
Sensor Path Planning Using Reinforcement
Learning

Folker Hoffmann1, Alexander Charlish1, Matthew Ritchie2, Hugh Griffiths2
1Fraunhofer FKIE, 2University College London

{folker.hoffmann,alexander.charlish}@fkie.fraunhofer.de
{m.ritchie,h.griffiths}@ucl.ac.uk

Abstract—Reinforcement learning is the problem of au-
tonomously learning a policy guided only by a reward function.
We evaluate the performance of the Proximal Policy Optimization
(PPO) reinforcement learning algorithm on a sensor management
task and study the influence of several design choices about
the network structure and reward function. The chosen sensor
management task is optimizing the sensor path to speed up
the localization of an emitter using only bearing measurements.
Furthermore, we discuss generic advantages and challenges when
using reinforcement learning for sensor management.

I. INTRODUCTION

Reinforcement learning (RL) [1] is the problem of au-
tonomously learning a policy by interacting with the envi-
ronment. In this setting an agent is given observations of this
environment, on which it can act via a defined set of actions.
After each interaction the agent receives a reward. The intent
of the agent is to learn a policy which maximizes the reward.
The agent is especially not given an a priori available transfer
or observation function of the environment.

Sensor management [2] is the problem of optimizing the
configuration and positioning of sensors to achieve a given
sensor task, for example localizing a target. A huge number
of methods have been proposed for sensor management, often
based on explicit modeling of the sensors or based on ex-
plicitly derived information theoretic properties of the sensing
process.

Reinforcement learning offers the promise to avoid making
such explicit sensor-specific optimization, and instead replace
them by stating the sensing objective and let the system itself
learn a way to optimize the objective. The system then can
either learn its behavior online during actual environment
interactions or - especially when many interactions are needed
- initially in a simulated environment.

In this paper we evaluate the performance of Proximal
Policy Optimization (PPO) [3], a state of the art reinforcement
learning approach, on a sensor management problem. The
sensor management problem consists of optimizing the path of
a mobile bearing sensor, for example to localize an emitter via
RF-DOA (radio frequency direction of arrival) measurements.

The remainder of the paper is structured as follows: In
Section II we survey related work. Section III describes the
environment from the point of view of the RL agent. The eval-
uated algorithm, its input features and network architectures

are described in Section IV. We present the results in Section
V and conclude the paper in Section VII.

II. RELATED WORK

The published work on reinforcement learning itself is vast
and beyond the scope of this paper. We refer the reader to the
introductory book by Sutton [1], as well as focused surveys,
e.g. [4].

The problem of optimizing the sensor path for emitter local-
ization with bearing only measurements is a classic problem
of sensor management. Techniques proposed for this problem
are for example lookahead techniques based on the Fisher
Information [5], [6], myopic planners [7] or rollout based
planners [8]. Similar techniques have been used to optimize
the sensor path for tracking moving emitters [9].

Reinforcement learning has also been used for several other
sensor management tasks. In [11] temporal difference learning
(TD(λ)) has been used to optimize target detection in discrete
cells. In [12] a policy was learned to decide on using a short-
range and a long-range mode for a radar to track a target.
SARSA was used in [13] to optimize waveforms in a MIMO
radar system. A Q-learning based algorithm was used in [14]
for resource management in a wireless sensor network.

A reinforcement learning approach for bearing only sensor
path planning has been proposed in [10]. It uses a linear rep-
resentation of the policy and differs from the work described
in this paper by using a pure policy-gradient based approach,
without a critic-function. Additionally, an extension for multi-
target localization is presented in the work. This is done
by computing the single-target policy for each target. Then
a nonlinearity, e.g. the sigmoid function, is applied to each
action, and the results are combined by aggregation functions,
like the average or the minimum. The resulting vector has
one entry for each aggregation function and is used as feature
vector for the output layer.

The contribution of this paper is to analyze the performance
of a state of the art reinforcement learning algorithm on the
emitter localization problem.

III. ENVIRONMENT

The environment of the reinforcement learning agent de-
scribes the interaction with the remaining system and consists

Fig. 1. Environment of the reinforcement learning agent.

of four parts: The movement model of the platform, which
describes how the platform moves based on the chosen actions.
The sensor model, which formalizes the sensing process and
generation of measurements. The localizer integrates these
measurements into a state estimate. Finally, the scenario
describes the simulated geometry.

From the point of view of the RL agent, the environment
gets movement actions as input and returns the current state
estimate. The actual behavior of the sensor, localizer and
movement model is not directly available to the agent. Figure
1 shows a representation of the environment of the RL agent,
compared to the true environment of the sensor system. We
note that this description of the environment - common in
the reinforcement learning literature - differs from the notion
in the sensor management literature, where the environment
interaction often means only the sensing process, and e.g. the
localizer is commonly considered a part of the sensing system.

A. Movement Model

We represent the platform state as a 2-dimensional position
with heading:

xpk = (xpk, y
p
k, ϕ

p
k)
T
, (1)

where xpk, y
p
k is the platform position at time k and ϕpk its

heading, measured as counter-clockwise angle from the x-axis.
The control input u = ∆ϕ denotes the change in heading

ϕpk+1 = ϕpk + u . (2)

Then the platform moves according to the current heading
ϕpk+1 and the constant platform speed sp

xpk+1 = xpk + ∆t · sp · cos
(
ϕpk+1

)
, (3)

ypk+1 = ypk + ∆t · sp · sin
(
ϕpk+1

)
, (4)

where ∆t denotes the length of a single time step.
The control input is discretized into Na actions, and action

ai is given as

ai = Lu +
i

Na − 1
· (Uu − Lu) , (5)

where Lu and Uu are lower and upper bound on the control
input.

B. Sensor Model

We model a direction-finding sensor, which measures the
angle to an emitting, stationary target. At each time step k
the sensor generates a measurement, corrupted with Gaussian
noise:

zk = h(xt,xpk, wk) = atan2
(
yt − ypk, x

t − xpk
)

+ wk , (6)

where xt = (xt, yt)
T is the position of the target and

wk ∼ N (0, σ2) the realization at time step k of the normal
distributed noise with standard deviation σ.

C. Localizer

The localizer performs a maximum likelihood estimate of
the target position, using the full batch of bearing mea-
surements. As a way to incorporate prior knowledge, an
initial Gaussian estimate xe0,P

e
0 is used. After each action,

bearing measurements z1, ..., zk are received, therefore the log
likelihood at step k is proportional to

log l(x) ∝ (x−xe0)T ·(Pe0)
−1

(x−xe0)+

k∑
i=1

(
zi − h(x,xpi , 0)

σ

)2

.

(7)
The difference zi − h(·) is in angle space and takes into
account the angular wrap at 0 and 2π. We use the Leven-
berg–Marquardt algorithm to solve this least squares problem
and compute the maximum likelihood estimate

xek = argmin
x∈R2

log l(x) . (8)

The uncertainty of this estimate is approximated by the inverse
of the Fisher Information computed at the estimated position

Pek =

(
(Pe0)

−1
+

k∑
i=1

Ii

)−1
, (9)

where the information of a single measurement is given as

Ii =
1

σ2 · r4

(
∆y2 −∆x ·∆y

−∆x ·∆y ∆x2

)
. (10)

Here ∆x = xek − xpi and ∆y = yek − xpi is the estimated
difference in the x- and y-dimension when the measurement
was taken, and r =

√
∆x2 + ∆y2 the estimated distance to

the target.
The estimated root-mean-squared error (RMSE) of the es-

timate can then be given by√
tr (Pek) , (11)

where tr denotes the trace of the covariance matrix.

D. Scenario

The geometry of the scenario can be seen in Figure 2. The
platform is placed at the origin and the uncertainty ellipse
of the prior knowledge is shown. At each instantiation of the
scenario, the true target position is randomly sampled from the
prior. The scenario is terminated if the expected RMSE falls
below a threshold µT . To avoid non-termination of the scenario

2000 1000 0 1000 2000
x pos [m]

500

0

500

1000

1500

2000

2500

3000

3500
y

po
s

[m
]

Platform
Prior
3 Prior

Fig. 2. Geometry of the scenario. Each concrete scenario instantiation samples
the true target position from the prior. The prior is available to the localizer.

TABLE I
SCENARIO PARAMETERS

Parameter Value

xe0 0 m
ye0 2000 m
Pe

0 diag
(
(100 m)2, (300 m)2

)
Uu 20◦

Lu −20◦

σ 10◦

µT 10 m
sp 50 m/step
Na 11

xp0 0 m
yp0 0 m
ϕp
0 0◦

when the policy does not achieve a localization, the scenario
is also terminated if no localization occurs after 500 steps.
The full sequence of agent interactions with the environment
until termination, i.e. one scenario instantiation, is also called
episode. Parameters of the scenario can be seen in Table I.

E. Reward

The stated goal of the agent is to localize the target as fast
as possible. We therefore define a constant reward of rk =
−1, which serves as a cost and accumulates as long as the
environment is active. The only way to avoid this cost is by
having the target localized.

As usual in reinforcement learning, the goal of the agent is
to maximize the sum of the rewards. Therefore the learning
algorithm needs to find a policy parametrization which gives

the highest expected reward:

max
θp

E

Nk−1∑
k=0

rk | ak ∼ πθp

 . (12)

Here θp is the parametrization of a policy πθp , for example
the weights of a neural network. The actions ak are chosen
according to this policy. Nk is the total number of steps
encountered in the scenario, which stops when the target is
localized and is capped at 500. The negative of the reward
sum is the time until the target is localized.

IV. EVALUATED ALGORITHM

We used the implementation PPO2 from Stable Baselines
[15], which is a fork from the OpenAI Baselines [16] im-
plementation of reinforcement learning algorithms. Unless
otherwise noted, we used the default parameters at version
2.9.0. This includes a discount factor of 0.99 for future
rewards.

In this section we describe the choices of our application,
including the input features, as well as the policy and value
network structures. We additionally perform two variants of
reward shaping. First, we use the gain in localization accuracy
as a substitute reward. Second, we use a variant of curriculum
learning to make it easier for the algorithm to achieve its
localization goal.

A. Input Features

While the platform movement and localization take place in
absolute coordinates, the localization problem itself is invariant
under translation and rotation.

We can therefore represent the state estimate in a coordinate
system centered on the platform, with the local x-axis aligned
with the platforms heading. Then the estimate in this relative
frame is

xrk = (xrk, y
r
k)T = Rk (xek − xpk) , (13)

with covariance
Prk = RkP

e
kR

T
k . (14)

Rk represents the rotation matrix based on the platform
heading at time step k and is given as

Rk =

(
cos(α) −sin(α)
sin(α) cos(α)

)
, (15)

where the rotation angle α = −ϕpk is the negative of the
platform heading.

The relative estimate xrk is then chosen as input feature. As
input features of the covariance matrix we use the variance of
the x- and y-estimate, and their correlation

ρk =
cov (xrk, y

r
k)

std (xrk) · std (yrk)
. (16)

The full list of input features can be seen in Table II.

TABLE II
INPUT FEATURES FOR THE ALGORITHM

Feature Description

xrk x-position estimate
yrk y-position estimate
var

(
xrk

)
variance of the x-position estimate

var
(
yrk

)
variance of the y-position estimate

ρk correlation of the x- and y-position estimates

All values are of the target position,
relative to the platform

B. Proximal Policy Optimization

Giving a full description of the algorithm is beyond the
scope of this paper, we refer the reader to the original
publication [3], as well the implementations in [16] and [15].
In this section we briefly want to give the basic idea of this
algorithm.

The algorithm follows an actor-critic architecture, which
means that it contains an actor (also called policy network),
which decides on the actions based on the current state:

πθp : RN
f

→ RN
a

. (17)

Here θp are the weights of the network and Nf the number
of input features. The output is a probability for each action,
thereby giving the policy a random chance of choosing any
action. Due to this randomness, the policy explores the state
space. The other element of such an algorithm is the critic
(also called value network), which learns to predict the value
(i.e. the expected future rewards) of a state:

πθv : RN
f

→ R . (18)

During exploration empirical rewards are received by the
actor. Whether they are better or worse than in previous
interactions can be decided by the value network. Then the
policy will be updated using the policy-gradient theorem [1], in
a way that actions leading to higher rewards are chosen more
frequently in the future. PPO is a variant of this approach,
which constrains the policy update to keep the new policy
closer to the previous one in regard to the chosen action
probabilities.

C. Network Description

We evaluated different networks to represent the policy and
value network of the algorithm. We used fully connected layers
[17], with a varying number of hidden neurons. The topologies
evaluated were a single hidden layer of 10 neurons, as well
as 1,2 and 3 hidden layers of 60 neurons each. We evaluated
both ReLu and tanh activation methods.

The policy layer used a final fully connected linear layer
returning the logits, which represent the probability for each
action during training. During evaluation the action with
highest probability was chosen. The value layer used a final
fully connected linear layer with a single output neuron to
represent the value of a state. Otherwise, value and policy

network used the same activation function and number of
hidden layers for each evaluated configuration. The layers did
not use weight sharing between policy and value network.

We also evaluated a scaling step, in which the input features
were normalized before feeding them into the network. This
was performed by computing the running mean and standard
deviation of every feature for all environment interactions dur-
ing the training, and then normalize the feature by subtracting
the mean and dividing by the standard deviation.

D. Reward Shaping

During initial experiments we encountered a problem with
the constant reward function rk = −1, together with the
localization threshold in Table I. When training starts, it can
be that the initial policy parametrization rarely leads to a
target localization. In this case it can happen that all episodes
end with the worst possible reward of −500. Then the RL
algorithm would have no differences in the reward signal,
which it could use to improve the policy.

We experimented with two approaches to make the task
easier to learn. The first technique was to use the improvement
in the localization (localization gain) as a substitute reward

rk+1 =
√

tr (Pek)−
√

tr
(
Pek+1

)
. (19)

This reward makes it easy for the reinforcement learning
algorithm to pick up on a reward signal, as it provides an
immediate feedback on the value of an action.

As a second method to make the task easier to learn, we
employed a method based on curriculum learning. Curriculum
learning is based on the idea of letting a machine learning
algorithm first learn simple tasks, before moving to more
complex tasks [18], [19].

Our implementation of curriculum learning was based on
making the localization threshold µT time dependent. Early in
the training it was set to a high value. This makes it easier for
the agent to randomly encounter a sensor path which localizes
the target. Then we progressively decrease the localization
threshold, until it reached the original threshold during half
of the training time. This threshold schedule can be seen in
Figure 3.

V. RESULTS

As comparison to the trained policies, we used a myopic
policy. This policy selected at each step the action that maxi-
mizes the Fisher Information, based on the current estimate:

ak = argmax
a

det
(

(Pek)
−1

+ Ik+1

)
. (20)

An evaluation with 1000 Monte Carlo runs shows an aver-
age time to localization of 60.845 ± 0.655 (95% confidence
interval) for the myopic policy.

A. Training

We trained each combination for 400 000 environment inter-
actions, which are equal to time steps, with 10 different seeds.
After training, the policy was evaluated using 1000 MC runs

0 50 100 150 200 250 300 350 400
1000 Environment Interactions

0

20

40

60

80

100

120

140

160
Lo

ca
liz

at
io

n
Th

re
sh

ol
d

[m
]

Fig. 3. Localization threshold schedule for curriculum learning.

2 4 6 8 10
Training Run

90

80

70

60

50

R
ew

ar
d

Myopic Planner
Trained Policy

Fig. 4. Performance of the fully trained policy of each training run from
(60x60, tanh, Gain, False). The error markers correspond to the 95%
confidence interval on the mean after 1000 evaluations of the policy.

on the environment. To save computing resources, we used
only 10 MC runs, when the policy did not show any success
during training and had an episode reward of −500.

We used each combination of
• Network size: 10, 60, 60x60, 60x60x60
• Activation function: ReLu, tanh
• Reward shaping: None, (Localization) Gain, Curriculum
• Scaling of the input features: True, False

to train 10 times a policy, leading to a total number of 48 · 10
training runs. We refer to a concrete configuration by the
tuple (network, activation, reward shaping, scaling) and to
a concrete learned policy by the tuple (network, activation,
reward shaping, scaling, run).

Figure 4 shows the result of (60x60, tanh, Gain, False). It
can be seen, that even when the same parameters are used,
due to the random nature of exploration and the stochastic
environment, policies with varying performance are learned.

During training, we evaluated the policy every 2000 envi-
ronment interactions on 10 randomly chosen instantiations of
the scenario, giving an estimate of the current performance

0 100 200 300 400
1000 Environment Interactions

500

400

300

200

100

0

R
ew

ar
d

Fig. 5. Policy performance during the training of (60x60, tanh, Gain, False).
The blue line is the mean reward for all 10 training runs and the shaded area
the worst and best run. The orange line is the myopic policy.

0 100 200 300 400
1000 Environment Interactions

500

400

300

200

100

0

R
ew

ar
d

Fig. 6. Policy performance during the training of (60x60, ReLu, —, True).
The blue line is the mean reward for all 10 training runs and the shaded area
the worst and best run. The orange line is the myopic policy.

of the algorithm. Figure 5 shows the training progress for
(60x60, tanh, Gain, False). It can be seen that the performance
on average improves, even though for some training runs it
degrades temporarily.

Figure 6 shows a less successful training run (60x60, ReLu,
—, True). While some policies reach and also surpass the
myopic policy, some do not achieve the task at all and the
average performance stays quite low.

B. Influence of the Design Choices

We analyzed the average influence of those design choices
on the performance of the trained policy. We defined a
successful training by having a mean reward during evaluation
> −499, i.e. the training resulted in a policy which localizes
the target at least once during the evaluation. If the mean
reward is higher than −60, we say that it beats the myopic
policy. From all training runs we performed, 51.4% were
successful and 14.3% were better than the myopic planner.

TABLE III
INFLUENCE OF THE REWARD SHAPING

Shaping Success Beats Myopic

— 0.25000 0.08750
Curriculum 0.56250 0.18750
Localization Gain 0.73125 0.15625

TABLE IV
INFLUENCE OF SCALING THE INPUT FEATURES

Scaled Success Beats Myopic

False 0.295833 0.133333
True 0.733333 0.154167

Table III shows the influence of the reward shaping. It can
be seen that without any reward shaping the success rate is
quite low, likely because the algorithm does not encounter
any trajectory which localizes the target. Curriculum learning
improves on this problem, however still requires encountering
a successful trajectory - even if finding this is easier. Using the
localization gain as substitute reward leads to a comparatively
high success rate. This is because even a single action can
lead to a training signal.

Scaling the input features clearly improves the probability
of success (Table IV). A positive effect can also be seen in
using the tanh function instead of ReLu for activation, as can
be seen in Table V.

Table VI shows the influence of the network architecture.
While the success rate slightly increases with increasing
network size, the effect is not that strong. This indicates that a
policy to localize the target at all can be represented even with
a small number of network parameters. On the other hand, the
probability that the trained policy achieves a higher reward
than the myopic policy strongly increases with the network
capacity.

C. Behavior

Figure 7 shows the behavior of the policy (60x60, tanh,
Gain, False, 8) during training. It can be seen that early in the

TABLE V
INFLUENCE OF THE ACTIVATION FUNCTION

Activation Success Beats Myopic

ReLu 0.362500 0.108333
tanh 0.666667 0.179167

TABLE VI
INFLUENCE OF THE NETWORK ARCHITECTURE

Network Success Beats Myopic

10 0.483333 0.041667
60 0.500000 0.116667
60x60 0.508333 0.183333
60x60x60 0.566667 0.233333

5000 2500 0 2500 5000
x pos [m]

6000

4000

2000

0

2000

4000

y
po

s
[m

]

0
10000
20000
30000
50000
80000
Target

Fig. 7. Training progress of (60x60, tanh, Gain, False, 8), after several
numbers of interactions with the environment.

1000 0 1000
x pos [m]

0

500

1000

1500

2000

2500

3000
y

po
s

[m
]

Learned
Myopic
Target
Platform
Prior
3 Prior

Fig. 8. Comparison of the policy (60x60, tanh, Gain, False, 8) to the myopic
policy.

training, the policy moves far away from the target, however,
at the end returns towards the target. As this already happens
for the first, randomly initialized policy, this training run seems
to have started with a good starting policy. During training,
it can be seen that the trajectory more and more gets closer
to moving towards the target at a sharp angle. However, this
progress is also interrupted at some times, for example after
50 000 steps the policy moves further away, then after 30 000
or 80 000.

Figures 8 and 9 show the fully trained policy (60x60, tanh,

1000 0 1000
x pos [m]

0

500

1000

1500

2000

2500

3000
y

po
s

[m
]

Learned
Myopic
Target
Platform
Prior
3 Prior

Fig. 9. Comparison of the policy (60x60, tanh, Gain, False, 8) to the myopic
policy.

Gain, False, 8) compared to the myopic policy for two exem-
plary target positions. Both of those methods reduce the range
to the target, which leads to improved information content
of the measurements (10). Because of the high requirements
on the target localization accuracy, the target is first localized
when the platform is rather near to the target. It can be
seen that the trained policy moves towards the target in a
more direct path, leading to a faster reduction in range and
eventually faster localization.

VI. DISCUSSION AND CHALLENGES

In the paper we have shown that a reinforcement learning
algorithm is able to learn a policy for an emitter localization
task. While we have seen some fluctuation between different
training runs, even with the same parametrization, this does
not necessarily prohibit these techniques, as it is sufficient to
only learn a single good performing policy. In this section
we discuss some general advantages and challenges on using
reinforcement learning for sensor management. We use the
term fusion algorithm as a more general term, encompassing
the tracking or localizing process of one or multiple, static or
moving targets, via one or multiple sensors.

We see several advantages of using reinforcement learning
approaches. An advantage is that a learning algorithm is
able to adapt to the sensor and platform properties, e.g. the
amount of measurement noise or the field of view without
explicitly modeling it. An even stronger advantage is that it
also adapts to the fusion algorithm. Information based sensor
management maximizes the information-theoretic contribution
of the measurement, however it is not necessarily guaranteed
that the fusion algorithm makes the best use of it. A reinforce-
ment learning approach as described instead considers the full
interaction between sensor and fusion algorithm. Therefore,

10 20 30 40 50 60 70 80 90
Assumed maximal steering [deg]

85

80

75

70

65

60

55

R
ew

ar
d

Fig. 10. Effect of false modeling assumptions about the platforms ma-
neuverability by the myopic planner. The maximal steering is equal to
= Uu = −Lu. The error bars correspond to the 95% confidence interval,
computed by 1000 MC runs.

it could adapt to changes in the sensor data processing, e.g.
a different localization threshold or the number of missing
measurements causing a track drop.

In our example the myopic policy showed already a good
performance. We would expect that a non-myopic policy
would be able to improve on this result, possibly even beating
the best learned policies. The performance is good, because the
myopic policy used prior knowledge about the sensor model,
its corresponding Fisher information, the stationarity of the
target, and the movement model of the platform. This all is
not available to the reinforcement learning algorithm, which
has to fully learn the relationship between states, actions and
rewards on its own.

However, this explicit modeling is only an advantage as long
as the models and assumptions are valid. This is exemplified
in Figure 10, where the myopic planner is executed with
different assumptions on the minimal and maximal steering
Lu and Uu. As they move away from the true value of 20◦,
the performance of the myopic policy becomes worse. The
reinforcement learning algorithm instead just learns based on
the actual returns of the actions and is therefore not prone to
such modeling errors.

On the other hand, we see also challenges in a reinforcement
learning based approach. Especially model-free methods, as
the one we used in this work, often require a large number
of samples. Reinforcement learning is also known to be
very hyperparameter sensible and dependent on the concrete
algorithm implementation [20].

A more important challenge is that it is necessary to be
able to simulate a sufficient number of representative scenario
instantiations. To evaluate a tracking algorithm or an online
optimization-based sensor management algorithm, testing the
algorithm on a few well-selected benchmark scenarios often
gives important knowledge about its behavior. Such scenario-
based evaluation is often used for tracking algorithms and
sensor management.

To train the reinforcement learning algorithm well, it is
required to sample from the whole distribution of possible
scenarios. Training on a selected set of scenarios leads to
the risk of overfitting and simply memorizing optimal actions
for those scenarios without generalizing. With multiple non-
stationary and maneuvering targets, and additional scenario
constraints it is often possible to describe individually plausi-
ble scenarios, however it is more difficult to enumerate each
possible realistic scenario. It is even more difficult to assign an
appropriate probability distribution over each possible realistic
scenario. The general problem of generalization and avoiding
overfitting to single environments is still a heavily researched
topic for reinforcement learning algorithms [21].

A more technical challenge is, that sensor data fusion often
has a variable number of targets, where each target track might
possibly be represented by a variable number of hypotheses. In
this case the number of input features is variable and cannot
be used with a fixed input size policy as described in this
paper. One possible solution would be the use of aggregation
functions, as done in [10].

A possibility to avoid those challenges would be to consider
the RL agent as a single building block of a larger sensor
manager. For example in a multi-emitter localization problem,
a higher-level planner could create a sequence in which order
the emitters are localized. Following this sequence, each
emitter is considered a single-emitter localization problem, for
which a learned policy as described above could be used.

An alternative to the model-free algorithm we used in this
work would be to use model-based reinforcement learning
approaches. In this case the algorithm would learn the mapping
from actions and the current state estimate to the next state es-
timate in Figure 1, i.e. a model including the platform control,
sensor and localizer. The actions would then be selected using
some online control method, e.g. model predictive control.
Model based reinforcement algorithms are often more efficient
regarding the number of required environment interactions.
This approach would still keep the advantage of taking into
account the actual behavior of the fusion algorithm.

VII. CONCLUSION

In this paper we have presented a sensor path planning
problem and shown that a reinforcement algorithm can learn
a good policy for this task. We have presented input features
for the problem, and evaluated different possible choices of
the policy representation and reward function.

We found that the algorithm had a notable fluctuation in its
resulting policy performance, but that a good trained policy
can show a performance better than a myopic planner. Several
choices were analyzed on their effect on the final training
performance. We found that scaling the input features and a
larger network size led to better results. We also found a better
performance of tanh compared to ReLu as activation function
on this problem. Finally, we found that modifying the reward
function led to better performance. Not surprisingly learning a
policy was substantially easier, when the reward was replaced
by the immediate localization gain and therefore not delayed.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning, 2nd ed. Cam-
bridge, Massachusetts, USA: MIT Press, 2018.

[2] A. O. Hero III and D. Cochran, “Sensor Management: Past, Present, and
Future,” IEEE Sensors Journal, vol. 11, no. 12, pp. 3064–3075, 2011.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” pp. 1–12, 2017. [Online].
Available: http://arxiv.org/abs/1707.06347

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 5, pp. 26–38, 2017.

[5] S. E. Hammel, P.-T. Liu, E. Hilliard, and K. F. Gong, “Optimal Observer
Motion for Localization with Bearing Measurements,” Computers &
Mathematics with Applications, vol. 18, no. 1-3, pp. 171–180, 1989.

[6] Y. Oshman and P. Davidson, “Optimization of Observer Trajectories for
Bearings-Only Target Localization,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 35, no. 3, pp. 892–902, 1999.

[7] O. Cliff, R. Fitch, S. Sukkarieh, D. Saunders, and R. Heinsohn, “Online
Localization of Radio-Tagged Wildlife with an Autonomous Aerial
Robot System,” in Robotics: Science and Systems XI. Rome, Italy:
Robotics: Science and Systems Foundation, 2015.

[8] F. Hoffmann, H. Schily, A. Charlish, M. Ritchie, and H. Griffiths, “A
Rollout Based Path Planner for Emitter Localization,” in Proceedings
of the 22nd International Conference on Information Fusion (FUSION),
Ottawa, Canada, 2019.

[9] M. L. Hernandez, “Optimal Sensor Trajectories in Bearings-Only Track-
ing,” in Proceedings of the 7th International Conference on Information
Fusion (FUSION), Stockholm, Sweden, 2004.

[10] A. Gorji and R. Adve, “Policy Gradient for Observer Trajectory Planning
with Application in Multi-target Tracking Problems,” in 52nd Asilomar
Conference on Signals, Systems, and Computers. Pacific Grove, CA,
USA: IEEE, 2018, pp. 2029–2033.

[11] R. Malhotra, E. P. Blasch, and J. D. Johnson, “Learning sensor-detection
policies,” in Proceedings of the IEEE 1997 National Aerospace and
Electronics Conference. NAECON 1997, vol. 2, no. July. Dayton, OH,
USA: IEEE, 1997, pp. 769–776.

[12] F. Smits, A. Huizing, W. Van Rossum, and P. Hiemstra, “A cognitive
radar network: Architecture and application to multiplatform radar
management,” in European Radar Conference (EURAD), Amsterdam,
Netherlands, 2008, pp. 312–315.

[13] L. Wang, S. Fortunati, M. S. Greco, and F. Gini, “Reinforcement
learning-based waveform optimization for MIMO multi-target detec-
tion,” in 2018 52nd Asilomar Conference on Signals, Systems, and
Computers. Pacific Grove, CA, USA: IEEE, 2018, pp. 1329–1333.

[14] K. Shah and M. Kumar, “Distributed Independent Reinforcement Learn-
ing (DIRL) Approach to Resource Management in Wireless Sensor
Networks,” in 2007 IEEE Internatonal Conference on Mobile Adhoc
and Sensor Systems. Pisa, Italy: IEEE, 2007, pp. 1–9.

[15] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/
hill-a/stable-baselines, 2018.

[16] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,” https:
//github.com/openai/baselines, 2017.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[18] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative Multi-
agent Control Using Deep Reinforcement Learning,” in AAMAS 2017:
Autonomous Agents and Multiagent Systems, São Paulo, Brazil, 2017,
pp. 66–83.

[19] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th International Conference On
Machine Learning, ICML 2009, Montreal, Quebec, Canada, 2009, pp.
41–48.

[20] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep Reinforcement Learning that Matters,” 2017.
[Online]. Available: http://arxiv.org/abs/1709.06560

[21] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging Procedural
Generation to Benchmark Reinforcement Learning,” pp. 1–27, 2019.
[Online]. Available: http://arxiv.org/abs/1912.01588

View publication statsView publication stats

https://www.researchgate.net/publication/342702767

