. These can be
alleviated by appropriate design choices, such as using Gray
codes, but race hazards should still be considered in the design.

IV. IMPROVED INTERFACE FIFO DESIGN

The FIFO synchroniser can hide the synchronisation latency.
However, using the conventional FIFO in the asynchronous
design imposes some timing assumptions on the storage
elements, which are hard to control in layout. Therefore,
an improved interface FIFO is presented in Figure 7. The
storage elements are constructed using the transition detectors,
which removes the above timing assumption. In addition, the
acknowledging arc is shortened in the following 4 sequential
actions. Rather than copying the recovered flit into a FIFO
the edge/flit detector can become a stage in the FIFO. This
means that the acknowledgement can be transmitted as soon
as the completion detector has verified the flit and the pointer
has moved to ensure the subsequent flit is directed elsewhere.
Now the series of sequential actions shortens as follows:

1) Two transitions arrive (asynchronously, independently)
on input wires; each active input signal is translated into
a level using an edge detector.

2) A flit detector identifies that a complete flit has been
received.

3) The appropriate asynchronous FIFO pointer is incre-
mented and directs the next input to the next flit detector.

4) The acknowledge signal is toggled and the edge detector
is reset.

The improved synchroniser solves the design concerns
discussed in the previous section. First, it does not have the
set-up and hold time violation hazard that arises when using
a conventional FIFO for NRZ synchronisation, because the
design of the flit detector is asynchronous. The data is saved
in the detection circuit, not moved to another separate buffer.
Second, a 4-phase reset signal can be generated from the Gray
encoded pointers.

Fig. 7: Asynchronous interface FIFO

A. Encoding for Asynchronous Pointers
The input pointer ‘JSwptr’ in Figure 7 is realised asyn-

chronously too. This is in the form of a Johnson counter [17]
but with each flip-flop clocked by its own flit detector. The
active position in the FIFO is indicated by the circulation
of a single, 2-phase edge; the edge can be detected by
exclusive-OR gates (shown in Figure 8) and used to enable the
subsequent flit detector in the cycle. The timing requirement
here is that the movement of the enable level (a ‘one hot’



code) needs to be settled before the arrival of the next flit. As
the competing timing constraint is to another chip and back,
this timing requirement will not be violated in practice. The
2-phase flit acknowledge can be produced from the parity of
the pointer output.

Fig. 8: Enable circuit for edge detector

Figure 9 shows a complete, eight entry flit detector FIFO.
There is some additional detail over Figure 5 illustrating the
use of the enable signal. (The additional feedback path here
ensures the edge detector stays ‘set’ until explicitly reset.)

Fig. 9: Eight-bit parallel Johnson pointer

B. Flow control in the receiver channel
The FIFO must not overrun; if it is filled the cycle must

be delayed. Instead of comparing two full-length pointers,
a special flow control scheme is applied here. The FIFO is
divided into two parts. The write pointer can write the first
half without stalling. When the write pointer reaches the end
of the first half, writing will stall if the read pointer falls behind
more than half of the FIFO. When the read pointer reads the
same half of the FIFO, the write pointer can proceed and write
the other half of the FIFO. Therefore, the full-state assertions
are fixed at the end of the two halves of the FIFO as shown
in Figure 10.

The read pointer, although synchronous, is also represented
as a Johnson counter for this reason. If the desired location is
still full during the assertion, the acknowledgement is delayed.

Comparing the full length of two pointers can introduce
significant delay to the communication response cycle and,
unless implemented with some care, introduce undesirable
glitches within the asynchronous circuit. Now the full assertion
only requires one bit of the read pointer. The simplicity of

Fig. 10: Flow control units in Johnson write pointer

the comparison diminishes these problems. This flow control
is a safe process without arbitration as any potential delay is
present before the incoming flit and can only terminate before,
during or after the flit’s arrival. An asymmetric C-element [18]
is implemented here to make the flow control unit more time
insensitive. The ‘full’ state assertion is made at the rising edge
of the flit detector unit.

C. Four-phase reset

Fig. 11: Four-phase reset signals in receiver channel

Again, a Johnson pointer is used to generate the 4-phase
reset signals. The flit detectors are divided into two parts which
are reset by two 4-phase signals (Figure 11). The 4-phase reset
signals are generated from the parity of two bits of the Johnson
pointer. However the circuit can only be reset after the valid
data is read. Therefore the ‘full’ assertion is moved one slot
forward to control whether the circuit can be reset or not.

D. Synchronous domain
The final issue is the synchronisation of the input pointer

to the clocked domain. This is done conventionally, with the
latency ‘concealed’ by the FIFO action. The associated delays
from a given flit detector to the synchronous circuit merely
have to be less than the individual synchronisation time – a
simple constraint to meet.

V. COMPLEMENTARY INTERFACE DESIGN

Section IV described the asynchronous-to-synchronous in-
terface. Figure 12 shows the interface design for a transmitter
based on similar principles. A set of four edge detectors is used
to buffer the acknowledge signal and build a four-bit Johnson
pointer to index eight memory locations; this is because it
moves through eight discrete states. Again, the design aims to
minimise the logic delays in the asynchronous cycle on the
FPGA. The series of sequential actions is listed below:

1) The acknowledge signal arrives on the input wire; the
active input signal triggers the edge detector and is
translated into a level.

2) A similar flow control mechanism is implemented in
the sender channel (Figure 13). The read pointer is
incremented asynchronously and when an NRZ encoded
flit is available at the head of the FIFO, it is output.



3) The NRZ code is output and the corresponding edge
detectors are reset by two 4-phase reset signals generated
from the Johnson read pointer (Figure 15).

Fig. 12: Acknowledge detector FIFO

A. Flow control in the sender channel
A similar flow control mechanism is applied here, but

the asynchronous circuits are in the reading domain. The
synchronous write pointer stalls when the difference between
the two pointers is equal to half of the FIFO. Here the empty
indication to the read pointer is local to each location rather
than the FIFO as a whole. This is derived by seeing that
the corresponding (actually the next) bit in the write pointer
is in the opposite state (shown in Figure 13). This flow
control mechanism along with Johnson pointers can simplify
the empty condition comparison in the reading domain.

Fig. 13: Flow control units in transmitter channel

The asymmetric C-elements are necessary for the flow
control unit here. If a normal AND gate is used, the asserted
output will toggle the current bit of the read pointer; the
changing bit feeds back to the flow control unit and causes the
output of the flow control unit to be de-asserted. However, the
related write pointer bit can change before the next assertion,
and thus result in a wrong flip in the flow control unit.

Therefore, the asymmetric C-elements are used to avoid
multiple flips in the flow control unit. The truth table and the

gate level implementation of an Asymmetric C-element are
shown in Figure 14. The output of the asymmetric C-element
is only de-asserted when port A is de-asserted. The assertion
only starts when port A goes to high. Generally, asymmetric
C-elements are recommended for use in the asynchronous flow
control unit, for safe operation and for time insensitivity.

Fig. 14: Truth table and circuit of an asymmetric C-element

B. Four-phase reset
Resetting the circuit is again performed by using two four-

phase reset signals generated from the Johnson pointer. The
detection circuit is divided into two halves. The fist half is reset
by the signal generated from the first two bits of the pointer.
The second half is reset by the signal generated from the
other two bits of the pointer. Comparing with the 4-phase reset
signals in the receiver channel, the transmitter reset signals are
generated without coordinating with the write pointer, because
no data needs to be extracted before resetting the circuit.

Fig. 15: Four-phase reset signals in transmitter channel

VI. MAPPING AND PLACEMENT ON FPGA
The implementation target is a 45 nm Xilinx Spartan-6

FPGA which is used in the existing many-core system. The
asynchronous circuits are mapped and placed as macros to
minimise the delay on the FPGA side. The asynchronous
components are designed by using and instantiating the FPGA
logic elements [19], which prevents the synthesis tool from
translating the behaviour model in an unexpected way and
thus breaking the sequential sequences.

Mapping and placement can be done using relationally
placed macros (RPMs), which provides a flexible way to
design dedicated IP blocks on a Xilinx FPGA. RPMs allow
users to do complete or partial mapping and placement in
the macros. Precise mapping can be done by instantiating
the FPGA logic elements in a hardware description language
(HDL) and the placement can be specified in the user con-
straint file (UCF). Logic devices within the macro are planned
based on relative coordinates and the whole macro can be
moved around on the FPGA die. Therefore, RPMs are easier
to manage and repeat than fixed hard macros.

For mapping asynchronous circuits, knowledge of the FPGA
architecture is required. The following description is applied
to the Xilinx Spartan-6 FPGA. Each configurable logic block
(CLB) has multiple slices that contain smaller logic units.



Each slice has 4 six-input look-up tables (LUTs) and 8 D-
type flip-flops. Some slices have more logic units such as carry
logic and wide multiplexers. Figure 16 shows the connectivity
between LUTs and flip-flops in the FPGA slice. Note every
slice shares a common reset signal. The clock signal or its
inverse is common to the whole slice.

Fig. 16: The elements’ connectivity in an FPGA slice

According to the manufacturer’s datasheet [20] [21], the
propagation delay of the LUT is 0.21 ns which is independent
of the implemented combinational function. Therefore, logic
delay can be minimised by mapping more combinational logic
in a single LUT, which also leads to a more compact layout.

A. Receiver floorplanning

An eight-entry asynchronous interface FIFO is built in the
receiver channel. Each bit of the link is clocking 8 edge
detectors. Each edge detector is mapped in a pair of D-type
flip-flops with two associated LUTs. The 8 D-type flip-flops
triggered by the rising edge of the signal are mapped in
two slices, because every slice shares a common clock signal
(uninverted or inverted). The other 8 flip-flops used to detect
the falling edge of the signal are mapped in another two slices.
The enable logic which only requires 3 inputs can be mapped
in the associated LUTs.

For the mapping of the completion detector, if one logic gate
is mapped in one LUT, the longest path will traverse 4 LUTs
and more delay will be introduced in the routing. Logic and
routing delay can be reduced by mapping more combinational
logic on a single LUT. Therefore, the optimised mapping is
shown in Figure 17. The four C-elements and the output logic
are mapped in one LUT with a feedback signal. Therefore, the
longest path now only consists of two LUTs.

Fig. 17: Mapping of the completion detector

The eight-bit Johnson pointer is mapped and placed into
8 different slices driven by the completion signals from flit
detectors, because each slice only has a single clock port. The
acknowledge signal is generated from the parity of the 8-bit
Johnson pointer. This 8-input exclusive-OR function is mapped
in 2 LUTs and placed in the centre of the macro. Finally,
two reset signals (two exclusive-OR gates) are mapped in two
LUTs and also placed in the centre. The floorplanning is shown
in Figure 18.

Fig. 18: Receiver layout

B. Transmitter floorplanning
A four-bit asynchronous Johnson pointer is implemented to

output an eight-entry FIFO. An alternative implementation for
the edge detector using LUTs is shown in Figure 19. For this
implementation, the edge detector can be mapped in 3 LUTs,
and thus 12 LUTs in total for 4 edge detectors. The flow
control units are mapped in 4 LUTs. The four-bit Johnson
pointer occupies 4 slices to map 4 D-type flip-flops and 1
associated LUT. Finally two reset signals are mapped in 2
spare LUTs in the transmitter macro.

Fig. 19: Mapping of the asynchronous transmitter

The implementation using LUTs to detect edges eliminates
the problem of single clock provision in a single FPGA slice.
Therefore, the four edge detectors can be placed in the macro
without occupying separate slices. The enable circuits can also
be placed in the spare LUTs in the macro. Figure 20 shows
the layout design of the transmitter channel in the PlanAhead
tool.

VII. RESULTS

Asynchronous communication throughput is limited by the
time to finish the handshake protocol. The proposed interface
design achieves higher throughput by reducing the delay on



Fig. 20: Transmitter layout

the FPGA side and hiding the synchronisation latency behind
the FIFO. The 2-of-7 asynchronous link runs at an average
speed of 240 Mbps allowing 16 ns (giving 8 ns for each
side) to finish a communication cycle. The throughput of the
immediate synchronisation solution is about 150 Mbps costing
more than 26 ns.

A. Elements constraints in the interface macros
Table II shows the number of FPGA logic elements mapped

and placed in the interface macros. In the receiver channel, the
edge detectors contain 112 flip-flops and associated 112 LUTs
(7 inputs * 8 entries * a pair of flip-flops and LUTs) in the
area of 28 FPGA slices. The completion detector is mapped
in 32 LUTs (4 CDs * 8 entries) in the area of 8 FPGA slices.
The Johnson pointer is mapped in 8 flip-flops and 1 LUT in
the central area. The output logic of the completion detector
(1 LUT * 8 entries) are also placed in this area. The centre
area also contains 2 LUTs of the acknowledge signal and 2
LUTs of the reset signals.

In the transmitter channel, the Johnson pointer is placed in 4
different FPGA slices consisting of 4 flip-flops and 1 LUT. The
other elements are mapped and placed in the same area. The
edge detection contains 8 LUTs (a pair of LUTs * 4 entries)
and another 4 LUTs for the enable circuits. The completion
detection and the flow control units are mapped in 4 LUTs.
The reset signals are mapped in 2 LUTs.

TABLE II: Asynchronous macro constraints

Receiver Sender
ED CD1 CD2 JS ACK RST ED CD JS RST

FF 112 - - 8 - - - - 4 -
LUT 112 32 8 1 2 2 12 4 1 2
INST 224 32 8 9 2 2 12 4 5 2

SLICE 28 8 8 4
Total 277 elements in 44 Slices 23 elements in 4 Slices

B. Critical path delay analysis
All the logic delay can be calculated from the vendor’s

datasheet and the internal FPGA routing delay can be in-
spected in the Xilinx FPGA editor. From the Spartan-6 FPGA
datasheet, the clock to output delay of a D-type flip-flop is
about 0.45 ns. The input pad delay is about 1.2 ns. The output
pad delay varies depending on the settings of slew rate and
driving strength. A setting of the output pad with fast slew
rate and 12 mA drive strength gives an output pad delay of
about 1.71 ns.

For the receiver channel, the propagation delay through
the edge detector may be larger than 0.45 ns because two
transitions are independent and asynchronous. Transitions may

arrive at different times. The total logic delay through the
FPGA is listed in the following steps, totalling about 4.65 ns.

1) The 2-of-7 asynchronous inputs go through the FPGA
input pads which have a delay about 1.2 ns.

2) When two transitions arrive, two D-type flip-flops are
triggered where the clock to output delay for one tran-
sition is 0.45 ns.

3) The completion detection of the flit detector and the flow
control unit (the full flag - asymmetric C-element) are
mapped in two LUTs where the delay is 2×0.21 ns.

4) The Johnson write pointer is incremented where the
clock to output delay is 0.45 ns.

5) The parity generator is mapped in two LUTs where the
delay is 2×0.21 ns.

6) The acknowledge signal goes out of the FPGA output
pads which have a delay of about 1.71 ns for the setting
with fast slew rate and 12 mA drive strength.

For the Transmitter channel, the element delay is listed in
the following sequence, which is 3.99 ns in total:

1) The acknowledge input signal goes through an FPGA
input pad which has a delay of about 1.2 ns.

2) When two transitions arrive, the LUT based edge detec-
tors are triggered where the LUT delay is about 0.21 ns.

3) The completion detection and flow control unit (the
empty flag - asymmetric C element) are mapped in one
LUT where the delay is also 0.21 ns.

4) The Johnson read pointer is incremented where the clock
to output delay is 0.45 ns.

5) The read pointer is used to address the Distributed RAM
to read the NRZ codes, where the address to output delay
is 0.21 ns.

6) The NRZ encoded data goes through the FPGA output
pad having a delay about 1.71 for the setting of fast slew
rate and 12 mA drive strength.

The routing delay not inspected here can also impact the
communication throughput significantly. The routing delay of
an FPGA design can be greater than the logic delay. However,
the routing delay can be better controlled in a dedicated layout
design. The measured throughput result is presented in the next
section.
C. Throughput result comparison

Table III and IV show the measured throughput results
(Mbps) of the base design and the asynchronous design in
different experimental setups. Both designs have been subject
to a data integrity test, and then tested under different frequen-
cies and different settings of the FPGA pads to show the delay
impact. The default FPGA ouput pad setting is slow slew rate
with 12 mA drive strength. The experimental setups have been
chosen as follows: Quiet slew rate + 2 mA driving strength
per output pad (5.92 ns, slowest); Slow + 6 mA per pad (3 ns,
medium); and Fast + 12 mA per pad (1.71 ns, fastest).

TABLE III: Transmitter throughput comparison
Transmitter

100Mhz 150Mhz
Base Async Impro Base Async Impro

Quiet 100.01 222.95 2.23x 120.03 223.26 1.86x
Slow 100.01 274.74 2.75x 150.04 275.18 1.83x
Fast 100.01 296.82 2.97x 150.04 297.04 1.98x

TABLE IV: Receiver throughput comparison
Receiver

100Mhz 150Mhz
Base Async Impro Base Async Impro

Quiet 115.46 236.19 2.05x 139.88 236.28 1.69x
Slow 118.93 280.24 2.36x 165.40 280.37 1.70x
Fast 136.66 283.27 2.07x 165.40 299.02 1.81x



VIII. CONCLUSION

This paper presents a novel asynchronous interface FIFO
design for interfacing delay insensitive inter-chip links with
synchronous circuits; it is optimised for an FPGA imple-
mentation. As such it exploits D-type flip flops for elements
such as edge/flit detectors for fast NRZ synchronisation. The
throughput is increased by hiding the synchronisation delay
behind a FIFO and minimising the delay in the asynchronous
communication cycle. The critical asynchronous paths feature
causal signal chains so are immune to layout delays and skew;
timing sensitive paths are handled by dedicated layout design,
chiefly relying on the synchronous part of the circuit as a
reference. The interface has been designed as macros to aid
automatic place-and-route at macro level, thus simplifying the
implementation and improving portability.

The proposed Johnson-encoded asynchronous pointers pro-
vide a simple comparison circuit for the flow control signals
which can also be applied in synchronous design. The pointer
output is also used to generate enable signals and 4-phase
reset signals for edge/flit detectors. The simplified enable
signal has faster switching to next edge/flit detector. The result
shows a significant improvement compared to the immediate
synchronisation solution.

The exploitation of the state holding properties, such as the
flit detectors, has allowed a considerable performance gain. At
the same time the asynchronous pointers allow an implemen-
tation in an FPGA relieved of most timing considerations. This
paper has dealt with the 2-of-7 NRZ protocol in an existing
many-core system, but the proposed asynchronous FIFO can
be applied to other m-of-n protocols. Furthermore, an extended
ASIC version can be developed to improve the synchronisation
throughput in an ASIC GALS system if the asynchronous
networks employ a delay-insensitive m-of-n NRZ protocol for
the interconnects.
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