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Abstract—Extractive keyphrase generation research has been
around since the nineties, but the more advanced abstractive
approach based on the encoder-decoder framework and sequence-
to-sequence learning has been explored only recently. In fact,
more than a dozen of abstractive methods have been proposed in
the last three years, producing meaningful keyphrases and achiev-
ing state-of-the-art scores. In this survey, we examine various
aspects of the extractive keyphrase generation methods and focus
mostly on the more recent abstractive methods that are based on
neural networks. We pay particular attention to the mechanisms
that have driven the perfection of the later. A huge collection of
scientific article metadata and the corresponding keyphrases is
created and released for the research community. We also present
various keyphrase generation and text summarization research
patterns and trends of the last two decades.

I. INTRODUCTION

A keyphrase or a keyword (here we use them interchange-
ably) is a short set of one or a few words that represent a
concept or a topic covered in a document. They are commonly
used to annotate articles or other documents and are essential
for the categorization and fast retrieval of such items in digital
libraries. A keyphrase string, on the other hand, is a set
of comma-separated (other separators may be used as well)
keyphrases associated with an article or a different type of
object, describing the content and topical aspects of it.

Because of their high importance and the need to process
huge amounts of documents with missing keyphrases, KG
(Keyphrase Generation) attracted high academic interest since
the 90s. Some basic works of that time such as [1], [2], and [3]
used text features and supervised learning algorithms (popular
at that time) to extract keywords from documents. Improved
supervised methods like [4], [5], and [6], graph-based methods
like [7], [8], and [9], or other unsupervised KG methods such
as [10] and [11] were proposed in the 2000s.

Extractive KG became so popular in the 2000s and early
2010s, that the entire research field was commonly called
KE (Keyphrase Extraction). This success was mainly due to
the simplicity and speed of the proposed solutions. There is
still a serious flaw in extractive KG: the inability to produce
absent keyphrases (predicted keyphrases that do not appear in
the source text). Analyzing the most popular datasets, [12]
showed that present (predicted keyphrases that also appear
in the source text) and absent keyphrases assigned by paper
authors are almost equally frequent. Ignoring the later is thus
a serious handicap.

Motivated by the advances in sequence-to-sequence ap-
plications of neural networks, several studies like [12] or
[13] started to explore AKG (Abstractive Keyphrase Genera-
tion). The encoder-decoder (or sequence-to-sequence learning)

paradigm that was first utilized in the context of machine
translation (e.g., in [14], [15] or [16]) got quick adaption in
related tasks such as text summarization (like in [17] and [18])
or AKG. Since that time, AKG research took over and is today
a vibrant field of study.

In this survey, we start by reviewing the most popular KE
methods, specifically the supervised, the graph-based and the
other unsupervised ones. We go on describing the popular
existing keyphrase datasets and present OAGKX, a novel and
huge collection of about 23 million metadata samples (titles,
abstracts, and keyphrase strings) from scientific articles that is
released online (http://hdl.handle.net/11234/1-3062). It can be
used as a data source to train deep supervised KG methods
or to create byproducts (other keyphrase datasets) from more
specific scientific disciplines.

Unlike similar recent reviews such as [19], [20], or [21]
that focus entirely on extractive KG (or KE), the main interest
of this work in the more recent and technically advanced AKG
studies which are examined in details. Particular attention is
paid to the network structures and the enhancement mecha-
nisms, as well as to the evaluation process the authors follow.
We also describe certain research patterns that we observed
such as the interesting analogy with similar developments in
text summarization research.

II. EXTRACTIVE KEYPHRASE GENERATION

Extractive keyphrase generation methods are simpler and
appeared in the literature in the late 90s. They usually follow
two steps. First, candidate phrases are selected from the
document. Different strategies are latter applied to decide if
each candidate is a keyphrase or not. The following subsections
briefly describe the most popular extractive methods. More
comprehensive and detailed reviews entirely focused on KE
can be found in other surveys such as [19].

A. Supervised Methods

One of the first studies that considered KG as a super-
vised learning problem was [3]. In that study, the author
experimented with texts from journal articles, email messages,
and Web pages. Some of the used features were word fre-
quency, phrase length, number of words in phrase, etc. C4.5
decision tree algorithm of [22] was utilized as a classifier,
in combination with a bagging procedure based on random
sampling with replacement presented at [23]. The author also
experimented with GenEx, an algorithm described in [2] that
was specifically designed to extract document keyphrases. He
concluded that domain knowledge is highly valuable in the
keyphrase extraction process and GenEx (using that knowl-
edge) performs significantly better than C4.5 (not using it).

http://arxiv.org/abs/1910.05059v1
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This work encouraged other researchers to develop supervised
learning methods for solving KE problems.

Almost at the same time, KEA (Keyphrase Extraction
Algorithm), a language-independent supervised KG algorithm
was developed and presented in [1]. It uses features like
TF-IDF and first occurrence and then applies Naïve Bayes
classifier to determine if candidate phrases are keyphrases or
not. Authors evaluate KEA using NZDL dataset (see Table I)
and report that it is able to correctly identify one or two of the
first five author keyphrases.

The development of Maui, a similar algorithm presented in
[5] was a further step forward. Maui extends KEA in several
ways. It combines more feature types and exploits Wikipedia
articles as a source of linguistic knowledge. Furthermore, Maui
can work well with both Naïve Bayes and bagged decision tree
classifiers.

Some attempts explore various feature setups for improving
the existing methods. The author in [24] investigates the role of
additional features like n-grams, noun phrases, POS tags, etc.
She concludes that using words or n-grams that match POS
tag patterns increases the recall compared to the usage of n-
grams only. Furthermore, according to her results, the syntactic
information of the POS tags is also important for optimizing
the number of keyphrases assigned to each document. The
author also creates and uses Inspec, a dataset of scientific
paper metadata. Other studies like [25] or [26] that followed
also experimented with scientific paper texts, a practice that is
common even today.

The logical structure of a scientific article is defined in
[27] as the hierarchy of its logical components like title,
list of authors, abstract and sections. Authors of [6] use that
logical structure to build WINGNUS by limiting the number
of identified candidate phrases. They further use different
features like length of phrases, typeface and position (in title,
introduction, etc.) for training the Weka implementation of
Naïve Bayes (presented in [28]) to select the best candidates.
Authors conclude that using the logical structure of the scien-
tific articles yields superior performance over methods that do
not consider that information.

In [29] they experimented by adding syntactic relations
extracted with the dependency parser of [30]. They also tried
different classifiers like Support Vector Machines of [31] and
Random Forests of [32]. According to their results, the NLP-
based features improve F1 scores of all the tested methods.
They also concluded that Random Forest is a good trade-off
between keyphrase quality and generation speed.

There were also a few studies that applied neural network
structures to perform extractive KG. In [4], for example, they
used a feed-forward neural network as a classifier and paid
particular attention to title headings (also subheadings) and
phrase repetitions. Authors of [33], on the other hand, utilized
a more complex neural network structure based on LSTMs
(Long Short-Term Memory) to build an end-to-end keyphrase
extraction system that eliminates the need for manual engi-
neering of statistical features.

B. Graph-Based Methods

From the unsupervised extractive KG methods, those based
on graph computations are the most numerous. In [34] they
introduced TextRank, a graph-based ranking method inspired
by the PageRank algorithm of [35]. They implement the idea
of “voting”: a vertex that represents a word or phrase (lexical
unit) links to another one, casting a vote in the later. A higher
number of votes to certain words or phrases suggests that they
are more important. All lexical units of the source text are
ranked this way. The returned keyphrases are constructed from
the top N words.

Authors of [7] use the concept of the neighborhood of
a given document: a set of similar documents that expands
that document. They later employ PageRank on the local
graph (of a single document) or the expanded graph (of the
neighborhood) to rank the words and phrases. SingleRank and
ExpandRank are the names of the corresponding methods they
derive. The authors report that ExpandRank is significantly
better than SingleRank for any size of the neighborhood.

In [36] they follow a similar approach to formulate Cite-
TextRank. Authors use the documents citing the given doc-
ument (citation network) to expand it and then they apply
PageRank. TopicRank defined in [9] is another improvement
over TextRank. It first clusters lexical units of the document
according to their topic. Afterwards, it uses a graph-based
ranking model to assign scores to the topic clusters. Finally,
keyphrases are generated by picking one of them from each
ranked cluster.

One of the fastest available KE methods is RAKE proposed
in [8]. Authors first remove punctuation and stop words and
then create a graph of word co-occurrences. Candidate words
are scored based on the degree and frequency of each word
vertice in the graph. The top-scoring ones are returned as
keyphrases. Authors report that RAKE achieves higher preci-
sion and similar recall when compared with other graph-based
methods like TextRank.

PositionRank is yet another graph-based KE approach
recently proposed by [37]. They construct a word-level graph
where they incorporate information from positions of all word
occurrences. PageRank is later used to score the words and
phrases. Authors show that using positions of all word oc-
currences works better than using the first occurrence of each
word only.

C. Other Methods

Besides the two categories above, there are also other unsu-
pervised methods that are not graph-based. They mostly utilize
clustering and various similarity measures to find the best
keyphrases. A very simple scheme uses TF-IDF to compute
scores and rank text phrases of the entire document. This raw
approach is one of the most frequent baselines in other studies
that propose KG methods.

Authors of [38] proposes another basic approach based on
term frequencies and stopword filtering. In [10] they argue that
KG systems should be unsupervised and domain-independent.
They build a KG system based on loosely structured ontolo-
gies. Authors of [39] rely on Deep Belief Networks described



in [40] to capture the intrinsic representations of documents
and using them to extract keyphrases.

Another peculiar approach is the one by [41] who consider
keyphrasing as a form of translation from the language of the
document to the language of keyphrases. They use word align-
ment from statistical machine translation to learn matching
probabilities between document words and keyphrase words.

Statistical language models are also used by [42] who
utilize Kullback-Leibler divergence described in [43] to create
a single score (including phraseness and informativeness) for
ranking extracted phrases. YAKE! presented in [11] is another
example of an unsupervised and feature-based extractive KG
solution. They utilize features like casing, word position, word
frequency, and more, combined in a complex scoring function
that is used to yield the ranked keyphrases.

There is also a recent attempt in [44] to use the concept
of word embeddings in the context of the unsupervised KE.
Authors propose Key2Vec, a method for training phrase (multi-
word) embeddings which are used to represent the candidate
keyphrases and build the thematic representation of the docu-
ment. The candidate keyphrases are later ranked based on their
thematic relation with the document using the theme-weighted
PageRank algorithm of [45].

The many extractive (supervised, graph-based or other)
KG methods described in this section are complementary
and may be used in different scenarios and for different
purposes. To ease their implementation and benchmarking, the
author of [46] created PKE, a Python toolkit available online
(https://github.com/boudinfl/pke). It implements many of the
above methods, offers pretrained and ready to use KE models
and can also be easily extended to implement or benchmark
new methods.

III. KEYPHRASE DATASETS

A. Popular Corpora

The recent open data initiatives and data science compe-
titions have encouraged the creation and sharing of more and
more datasets. There are papers like [47] that release data
about movies, [48] about music, [49] about books and [50] that
describes data of other object categories. The computational
linguistics or natural language processing datasets consist of
various text collections that are used to solve particular tasks.
In the realm of KG, the most popular in the literature are the
collections of scientific articles shown in Table I.

Inspec is one of the earliest datasets, released in [24] where
the role of various linguistic features in KE is explored. It
consists of 2000 paper titles (1500 for training and 500 for
testing), abstracts and keywords from journals of Information
Technology, published from 1998 to 2002.

One of the smallest is NUS of [51], consisting of 211
conference papers. Each paper has two sets of keyphrases: one
set by the authors and a second that was created by volunteer
students. Another small dataset is SemEval (or SemEval-
2010) described in [52]. It is composed of 244 papers, 144
for training and 100 for testing. They were collected from
ACM Digital Library and belong to conference and workshop
proceedings.

TABLE I. PUBLIC KEYPHRASE DATASETS

Reference Name Content # Docs

[24] Hulth Inspec Papers 2000

[51] Nguyen NUS Papers 211

[52] Kim SemEval Papers 244

[7] Wan DUC News 308

[29] Krapivin Krapivin Papers 2304

[53] Zhang Twitter Tweets 147K

[12] Meng KP20k Papers 567K

[1] Witten NZDL Reports 1800

Krapivin, the dataset released in [29] has the advantage
of providing full paper texts together with the corresponding
metadata. There is a total of 2304 Computer Science articles
published by ACM from 2003 to 2005. The parts of each text
such as title, abstract and sections are separated and marked
to ease the extraction of various keyphrases.

The most popular KG dataset of the recent years is prob-
ably KP20k released in [12]. It consists of 567830 Computer
Science articles, 527830 for training, 20K for validation and
20K for testing. KP20k has been used for training and evaluat-
ing various recent abstractive methods. The biggest keyphrase
dataset is probably OAGK recently released in [59]. It contains
2.2M titles, abstracts and keyphrase strings of scientific papers
from different disciplines.

The above scientific paper datasets are summarized in
Table I. There are also a few more datasets of other document
types, but they are less popular in the literature. One of them
is NZDL, a collection of 1800 Computer Science technical
reports, 1300 for training and 500 for testing. It is described in
[1]. Authors use it to benchmark KEA, their extractive method
which was one of the first.

From the news domain, the DUC (or DUC-2001) dataset
of [7] is somehow popular. It consists of 308 news articles and
2048 keyphrase labels and has been used in a few extractive
and abstractive KG methods. In [53] they create a dataset of
about 147K tweets and their corresponding tags. Authors use
it to evaluate their model for hashtag prediction. Authors of
[54] use a dataset of 815 Web pages and the corresponding
extracted keywords for addressing advertisements.

The two most recent datasets are probably StackExchange
(post topics) and TextWorld (game observations and com-
mands) created and used by [55]. Similar datasets can be found
in other works like [56], [57] or [58].

B. A Novel and Huge Data Collection

Experimenting with keyphrases of scientific papers seems
an ongoing trend that is greatly motivated by the availability
of data in online academic repositories. Following the exam-
ples of [59] and [60], we took the initiative to produce an
even larger collection of scientific paper keywords, titles and
abstracts. Exploiting the whole data of Open Academic Graph
(described in [61] and [62]), we retrieved keywords, title and
abstract data wherever they were available. A language filter
was applied to remove every text record not in English. We also
lowercased and utilized Stanford CoreNLP of [63] to tokenize
the title and abstract texts.

https://github.com/boudinfl/pke


TABLE II. TOKEN STATISTICS OF OAGKX

Attribute Title Abstract Keywords

Total 290 M 4 B 270 M

Min / Max 3 / 25 50 / 400 2 / 60

Mean 12.8 (4.9) 175.1 (86.5) 11.9 (7.5)

Overlaps 78 % (17 %) 68 % (25 %)

Since there were several articles with very short or very
long text fields (outliers), we removed any record with a title
not within 3-25 tokens, abstract not within 50-400 tokens or
keyphrase strings not within 2-60 tokens. We also removed
records with a number of keyphrases now within 2-12. The
obtained dataset is OAGKX, a collection of about 23 million
article metadata records.

Some basic statistics regarding the distribution of tokens
in title, Abstract and Keywords fields of the articles can be
found in Table II. As we can see, the average lengths are about
13 tokens for the titles, 175 tokens for the abstracts, and 12
tokens for the keyphrase strings (standard deviation is given
in parenthesis). We also computed the token overlaps between
abstracts and titles, and between abstracts and keyphrase

strings. The overlap o(s, t) = |{s}∩{t}|
|{t}| between two token

vectors s (source) and t (target) is the fraction of unique tokens
in t that overlap with a source token in s. As we can see, there
is high repetition of abstract words, both in titles (78 %) and
in keyphrases (68 %).

We further observed the distribution of keyphrases. The
corresponding statistics are shown in Table III. There is a total
of about 133 million keyphrases with an average of about 6
in each article. The minimal and maximal of keyphrases in
each record is 2 and 12 respectively. In KG experiments, it is
also important to check the frequencies of the keyphrases that
are present and absent in the source texts. The present fraction

p(s, k) = |k ∩ s|
|k| is the fraction of the keyphrases k that do

appear in the source text s. The absent fraction a(s, k) =
|k|−|k ∩ s|

|k| is the its complement, or in other words the fraction

of the keyphrases k that do not appear in the source text s. As
we can see, OAGKX present and absent keyphrases are almost
equally frequent (52.7 % vs. 47.3 %). This is in line with the
observation of [12].

Using three extractive methods described in Section II,
We performed some preliminary experiments with OAGKX
data. We picked YAKE!, RAKE and TopicRank which are
simple and used them with their default parameters in each
implementation. Given that they are unsupervised and require
test data only, we picked a big test cut of 100K samples from
the entire OAGKX. In addition to the preprocessing steps
described above which were performed on entire OAGKX
collection, we also replaced digit symbols with # and joined
each title and abstract in common source string. The length of
this source string was limited to 260 tokens (a paper abstract
and the title should not be longer).

For the evaluation, we used F1 score of full matches
between predicted keyphrases from each method and those
available in the data record (author keyphrases). We computed
F1 scores on top 5, top 7 and top 10 returned keywords.
Before comparing, both sets of terms were stemmed with
Porter Stemmer and duplicates were removed. The obtained

TABLE III. KEYWORD STATISTICS OF OAGKX

Attribute Value

Total 133 295 056
Min / Max 2 / 12
Mean 5.9 (3.1)
Present 52.7 % (28.3 %)
Absent 47.3 % (28.3 %)

results are presented in Table IV. As we can see, the best of
the three methods is YAKE, with top F1@10 score of 21.86 %.
We also observed that RAKE was considerably faster than the
two other methods.

To have an idea about the topic distribution of OAGKX
articles, we inspected a few randomly picked data records.
We noticed that they belong to various scientific disciplines,
with medicine (and its research directions) being dominant.
There are also many papers about economics, social sciences
or different technical disciplines. To our best knowledge, this
is the biggest available collection of scientific paper data and
the corresponding keyphrases. The value of OAGKX is thus
twofold: (i) It can supplement the existing datasets if more
training data are required. (ii) It can serve as a data source
for creating scientific article subsets of more specific scientific
disciplines or domains.

IV. ABSTRACTIVE KEYPHRASE GENERATION

In this section, the recent AKG methods based on the
encoder-decoder framework are examined in detail. Table V
summarizes some of their neural network properties, together
with the evaluation data and metrics used by the authors.

A. Basic Neural Network Models

The authors of [53] were among the first to try RNNs (Re-
current Network Networks) for generating keyphrases (actually
hashtags) of tweets. They adopt a joint-layer RNN with two
hidden layers and two output ones. The latter are combined to
form the objective layer (keyword or not). Authors build and
refine a big dataset of tweets and the corresponding hashtags
(keywords in this context) for evaluating their method. The
basic LSTM of [64] and AKET, a tool for keyword extraction
on tweets described in [65] are used as comparison baselines.
Superior scores of 80.74 %, 81.19 % and 80.97 % are reported
in terms of P (Precision), R (Recall) and F1 respectively.

Another important work is [12], the first to adapt the
encoder-decoder framework for AKG. Their CopyRNN model
has an encoder that creates a hidden representation of the
source text and a decoder that generates the keyphrases based
on that representation. They employ a bidirectional GRU of
[14] as the encoder and a forward GRU as the decoder.
Keyphrase generation involves a beam search described in [66]
with max depth 6 and beam size 200. The attention mechanism
of [66] and copying mechanism of [67] are implemented
to improve performance and alleviate the out-of-vocabulary
words problem.

Authors evaluate CopyRNN on Inspec, Krapivin, NUS and
SemEval and KP20k (IKNSK for short) datasets. Comparing
with previous extractive approaches, they report state-of-the-
art results in terms of F1@5 (0.328 on KP20k) and F1@10



TABLE IV. KE SCORES ON OAGKX (100K)

Method F1@5 F1@7 F1@10

YAKE! 19.27 21.49 21.86

RAKE 14.39 17.51 18.22

TopicRank 16.68 20.12 20.14

(0.255 on KP20k) scores for present keyphrases. They also
report top scores on R@10 and R@50 for absent keyphrases.
Their work created a roadmap of using the encoder-decoder
framework for AKG that has been followed by many other
researchers in these last three years.

In [68] they tried to optimize the speed of CopyRNN
building CopyCNN made up of CNNs (Convolutional Neural
Networks) which work in parallel. CNN layers are stacked
on top of each other to process variable-length input text
representations and gated linear units are used as the non-
linearity function, same as in [69]. They also use position
embeddings combined with input word embeddings to pre-
serve the sequence order. Authors test their method using
IKNSK and compare against several extractive methods and
CopyRNN. They report slightly higher performance scores (in
F1@5, F1@10, R@10, and R@50) compared to CopyRNN of
[12]. Their model is also considerably faster, with generation
times at least 6.2x lower.

Furthermore, authors in [13] tried to improve another
aspect of CopyRNN, handling of keyword repetitions during
generation. They build their model (CovRNN) utilizing a bidi-
rectional GRU for encoding and a forward GRU for decoding.
To consider the correlation of the generated target keyphrases
with each other (avoiding repetitions), they implement the
coverage mechanism of [70]. Same data (training on KP20k
and evaluation on IKNSK) setups are used. The authors com-
pare against extractive methods and CopyRNN. They report
slightly better results compared to CopyRNN on both present
(using F1@4 and F1@8) and absent (using R@10 and R@50)
keyphrases.

B. Enhanced and Hybrid Solutions

Many works followed, improving different aspects of AKG.
Authors of [71] propose a solution for handling repetition
and increasing keyphrase diversity. Besides using coverage,
they also implement a review mechanism that considers the
source context as well as a target context (collection of hidden
states) before predicting (decoding) the next keyphrase. Same
as above, they implement their model (CorrRNN) with bidi-
rectional GRU, forward GRU and beam search. They utilize
the training part of KP20k and evaluate on NUS, SemEval
and Krapivin datasets, comparing against several extractive
methods and CopyRNN. Given that keyphrase diversity is
important, besides the typical F1 and R metrics, they also
utilize α-NDCG of [72]. The authors report improvements on
all reported metrics. Peak scores of 0.318 in F1@5 and 0.278
in F1@10 are reached on Krapivin dataset. They also assess the
generalization ability of their model by training it with articles
and testing it on news using DUC dataset.

All the above methods are supervised and depend on
labeled training data which are not available for certain do-
mains. In [73] they try to overcome this limitation using two
approaches. In the first one, they tag unlabeled documents with

synthetic keyphrases obtained from unsupervised methods and
use them for model pretraining. The pretrained model is later
tuned on the labeled data. In the second one, they use multitask
learning by combining the task of AKG based on labeled data
with the task of title generation (a form of text summarization)
on unlabeled data.

Both tasks are implemented with a bilinear LSTM as the
encoder and a plain LSTM as the decoder. In the multitask
learning case, the encoder is shared by the two tasks wheres
the decoders are different. Authors use KP20k as a source of
labeled and unlabeled data and evaluate on IKNSK. A cross-
domain test with news data (DUC dataset) is also performed.
Their models outrun CopyRNN on all reported metrics (F1@5,
F1@10 and R@10) reaching a peak score of 0.308 in F1@5
on KP20k test set.

Authors of [74] try to inject the power of extraction
and retrieval into the encoder-decoder framework. A neural
sequence learning model is used to compute the probability of
being a keyword for each word in the source text. Those values
are later used to modify the copying probability distribution
of the decoder, helping the later to detect the most important
words. They also use a retriever to find documents annotated
similarly which provide external knowledge for the decoder
and guide the generation of the keyphrases for the given
document. Finally, a merging module puts together the ex-
tracted, retrieved, and generated candidates, producing the final
predictions. The authors use the same data and evaluation setup
as above. They report superior scores of 0.317 in F1@5 and
0.282 in F1@10 for present keyphrases as well as significant
improvements in R@10 scores for absent keyphrases.

Furthermore, in [75], they emphasize the important role
of article title which indeed can be considered as a high-
level summary of the text. Their solution (TG-Net) uses
a complex encoder made up of three main parts. First, a
bidirectional GRU is used to separately encode the source text
(abstract + title) and the title in their corresponding contextual
representations. Second, a matching layer catches the relevant
title information for each context word using their semantic
relation. Finally, another bidirectional GRU merges the original
context and the gathered title information into a final title-
guided representation. The decoder is similar to the ones
described above, equipped with attention and copying. The
authors train with KP20k and test on IKNSK. They report
important gains over CopyRNN and CopyCNN on present
keyphrases, with top scores 0.372 in F1@5 and 0.315 in F1@10
on KP20k test set. They also report significant improvements
in absent keyphrases (higher R@10 and R@50 scores).

An attempt to improve KG diversity is found in [76] where
their method produces keyphrases one at a time, considering
the formerly generated keyphrases. This is achieved by using
multiple decoders (each of them generates only one keyphrase)
that focus on different words of the source text by subtracting
the attention value derived from the previous decoder. As a
result, beam searches of beam size 1 are used to get the top
keyphrase from each decoder and coverage is used to have
diverse words in each keyphrase. The authors train their model
with KP20k (the train split) and test on Inspec, Krapivin,
and KP20k (the test split). They report improvements on
keyphrase diversity measured using distinct-1 and distinct-2
metrics described in [77].



TABLE V. SUMMARY OF AKG MODEL PROPERTIES. IKNSK = {INSPEC, KRAPIVIN, NUS, SEMEVAL-2010, KP20K}, NSK = {NUS, SEMEVAL-2010,
KRAPIVIN}, IKK = {INSPEC, KRAPIVIN, KP20K}, GT = GENERATION TIME.

Method Evaluation

Reference Network Att Copy Cov Data Metrics

[53] Zhang2016 joint-layer, RNN - - - Tweets Precision, Recall, F1

[12] Meng2017 Enc-Dec, GRU X X - IKNSK F1@5, F1@10, R@10, R@50

[68] Zhang2017 Enc-Dec, CNN X X - IKNSK F1@5, F1@10, R@10, R@50, GT
[13] Zhang2018 Enc-Dec, GRU X X X IKNSK F1@4, F1@8, R@10, R@50

[71] Chen2018a Enc-Dec, GRU X X X NSK F1@5, F1@10, R@10, N@5, N@10

[73] Ye2018 Semisup, LSTM X X - IKNSK F1@5, F1@10, R@10

[75] Chen2018b Enc-Dec, GRU X X - IKNSK F1@5, F1@10, R@10, R@50

[74] Chen2019 Hybrid, GRU X X - IKNSK F1@5, F1@10, R@10

[76] Misawa2019 MultiDec, GRU X X X IKK F1@5, F1@10, dist1, dist2

[78] Wang2019 NTM, GRU X X - Blogs F1@1, F1@3, F1@5

[55] Yuan2018 catSeq, LSTM X X - IKNSK F1@5, F1@10, F1@M , F1@V

[79] Chan2019 RL, GRU X X - IKNSK F1@5, F1@M

In [78] they create another hybrid system that infuses
topical information into the encoder-decoder framework. They
use an NTM (Neural Topic Model) for grasping the latent topic
aspects of the input text. The later go into the decoder, together
with the context representation of the input obtained by the
encoder. Their learning objective is modified accordingly to
balance the effects of the NTM and the KG encoder-decoder.
Authors conduct experiments on blog data such as Twitter,
Weibo (a Chinese microblogging website) and StackExchange.
They compare tag prediction of their method against various
previous methods such as CopyRNN, TG-Neg, and CorrRNN,
reporting considerable improvements in terms of F1@1, F1@3
and F1@5 scores.

All the above works generate a fixed number of keyphrases
per document. This is not optimal and realistic. In real scien-
tific literature, different documents are paired with keyphrase
sets of different lengths. To overcome this limitation and
further improve the diversity of the produced keyphrases,
authors of [55] propose a seq2seq generator equipped with
advanced features. They first join a variable number of key
terms as a single sequence and consider it as the target for
sequence generation (sequence-to-concatenated-sequences or
catSeq). By decoding a single of those sequences for each
sample (e.g., taking top beam sequence from beam search)
their model can produce variable-length keyphrase sequences
for each input sample.

For a higher diversity in output sequences, they apply
orthogonal regularization on the decoder hidden states, en-
couraging them to be distinct from each other. Authors use
the same data setup as in [12] and compare against CopyRNN
and TG-Net. Besides using F1@5, F1@10, they also propose
two novel evaluation metrics: F1@M , where M is the number
of all keyphrases generated by the model for each data point,
and F1@V , where V is the number of predictions that gives
the highest F1@V score in the validation set. Considerable
improvements are achieved in terms of F1@10 (top score
0.361), F1@M (top score 0.362) and F1@V (top score 0.362)
on KP20k test set.

C. Reinforcement Learning Perspective

Given that the above catSeq model tends to generate fewer
keywords than the ground-truth, authors of [79] reformulate
it from the RL (Reinforcement Learning) perspective which

has also been applied recently in several text summarization
works like [80], [81] or [82] and similar seq2seq applications
described in [82]. The model is stimulated to generate enough
keyphrases employing an adaptive reward function that is
based on recall (not penalized by incorrect predictions) in
undergeneration scenarios and F1 (penalized by more incor-
rect predictions) in overgeneration scenarios. They use GRU
instead of LSTM but keep most of the other implementation
details the same as those of [55].

The authors train on KP20k and test on IKNSK. They
compare the RL-implemented catSeq, CopyRNN, and TG-
Net against their original versions and report improvements
from the RL implementation in all cases on both F1@5 and
F1@M with peak scores 0.321 and 0.386 respectively. The
RL perspective is thus highly effective for enhancing existing
AKG methods. Another contribution of their work is the novel
comparison scheme they propose, with name variation sets
for each ground-truth keyphrase. If a predicted keyphrase
matches any name variation of a ground-truth keyphrase, it
is considered as a correct prediction.

V. KEYPHRASING RESEARCH PATTERNS

There are several patterns regarding technical and other
aspects of research that show up from time to time. In
this section, we briefly summarize some of such trends we
identified in KG and TS (Text Summarization) research of the
last two decades.

A. Experimental Patterns

All of the primary studies we consulted perform some
text preprocessing steps such as tokenization and lowercasing.
Most papers do not report the tokenization utility they use. A
few of them like [75] and [78] report to have used Stanford
CoreNLP of [63] or NLTK (www.nltk.org) for tokenizing. It
is also common to find KE studies like [46], [24], and [9] that
perform POS tagging and include the tags in the feature set
they utilize.

A reduced vocabulary size is important to have decent
AKG resutls within a reasonable computation time. For this
reason, authors of many recent AKG studies like [12], [71],
[68], [73], [75] and [79] replace all digit tokens with the
symbol 〈digit〉. Stemming is also commonly used in studies

www.nltk.org


like [12], [75], [74], [24], [71] and [73] to have the predicted
and golden keywords properly compared during evaluation. A
stemmer that is reported is the one of [83]. There are still a
few works like [13] that do not report to use stemming or any
other transformation in the evaluation step.

The motivation or objective of the authors is the same
in most of the studies: producing meaningful and accurate
keyphrases that are similar to those set by humans which are
used as ground-truth. Besides that, there are a few studies
such as [76] or [71] that aim for a higher diversity or
avoiding duplicates in the produced keyphrases. Producing a
different number of keyphrases for each document is another
requirement. It was met just recently by the model of [55].

Overcoming the need for labeled or domain-specific data
was also important for certain studies like [73] and [10]. Few
works such as [8] and [68] focus on computational efficiency
and generation speed while trying to keep state-of-the-art
accuracy. Other works such as [79] and [33] are based on
neural networks and attempt to generate more keyphrases (the
former) or automate feature crafting (the latter). Finally, [46]
creates a framework for implementing popular methods instead
of proposing a new one.

All studies do perform a formal evaluation of their con-
tribution with the exception of [11] where they highlight the
functional features of their method by means of a practical
demonstration. In the evaluation phase, they usually compare
with similar methods used as baselines. Regarding the choice
of baselines, we observed a similar trend in both extractive
and abstractive KG studies. The earlier extractive works such
as [1], [6] or [26] do not compare against other methods. In few
cases such as in [24] and [7], they compare different versions
(or configuration choices) of their basic method.

The more recent extractive works like [1], [8], [34], [29],
[33], [36], and [37] compare against the earlier ones. Similarly,
the earlier abstractive KG studies such as [12] and [53]
compare against extractive methods only. Instead, some of the
latest abstractive works such as [75], [13] or [79] compare
against both extractive and abstractive KG methods.

B. Keyphrasing vs. Summarizing

Some interesting research patterns we observed are related
to the strict analogy between the dynamics of TS and KG re-
search in the last two decades. Extensive research began in the
late 90s on both tasks. Early TS works were mostly extractive,
same as the KG works of the same time (commonly called
KE studies). They were usually based on lexical resources
and features, clustering algorithms and similarity measures
(e.g., [84], [85] or [86]). Several supervised TS works such
as [87] and [88] or graph-based TS works like [89], [90]
and [91] bloomed, in full analogy with the KG works of
Sections II-A and II-B.

The same development path has been followed in the case
of abstractive studies as well. The encoder-decoder framework
equipped with attention was first used by [92] for title gen-
eration. In analogy with the studies of Section IV-B, many
studies like [17] or [93] added copying mechanism whereas
[18] was the first that used coverage. All these innovations
significantly improved the results. The trend towards the RL

approach makes no exception. It was first introduced in text
summarization studies like [81] and [94]. As described in
Section IV-C, It has been applied in AKG just recently.

There are still a few differences between TS and KG
research that are related to the nature of these tasks. First,
as presented in Section III-A, KG research works have mostly
used scientific paper data. TS studies, on the other hand, have
been mostly based on news articles (e.g., [95], [96] or [97]).
In fact, most of the popular TS datasets like those described
in [98], [99], and [93] are made up of online news articles
preprocessed by the authors.

Another difference lies in the metrics that are used to
perform the evaluation of the two tasks. KG methods are
usually assessed by means of F1 and recall whereas TS
studies use more complex scores such as ROUGE of [100]
or sometimes even BLEU of [101].

VI. DISCUSSION

This study presents a survey of the earlier extractive KG
methods and the recent cutting-edge abstractive ones that are
based on the encoder-decoder framework. We first describe
in brief some of the pivotal KE works which are supervised,
unsupervised or graph-based. They were very successful and
shaped the research field in the 2000s, mainly because of their
speed and simplicity.

We then present the available keyphrase datasets that are
popular in the literature and describe OAGKX, a huge article
data collection that is released with this paper. It can be used
as a data supplement for training deep learning models that
require millions of samples. It might as well serve as a source
for creating derivative datasets of scientific articles from more
specific research disciplines.

The shift to the recent abstractive methods was mainly
pushed from the need to annotate documents with keyphrases
that do not necessarily appear in the original text. The avail-
ability of the easy-to-implement encoder-decoder framework
was another motive. Advanced mechanisms such as attention,
copying and coverage were added one by one and improved
not only the accuracy but also the diversity of the produced
keyphrases.

We further observed several similar patterns between TS
and KG research. They include the transit from extractive
to abstractive strategies, the use of technically advanced
mechanisms (e.g., attention, copying, and coverage), and the
reformulation of the methods from the reinforcement learning
perspective. The latter trend is very promising and we expect
to see many works in the near future exploring it in several
ways for achieving different goals.
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