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Abstract—A main task for automated vehicles is an accurate
and robust environment perception. Especially, an error-free
detection and modeling of other traffic participants is of great
importance to drive safely in any situation. For this purpose,
multi-object tracking algorithms, based on object detections from
raw sensor measurements, are commonly used. However, false
object hypotheses can occur due to a high density of different
traffic participants in complex, arbitrary scenarios. For this
reason, the presented approach introduces a probabilistic model
to verify the existence of a tracked object. Therefore, an object
verification module is introduced, where the influences of multiple
digital map elements on a track’s existence are evaluated. Finally,
a probabilistic model fuses the various influences and estimates
an extended existence probability for every track. In addition, a
Bayes Net is implemented as directed graphical model to highlight
this work’s expandability. The presented approach, reduces the
number of false positives, while retaining true positives. Real
world data is used to evaluate and to highlight the benefits of
the presented approach, especially in urban scenarios.

I. INTRODUCTION

For automated vehicles, a complete, robust and accurate
perception of the local environment is required. In particular,
the detection and modeling of all traffic participants is neces-
sary to enable automated driving. Therefore, the vehicles are
equipped with a large variety of different sensors to receive
a full and precise depiction of the surrounding. To make
use of this huge amount of data and to be able to model
other traffic participants, multiple subsequent algorithmic steps
are necessary. Commonly, the first step is to create object
hypotheses from the raw sensor data for each traffic participant
detected, as [1]–[3] show. The object hypotheses are then
used as measurements by any multi-object tracking filter [4]
to estimate a precise state. In this work, the Labeled Multi-
Bernoulli Filter (LMB) [5] estimates a multi-object state based
on noisy measurements, while considering clutter and missed
detections over subsequent time steps. Besides the spatial
state distribution, an existence probability for each track is
calculated. Any track exceeding a minimum required existence
probability is considered in subsequent modules.

Although these algorithms are well known and have great
success, there are many arbitrary scenarios with high densities
of different traffic participants where the object detection and
consequently the multi-object tracking can fail. As a result,
false objects hypotheses are detected or existing objects are

absent. Consequently, these false positives or missing objects
can lead to wrong assumptions and to unknown behavior
during the later processing steps, e.g. a trajectory generation
of automated vehicles.

In this work, an extended existence probability is developed
with the objective to represent the presence of an object
regarding contextual information from digital maps. Due to the
additional information, a reduction of falsely detected objects
is achieved, while correctly detected objects are retained. In
the literature, several ways to integrate map information and to
improve an object perception system exist. Hosseinyalamdary
et al. [6], proposes an approach, where the point cloud of
a LiDAR scan is directly filtered regarding OpenStreetMap
(OSM) [7]. Consequently, the preprocessing of raw sensor
data is sped up and erroneous detections are reduced. However,
this concept loses information within the first processing steps
that cannot be retrieved later on. Hence, map elements that
are not depicted in the digital map can result in missing
objects. Another approach is presented by Danzer [8], where
road information influences the prediction step of a multi-
object tracking. The results show, that the estimation accuracy
benefits from using contextual information. Since, [8] focuses
on a vehicle tracking system, this paper proposes an approach
to integrate digital map information which is independent
regarding the object class. This work’s main idea derives
from the authors’ previous publication [9], where a high-
level fusion module subsequent to the multi-object tracking
is introduced. Besides digital maps, object hypotheses from a
dynamic occupancy grid map are considered. The results show
reduced missing and false objects due to information fusion.

This paper focuses on an object verification solely based on
contextual information from digital maps, which is integrated
into the environment model module. A major reason for
the presented system layout is the modularity and scalabil-
ity, which is developed under the consideration of different
approaches introduced by [10]–[12] for automated vehicles.
Integrating digital map information can be challenging in edge
cases, hence this work implements probabilistic models to
consider uncertainties of the digital map and the tracks’ state.
Therefore, digital map elements from highly precise mapped
roads by Atlatec GmbH [13] and building outlines from OSM
[7] are incorporated. The contextual information are modeled
as probabilistic influences and evaluated using an independent
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Fig. 1. Implemented functional system architecture of an environment
perception introducing the presented object verification module

influence model (IIM) and a Bayes Net (BN) [14]. The models
estimate an extended existence probability. Finally, a threshold
defines the minimum required extended existence probability
and decides whether an object exists or not.

This paper is structured as follows: In Section II, an
overview of the functional system architecture is given. Here,
necessary components of the perception framework are de-
scribed and motivated. Section III describes the probabilisti-
cally modeled influences and introduces the extended existence
probability. An evaluation of the algorithm based on real world
data is then discussed in Section IV. Finally in Section V, the
work is summarized and an outlook is given.

II. FUNCTIONAL SYSTEM OVERVIEW

Since this work presents a component in the latter stages of
a perception system, a short insight of necessary preprocessing
functional modules will be given in the following section. Note
that, the presented system architecture depicts only a subset of
all components for an automated vehicle, e.g. other sensors,
free space modeling or behavior planning are missing.

The introduced object verification module is a part of
the perception layer, what is shown in Fig. 1. This system
architecture separates the sensor layer and the perception
layer. These layers would be followed by an application layer
including behavior planning and trajectory generation, but this
will not be considered further in this work. In the sensor layer,
the sensors are decoded and transmitted to the perception layer.
Main characteristics and properties of the perception layer are
given in the following.

A. Ego Motion & Localization

First of all, the dynamic states of the automated ego vehicle
are essential. Since digital map information is used, the
localization of the ego vehicle in a global reference coordinate
system is required. Therefore, an Extended Kalman Filter
(EKF) filters the measurements of an Inertial Measurement
Unit (IMU) and a Differential Global Positioning System
(DGPS) and estimates the global ego motion state

ŝego = [x, y, v, a, ϕ, ω]T, (1)

where x and y are the UTM east and north coordinates, v is the
absolute velocity and a is the absolute acceleration. Further,
ϕ is the UTM orientation and ω is the yaw rate. In addition,
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Fig. 2. Sample of the digital map data from the inner city of Ulm. Roads
are visualized in black and buildings in grey.

the EKF estimates a full covariance matrix P̂ego. Inaccuracies
of the position and orientation have a direct impact on the
coordinate transformation from the vehicle coordinate system
to the global coordinate system and vice versa. Due to this,
the uncertainty of the localization needs to be considered in a
fusion system using map information. Since the ego state (1) is
essential for multi-object tracking and digital map processing,
it is directly transmitted.

B. Digital Map Processing

During the digital map processing, a local map section
around the ego vehicle is created. Loading and processing
the whole map would result in increased latencies and com-
putational costs. In the presented approach, the local map
consists of two different map sources. As first source, a highly
accurate set of lanes L mapped by Atlatec GmbH [13] are
available in the lanelet2 format [15]. The second source is the
OpenStreetMap (OSM) [7]. OSM data is publicly available
and provides a high density of map information, but with
unknown inaccuracies and inconsistencies. In the presented
approach, the digital map processing module extracts building
outlines B that are used to verify the tracked object state.
Because these building outlines can overlap in the OSM data,
an additional processing step merges overlapping outlines.
Finally, the local building outlines are represented as polygons
in UTM coordinates. The digital map is shown in Fig. 2, where
the roads L (black) and buildings B (grey) are visualized at
an intersection in the city center of Ulm, Germany.

C. Object Detector & Multi-Object Tracking

The multi-object tracking module is supposed to estimate
the state of any other road user. Because of temporal filtering,
clutter is suppressed and the estimated state is highly accurate.
This work proposes the usage of an object detector in the
preprocessing, which generates object hypotheses from raw
sensor measurements. In the literature, there are a high variety
of object detectors for any sensor type [3]. Since, this work
focuses on the post processing steps of the object verification
module, a single object detector is used. Here, the fast object
detector for LiDAR point clouds of Herzog [1] is implemented.
These detections are used as point object measurements.



In the perception layer, there is no restriction, which multi-
object tracking algorithm is used [4]. Here, an LMB filter of
Reuter et al. [5] is implemented, which tracks the object de-
tections using a Constant Turn Rate and Acceleration (CTRA)
motion model. The filter holds a set Ŝτ = {ŝ1, ..., ŝn} of
tracked objects, where

ŝτ = [x, y, v, a, ϕ, ω]T (2)

is a single target state vector. The track’s state includes a
two dimensional position [x, y]T and an orientation ϕ at the
geometric center point in the ego vehicle coordinate system.
Moreover, the absolute velocity v, acceleration a and yaw
rate ω are estimated. The covariance matrix P̂τ contains the
corresponding variances and covariances of every state. Be-
sides their dynamic states, every tracked object has an unique
label `, a classification probability Pτ (c) and an existence
probability r. For detailed information on how this existence
probability is estimated, refer to [5]. During the evaluation,
tracks with r exceeding a minimum required threshold θr,
serve as baseline for comparison. Finally, every estimated track
is transmitted to the object verification module.

D. Environment Model

The object verification module is part of the environment
model. Here, the main task is to combine multiple information
sources and generate a complete and accurate list of objects
in the local environment. For the benefit of modular expand-
ability, the algorithm is not integrated into the multi-object
tracking. The presented object verification receives data from
the ego motion and localization, the digital map processing and
the multi-object tracking. As output, the set Ŝ′τ = {ŝ1, ..., ŝm}
containing every validated track is computed. The single target
state vectors ŝτ are equal compared to the tracks’ states from
the multi-object tracking. However, the number of validated
tracks m can be smaller than the number of tracks n. In
order to decide if an object is valid, an extended existence
probability η is calculated using different influences from
digital map elements. In the end, a final threshold θη is applied
to publish all valid tracks. The subsequent Section III gives a
detailed insight on how the extended existence probability is
determined.

III. EXTENDED EXISTENCE PROBABILITY FOR OBJECT
VERIFICATION

The object verification module estimates an extended exis-
tence probability for every received track. Therefore, negative
and positive influences are modeled probabilistically regarding
the track states and digital map elements. In this section,
firstly the influences and their calculation are introduced.
Secondly, the inference of the extended existence probability
incorporating these influences is presented.

A. Modeling the Digital Map Influences

In the presented approach, a major design decision is the
modeling of multiple influences on the track’s existence and
evaluating them independently. In this work, only the most
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Fig. 3. Building probability function modeling the uncertainty of the map.

effective ones are highlighted. For example, influences mod-
eling, e.g. class depending limited dynamics do not achieve
significant improvements and are challenging to parameterize
correctly. However, influences based on information from the
digital map elements B and L have a significant impact.
In order to compare a track’s state with the digital map,
the track’s pose (2) is transformed into the UTM coordinate
system using the global ego state (1). The track’s spatial
covariance matrix

P̂′τ =

(
σ2
τ,xx σ2

τ,xy

σ2
τ,yx σ2

τ,yy

)
, (3)

transforms to a global spatial covariance matrix

Σ̂τ = R · P̂′τ ·RT + P̂′ego, (4)

with the rotation matrix

R =

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
. (5)

Here, ϕ is the UTM orientation from (1) and P̂′ego is the
ego motion’s spatial covariance matrix. In the following,
various influences are described, which consider (4) and are
calculated for every track τ . However, for better readability,
the subscript τ is omitted in the equations.

1) OSM Building Influence: A major challenge for camera
or LiDAR based sensors are reflections from a building’s glass
facade, which results in false positive tracks within a building.
For that reason, the first influence considers building outlines
B to detect a containment and, consequently, negatively influ-
ence the extended existence probability. Here, an uncertainty
of the OSM mapping process has to be considered. Therefore,
similar to Nuss et al. [10], the convolution of the polygons
with a multivariate normal distribution N (µB,ΣB) models
the two-dimensional uncertainty of the building outlines. The
covariance ΣB = I · σb incorporates a design parameter σb,
which defines a transition from the building outline to the
required depth inside of a building. With the building function

b(x, y) =

{
1, when (x, y) > 3σb inside building
0, otherwise

, (6)



the resulting probability function

PB(x, y) =

∫
R2

b(x, y) · N ((x, y); (x0, y0),ΣB) (7)

estimates the probability if a point (x, y) is inside a building. In
short, when a point (x, y) is more than 3σb within a building’s
outline, the probability is PB(x, y) = 1. This probability
function is visualized in Fig. 3.

Besides uncertainties of the OSM map, the track’s global
covariance (4) has to be considered. Therefore, a perpendicular
line between the track’s global position and the intersection
of the closest building outline is calculated. Afterwards, the
two-dimensional problem is reduced to one dimension along
this perpendicular line, by reducing the spatial covariance
matrix (4). Therefore, the eigen value decomposition and
evaluation of the standard ellipsoid function of the spatial
covariance along this perpendicular line is calculated. The
result is a spatial probability density function (PDF) fT(x) =
N (x; x̂′τ , σ

′2
τ ) as normal distribution along the perpendicular

line, with the track’s projected mean x̂′τ and variance σ′2τ . The
building outline PDF fB(x) = N (x;x′b, σ

2
b ) is reduced to the

same dimension and is defined as normal distribution along
this line. The mean is set to x′b = −3σb. For clarification,
Fig. 4 shows an example of the probability functions, where
the two-dimensional covariance matrix of the track is reduced
to the perpendicular line. The dimension reduction along the
perpendicular line results in an approximation error, and due
to that, an overestimation of the probability at the building’s
edges can occur. For simplification, this approximation error
is neglected. Finally, the building containment probability

PC(x) = PC(x̂′τ ≤ x′b) =

∞∫
−∞

FT(x) · fB(x) dx, (8)

is the integral over the building’s PDF fB(x) and the cumu-
lative distribution function

FT(x0) =

x0∫
−∞

fT(x)dx′ (9)

of the track’s PDF fT(x). The containment probability defines
the probability of the track’s position x̂′τ being smaller than
the building outline position x′b. In the presented approach,
(8) has a decreasing impact on the tracks extended existence
probability and, therefore, defines a negative influence.

2) Lanelet Influence: The second source of digital map
information is the lanelet map with lanes L. Traffic participants
that are near streets, are in most cases relevant objects and,
consequently, the lanes define a positive influence and increase
the extended existence probability depending on the track’s
pose relative to the lane. These influences are designed to con-
firm true tracks. The modeling of the lanes L is split into four
sublevels. Thus, tracks are evaluated if they are on the road or
near the road and if they are correctly positioned or aligned rel-
ative to the lane. Here, a road refers to the entity of all parallel

Fig. 4. Building and track uncertainty at reduced dimension along a
perpendicular line between track position and building outline.

lanes. Evaluating the lanelet influence is similar to the building
influence. First, a perpendicular line between the nearest lane
border and the track is calculated and, subsequently, the track’s
spatial covariance matrix (4) is reduced along this dimension
to define the PDF fT(x) = N (x; x̂′τ , σ

′2
τ ).

Starting with the evaluation if a track is on the road,
the road’s width wr is considered. Using the cumulative
distribution function (9), the probability

POR(x) = FT(0)− FT(−wr) (10)

indicates, whether a track is on the road or not.
Secondly, tracks near the road, e.g. pedestrians on the side-

walk, should be validated and positively weighted. Therefore,
a design parameter σr defines a transition width of the road
boundary and the normal distribution fR(x) = N (x;x′r, σ

2
r)

models the road boundary similar to the building outline. As
a result, the probability

PNR(x) = PNR(x̂′τ ≤ x′r) =

∞∫
−∞

FT(x) · fR(x) dx (11)

indicates if a track is near the road and should be validated
by using the cumulative distribution function (9).

The third sub level is designed to positively influence vehi-
cles that are located within the boundaries of their associated
lane. Therefore, a perpendicular line within the lane boundary
is calculated and a normal distribution fL(x) = N (x;x′l, σ

2
l,x)

across the lane is assumed. Here, the mean x′l = −wl

2 is
set to the lane center point and the variance σ2

l,x = (wl

6 )2

is defined such that 3σl,x lies on the boundary. This results in
the probability

PLP(x) =

∞∫
−∞

fT(x) · fL(x) dx, (12)

which models the tracks’ positioning related to the associated
lane center point.



(a) (b)

Fig. 5. On road (a) and near road (b) modeled uncertainties on a perpendicular
line between road border and track position.

The last probability based on the lanelet map, evalu-
ated the track’s orientation related to the course of its
associated lane. In consequence, tracks following the lane
course are positively influenced. Here, the normal distribution
fL(∆ϕ) = N (∆ϕ; 0, σ2

l,ϕ) models the distribution over the
orientation difference ∆ϕ = ϕ̂′τ − ϕ′l, where ϕ′l is the lane’s
course and ϕ′τ the track’s orientation. The mean is set to zero
and the variance is σ2

l,ϕ = (π6 )2. As a result, the orientation
difference evaluates between −π2 and π

2 . Furthermore, with the
tracks orientation distribution fT(∆ϕ) = N (∆ϕ; ∆ϕ, σ2

τ,ϕϕ),
the lane alignment probability

PLA(∆ϕ) =

∞∫
−∞

fT(∆ϕ) · fL(∆ϕ) d∆ϕ, (13)

indicates a similarity between the track’s orientation and the
associated lane’s course. Obviously, overtaking or backwards
moving tracks have an orientation difference greater than
|π2 | and, subsequently, their probability is zero. Since, the
probability (13) only models positive influences these tracks
will not be removed and this behavior can be neglected.

Since a track can be associated to multiple lanes, the
probabilities of (12) and (13) are evaluated for every possible
lane. In the end, the lane with the highest sum of both
probabilities is taken for further processing.

B. Estimating the Extended Existence Probability

In the previous subsections, five probability models regard-
ing the OSM building B and the lanelet map information L
have been introduced. For further processing, the probabilities
are separated into positive i+ and negative i− influences.
Tracks within a building’s outline could be false positives,
hence the building probability is defined as negative influence
P (i−1 ) := PC(x). In contrast, the lanelet influences are devel-
oped to confirm tracks and, as a result, their probabilities have
a positive influence on the track’s existence, so that P (i+1 ) :=
POR(x), P (i+2 ) := PNR(x), P (i+3 ) := PLP(x) and
P (i+4 ) := PLA(∆ϕ). These positive and negative influences

are fused to estimate the extended existence probability η.
Therefore, two different approaches are proposed.

First, an independent influence model (IIM) is developed.
The main idea of the IIM is the estimation of η without
considering any correlations between any influence. The IIM
combines negative influences with the conditional distribution

P (i−) := P (i−|P (i−1 ), ..., P (i−n )) =

n∏
k=1

1− P (i−k ). (14)

Since only the building probability proved to be suitable as
negative influence, this distribution reduces to

P (i−) := P (i−|P (i−1 )) := 1− PC(x). (15)

On the other hand, the positive influences are modeled as an
equally weighted accumulated average

P (i+) := P (i+|P (i+1 ), ..., P (i+m)) =
1

n

m∑
k=1

P (i+k ). (16)

Using the IIM, the extended existence probability

η =
P (i−) + P (i+)

2
(17)

calculates an average of negative and positive influences. If a
track is not effected by any influence, the extended existence
probability η = 0.5. In addition, heuristic weights could
parameterize the impact of any influence, but for reducing
design parameters, this is not considered.

As second approach, a Bayes Net (BN) [14] is implemented.
The BN is a well known method for modeling random
variables and calculating the joint distribution. Furthermore,
the BN generalizes the IIM and is able to consider weights
and dependencies between the influences. Therefore, a directed
graphical model is designed with analytic expertise by struc-
turing influences and preventing cycles. Fig. 6 visualizes the
proposed graphical model. This BN consists of a base graph
(red nodes), with all introduced components. The graphical
model merges multiple influences into superordinate nodes by
combining influences from the lane and map. Additionally,
Fig. 6 depicts an extension (grey node) using the classification
probability Pτ (c) of a track as neutral influence. This exten-
sion is intended to illustrate how the BN can easily be scaled
up. Finally, after defining all conditional probability tables, the
extended existence probability η can be inferred.

In the end, after an inference of the IIM, the base BN or
the BN with classification extension (BNe), an corresponding
extended existence probability η is appended to every track τ .
A minimum threshold θη is defined to evaluate if a track exists.
If the extended existence probability η < θη is below the
threshold, the track will be removed from the set Ŝτ .

IV. EVALUATION

In this section, an evaluation of the proposed algorithm is
given. Therefore, the different approaches IIM, BN and BNe
are compared to each other and to a baseline. As baseline, the
conventional approach using a threshold θr for the existence
probability r of the LMB filter is used.



Fig. 6. Graphical model of the Bayes Net with observed nodes (red), hidden
nodes (light red) and an optional extension using a classification probability
as observed node (grey).

A. System Setup & Dataset

The following evaluation uses real world date recorded by
the experimental vehicle of Ulm University [16]. The ego
motion estimation and localization use a highly precise Auto-
motive Dynamic Motion Analyzer (ADMA) and a DGPS. For
environment perception, the LiDAR sensor Velodyne VLP-32
is mounted on the vehicle’s roof at the front. Object detections
generated from the sensor’s measurements are tracked with
an LMB filter as described in Section II-C. Since the KITTI
dataset, which is used to train the detector, only provides
labels in the front of the vehicle, traffic participants on the
sides and back of the vehicle cannot be detected reliably.
In consequence, even after LMB filtering, false or missing
objects can occur. However, a compensation of the dataset’s
characteristics during evaluation has no meaningful impact on
the effectiveness of the presented approach. The algorithm
is implemented within the robot operating system (ROS)
framework using C++.

The evaluation includes two different datasets, where the
estimated tracks are manually labeled as true positive or
false positive. In consequence, undetected objects are not
considered. The first dataset scenario takes place in the inner
city of Ulm in Germany and consists of 13,065 samples with
8,302 true positives and 4,763 false positives. Each sample
represents a track at a single time step in the whole sequence.
A major challenge in the urban area are false measurements
occurring at glass facades. In consequence, the object detector
and LMB filter fail and produce multiple false positives. The
second scenario is recorded at a rural suburban area near Ulm
and consists of 5,634 samples with 2,936 true positives and
2,698 false positives. Compared to the urban sequence, higher
velocities, more vegetation and less buildings are present.

In the presented work, two design parameters are defined
in Section III. For the following evaluation, σb = 1

3 m and
σr = 1.0 m led to the best results.

B. Evaluation on Real World Data

The main goal of the algorithm is the reduction of false
positives while retaining all true positives. Depending on the
selected extraction threshold, true positives can falsely be
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Fig. 7. ROC for step-wise threshold increment of θη and θr at city scenario
(a) and rural scenario (b). The baseline and the three proposed approaches
estimating the extended existence probability are shown.

removed and, in consequence, false negatives emerge. On the
other hand, when false positives are removed, true negatives
emerge, leading to better results with a lower false positive
rate. In consequence, a trade-off between falsely removed
tracks and correctly removed tracks is required. This behavior
is shown and discussed in the following.

As evaluation metrics, the true positive rate and the false
positive rate are calculated and a receiver operating character-
istics (ROC) is generated. For further details on this common
evaluation metric, see Fawcett’s work [17]. The ROC is created
by a step-wise increment of 0.01 of the thresholds θη ∈ [0, 1]
used by the IIM, BN and BNe and θr ∈ [0, 1] used by the
baseline. Starting from Zero, the conditions η ≥ θη and r ≥ θr
are always true and in consequence, no tracks are removed.
On the other hand, when the thresholds are set to One, the
conditions are always false and every track will be removed.
The resulting ROC for the city and the rural dataset are shown
in Fig. 7.



The ROC show, that the presented approaches using the IIM,
BN or BNe achieve better results than the baseline regarding
the false positive rate. Especially in the city scenario, a lot
of false tracks within buildings can be removed. Since, in
the rural area these buildings are less present the impact is
lower. Furthermore, the lanelet influences confirm true tracks
near and on a road and consequently, prevent false negatives
in these areas. In the rural scenario, a steep increase of the
IIM, BN and BNe can be seen, which occurs at an decreasing
threshold, where almost every track is verified. Overall, the
IIM, BN or BNe differ only slightly. That is because, the
BN is a generic model and inferences the joint distribution
under the assumption of conditional independent probabilities
similar the IIM. Furthermore, the BNe is a minor extension
to the BN regarding a classification, but the dataset mainly
contains tracked vehicles and, consequently, this extension
has a negligible impact on the results. In summary, these
models achieve almost equal results but vary in their modeling,
scalability and processing.

The differences between the presented approaches are high-
lighted by evaluating the precision, recall and accuracy at
certain operation point with the thresholds θη = 0.35 and
θr = 0.05. These thresholds are chosen to maximize the true
positive rate, while minimizing the number of false negatives,
what corresponds to the top left corner in the ROC. The
resulting set of tracks Ŝ′τ would be transmitted to the behavior
and trajectory planning and false negatives can lead to arbitrary
behavior and possibly fatal consequences. That is why, choos-
ing the threshold θη should focus on minimizing the number
of false negatives. The three approaches IIM, BN and BNe do
differ by less than 1% as described above. Compared to the
baseline, especially, the recall is approximately 10% higher in
both sequences. In consequence of multiple false positives in
the city area occurring within buildings, the precision is 6%
higher and the accuracy 10%. Whereas in the rural area, the
precision and accuracy differentiate only around 2%. Finally,
the BN can easily be extended with more influences like the
BNe. As a consequence, this approach is recommended.

V. CONCLUSION

In summary, the presented approach introduces an algo-
rithm to incorporate digital map information into an extended
existence probability of tracked traffic participants. There-
fore, multiple probabilistic models define influences of map
elements. Furthermore, an independent probabilistic model
and a Bayes Net infer the introduced influences to estimate
an extended existence probability. Based on this probability,
false tracks can be removed, while keeping true tracks and,
consequently, the false positive rate is reduced. Finally, an
evaluation on real world data in an city and rural area show
the significance and performance of the presented approach.

For future work, the algorithm can be extended with more
map elements, e.g. crosswalks or bicycle lanes regarding
vulnerable road users. Here, the Bayes Net should be applied
and the optimal graphical model can be trained.
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