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Abstract

Recurrent neural networks (RNNs) are more suitable for learning non-linear dependencies in
dynamical systems from observed time series data. In practice, all the external variables driving such
systems are not known a priori, especially in economical forecasting. A class of RNNs called Error
Correction Neural Networks (ECNNs) was designed to compensate for missing input variables. It
does this by feeding back in the current step the error made in the previous step. The ECNN is
implemented in Python by the computation of the appropriate gradients and it is tested on stock
market predictions. As expected it outperformed the simple RNN and LSTM and other hybrid models
which involve a de-noising pre-processing step. The intuition for the latter is that de-noising may
lead to loss of information.
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1 Introduction

1.1 Recurrent Neural Networks

Most applications like economics and finance have non-linear dependencies that a better modelled by RNNs with
their universal approximation properties [27]. Time series modelling and natural language modelling are two
good examples where RNNs are dominantly used. Unlike feedforward neural networks, RNNs have feedback
connections in which outputs of the model are fed back into itself. RNNs proposed in [1] are specifically designed
to handle sequential data and to exploit dependences in such type of data. In other words RNNs model dynamical
systems, with typically the following state relations.

s(t) = f
(
s(t−1), x(t−1); θ

)
, (1)

where s(t) is the state of the system at time t, which is a function f of the previous state s(t−1) and an external
signal x(t−1) at time t− 1, parametrized by θ.

The simple (standard or vanilla) RNN has T inputs (data points)
{
x(t)
}T

t=1
with corresponding outputs{

y(t)
}T+1

t=2
. Note that each x(t) and y(t) maybe a vector. Key in the success of RNNs, that is their ability to

generalized well, is due to the fact that it is trained using parameter sharing. We denote parameter (weight)
matrices that connect states (hidden layers) as A, those that connect inputs to states as B, and those that
connect states to outputs as C. The dynamical system that the simple RNN represents is described by the
following non-linear system of equations.

state equation: s(t) = f
(
As(t−1) +Bx(t−1)

)
, (2)

output equation: y(t) = g
(
Cs(t)

)
, (3)

where f and g are activation functions.
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RNNs are trained using back-propagation through time (BPTT). BPTT is a natural extension of standard
back-propagation performing gradient descent on a network unfolded in time. More details on BPTT will be
given in Section 2. Having complete knowledge of all external drivers of a dynamical system is the underlying
assumption of most RNNs. In which there is a reliance on the architecture of the RNN with its long-term memory
to learn the dynamics of the system.

1.2 Error Correction Neural Networks

The ECNN was designed in [5] with the awareness that not all external variables of the dynamical system are
known in practice. This is its main difference with the standard RNN, LSTM, and GRU. The ECNN feeds
back into itself the prediction error made in the previous time. The error essentially tells us something about the
missing external variables. This is similar to Auto Regressive Integrated Moving Average (ARIMA) models except
that ARIMA models are linear, thus making them an inadequate framework for non–linear dynamical systems
[28]. Denoting the target output at time t as y

(t)
d and the error in the previous time step as y(t−1) − y(t−1)

d , the
governing equations of the ECNN as follows.

z(t) = y(t) − y(t)d , (4)

s(t) = tanh
(
As(t−1) +Bx(t−1) +D tanh

(
z(t−1)

))
, (5)

y(t) = Cs(t). (6)

Note that the error, z(t) goes through a non-linearity in (5). Otherwise, the D could be absorbed into the A and
B. The computational graph of the ECNN is given Figure 1.

Figure 1: Unfolded ECNN where the weight matrices A,B,C, and D are shared weights and −Id is the
negative identity matrix. An ECNN whose only recurrence is the feedback connection from the error
z(t−2) calculated from the previous time step t − 2 to output to the hidden layer. At each time step t,
the input is x(t), the states are s(t), the outputs are y(t+1).

1.3 Time Series Forecasting using Deep Learning

There is quite a bit of work in predicting time series using neural networks. In general, all kinds of neural networks
have been used in the application of deep learning to financial time series. Artificial neural networks were used
in [7]; convolutional neural networks were used in [23]; deep belief networks in [24, 25]; recurrent neural networks
in [5][8]; and stacked autoencoders in [6]. This work builds on the work of [5][8] for the ECNN and that of [6] for
the comparison of the ECNN with existing RNN based methods for stock market prediction.

Precisely, in [6] a new deep learning framework was presented where wavelet transforms (WT), stacked au-
toencoders (SAEs), and LSTM are combined for stock price forecasting. Their framework develops a six years
predictive performance of the four proposed models in different stock markets, WT-LSTM (combining WT and
LSTM), WSAEs-LSTM (combining SAEs and WT-LSTM), RNN, and LSTM. The WSAEs-LSTM model has
SAEs-LSTM as the main part of their model and is used to learn the deep features of financial time series, while
WT is used as a preprocessing step that attempts to de-noise the input. We benchmarked this work with the
results of [6].

1.4 Contributions

The contribution of this work is three-fold. Firstly, it implemented the ECNN by deriving the gradients that
make the BPTT possible, see Section 2. As hinted above the ECNN was introduced in [5] but the implementation
has been proprietary and hence the deep learning and the financial forecasting communities are largely not aware
of the existence of the ECNN. Following the publication of this paper an open source package in Python would
be made available.



Secondly, to test the ECNN, a comparison of its performance was made against existing RNN models and
hybrid models proposed in [6] on 4 popular stock indices: S&P 500 (GSPC) Index, Hang Seng Index (HSI), Nikkei
225 Index (N225), and Dow Jones Industrial Average (DJIA) Index. Results show the superior performance of
the ECNN over the other models.

Thirdly, on the question of smoothing and non-smoothing, the ECNN shows good ability to learn from real
data, which is typically noisy – suggesting that smoothing might not necessarily be the best idea.

2 ECNN Implementation

The ECNN learning takes place by finding the optimal parameters that minimize the empirical loss. Formally,
learning implies solving the following optimization problem.

min
A,B,C,D

L :=
1

T

T∑
t=1

L(t), (7)

where L(t) = `
(
y(t), y

(t)
d

)
is the loss at time t.

2.1 Back-Propagation Through-Time

ECNN learning takes place by finding the optimal parameters that minimize the empirical loss. Formally, learning
implies solving the following optimization problem.

min
A,B,C,D

L :=
1

T

T∑
t=1

L(t), (8)

where L(t) = `
(
y(t), y

(t)
d

)
is the loss at time t.

2.2 Back-Propagation Through-Time

The ECNN is implemented using BPTT, which uses gradient descent or its variants. Individually, each parameter
(denoted here as a dummy W ) is updated as follows.

W (j+1) = W (j) − η∇WL|W=W (j) , j = 0, 1, 2, . . . (9)

where η is referred to as a the learning rate and j is the iteration counter.
BPTT iterates over the following steps until convergence.

1. Forward pass: step through k time steps, compute the hidden and output states.

2. Compute the loss, summed over the previous time steps.

3. Compute the gradient of the loss function w.r.t. to all the parameters over the previous k time steps.

4. Backward pass: update parameters.

2.3 Computing Gradients

Computing gradients is a key step in the BPTT algorithm above, hence computing gradients was a key component
of the implementation of the ECNN. As a result, this task is characterized as one of the main contributions of this
work. For easy readability, below we state the gradients w.r.t. each weight matrix and the detailed derivations
are shown in Section 6.1 of the Appendix.

∇AL =

T∑
t=1

diag
(
1− s̃(t)

)
(∇s(t)L) s(t−1)T (10)

∇BL =

T∑
t=1

diag
(
1− s̃(t)

)
(∇s(t)L)x(t−1)T (11)

∇CL =

T∑
t=1

diag
(
1− z̃(t)

)
·DT diag

(
1− s̃(t)

)
CT (∇y(t)L

)
s(t−1)T +

T∑
t=1

(
∇y(t)L

)
s(t)

T

(12)

∇DL =

T∑
t=1

diag
(
1− s̃(t)

)
(∇s(t)L) z(t−1)T (13)

where 1 is a vector of ones; q̃ is a vector with the components the vector q squared, i.e q̃i = q2i ; vT denotes the
transpose of v; and diag(u) denotes a diagonal matrix with the vector u on the diagonal. ∇s(t)L and ∇y(t)L are
derived in Section 6.1.



3 Evaluating Performance of ECNN

3.1 Experiment Setting

Data The ECNN algorithm was tested in the forecasting of daily movement (the algorithm also works for
predicting more than one day) for four stock indices in different stock markets: S&P 500, HSI, N225, and DJIA.
For each market, ECNN was compared to standard RNN (denoted RNN), and LSTM. Models were trained over
historical stock data from Yahoo Finance [20] for the period from 2002-01-01 to 2016-01-01. A glimpse into these
datasets is given in Figure 2. Each database entry of the stock index stated above includes closing price, opening
price, high price (signifying highest price of the day), low price (signifying lowest price of the day), and volume
of trade. In addition to these historical stock trading data, technical indicators of a stock trade are also used
to improve the prediction, [21]. The most popular indicators are Moving Average (MA), Exponential Moving
Average (EMA), Moving Average Convergence Divergence (MACD), Average True Range (ATR) and Stochastic
(%K). The mathematical expressions for these indicators are in Section 6.2 of the Appendix.

Figure 2: S&P 500 daily closing price development between the period of 2002-01-01 and 2015-12-30.
Plots also showing the split of the data into training, validation, and testing.

Training and Testing To improve the predictive performance of the model during training [22], the data is
normalized as follows:

x̂(t) =
x(t) −min

(
x(t)
)

max (x(t))−min (x(t))
(14)

Similarly from y
(t)
d to ŷ

(t)
d .

In our experiments, we took different rolling window sizes. For example, for a rolling window of 10 days of

historical prices: x̂(i) =
{
x̂(t−9,i), x̂(t−8,i), . . . , x̂(t,i)

}
, and corresponding output is y

(t+1,i)
d ∈ R. The mean squared

error (MSE) at time t+ 1 is used for the training loss, L(t+1).

L(t+1) =
1

2K

T∑
t=T−N+1

∑
i∈Ut

(
ŷ
(t,i)
d − ŷ(t,i)

)2
, (15)

where K is the number of all training examples, N is the rolling window size, Ut is the input data universe at t,

and ŷ(t,i) = f
(
x̂(t,i);W (t+1)

)
with W (t+1) as the parameters.

The data was split into training (80%), validation (10%) and testing (10%). An example can be seen from
Figure 2. Most recent data were selected for testing, next recent dataset was selected for the validation and
rest were selected for the training. We used three classical performance criteria [15, 15, 17, 18] to measure the
predictive accuracy of each model. These are the Relative measure (Theil U), Mean Absolute Percentage Error
(MAPE) and Pearsons Correlation Coefficient (R). For details see Section 6.3 of the Appendix. Most training
was done on the Centre for High Performance Computing (CHPC) [26].

Another performance criteria is the directional accuracy (DA), which measures the proportion of the days
when the model forecasts the correct direction of price movement and is defined as thus:

1

m− 1

m−1∑
t=1

pos
((
y
(t+1)
d − y(t)d

)(
y(t+1) − y(t)

))
(16)

where pos is an unary operator defined as:

pos(x) =

{
1 if x > 0

0 otherwise.
(17)



Trading Strategy As part of the experiments, a trading strategy was investigated. The direction of a price
development is relevant to traders, as the direction may directly determine whether to take a long or a short
position in the market. A trading strategy is a way to buy and sell in markets based on predefined rules for
trading decisions. Trading strategies are employed to avoid behavioural finance biases and ensure consistent
results. We consider the strategy of buying and selling based on the predicted results of each model. The strategy
recommends that investors buy when the next periods expected value is higher than the actual value; while it
recommends that investors sell when the predicted value at day t is smaller than the predicted value at day t+ 1.
More precisely, the strategy can be described by the following equations:

y(t+1) > y(t) : Buy (18)

y(t+1) < y(t) : Sell (19)

where y(t) is the current predicted closing price and y(t+1) is the predicted closing price for the following market
day.

The total return of this trading rule can be calculated using the following equation and used as a scale of
comparison between models and markets:

R = 100 ·

 b∑
t=1

y(t+1) − y(t) +
(
S · y(t+1) +B · y(t)

)
y(t)

+

s∑
t=1

y(t+1) − y(t) +
(
B · y(t+1) + S · y(t)

)
y(t)

 (20)

where R is the strategy returns, b and s denote the total number of days for buying and selling, respectively
[6, 19], B and S are the transaction costs for buying and selling, respectively. Here we choose the unified cost in
the spot as 0.25% for buying and 0.45% for selling as used in [6].

3.2 Results

The performance of ECNN was better than both LSTM and RNN. The left panel of Figure 3 shows plots of
sample results for the HSI test data. More plots in Section 6.4 of the Appendix. Note that each algorithm is
trained with its optimal hyper-parameters, through a search in hyper-parameter space.

Figure 3: (Left:)Comparisons of actual data and predicted HSI data using RNN, LSTM and ECNN with
a rolling window size of 60. (Right:)Average yearly directional accuracies (in %) of the ECNN, LSTM
and RNN for the predicted indices.

We investigated the predictive accuracy of the 3 algorithms using the 4 performance criteria outlined in Section
3.1. We further compared our results to the results of two other algorithms proposed in [6]. These are hybrid
algorithms: (i) WLSTM, and (ii) WSAEs-LSTM. For a fair comparison, we used 4 out of the 6 stocks used on in
[6]. We report average annual accuracies, as well as average 6–year accuracies using the 6 years of test data.

Table 1: Return of the models for the predicted Nikkei 225 Index.

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN -5.84 -3.98 -14.53 9.52 52.26 25.35 10.47
LSTM 18.08 33.35 -14.84 55.43 7.73 24.93 20.78
ECNN 70.99 41.96 60.33 82.76 49.93 73.98 63.33

buy-&-hold -18.49 3.16 53.29 11.94 5.44 -8.58 7.79

The ECNN is doing much better than RNN, LSTM, and WLSTM but performing as good, if not better than,
as WSLSTM, without the preprocessing in WLSTM and WSLSTM. See results in Table 2 for the DJIA index in
the 3 performance criteria; while similar results for the other 3 stocks are in Section 6.4 of the Appendix.

The results of the predictive DA for each model are shown in the right panel of Figure 3. It can be seen that
ECNN out performs RNN and LSTM.



Table 2: Predictive accuracy for DJIA of the different models using performance criteria: (top) MAPE,
(middle) R, (bottom) Theil U.

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.034 0.038 0.031 0.028 0.031 0.037 0.033
LSTM 0.020 0.028 0.019 0.023 0.017 0.023 0.022
ECNN 0.008 0.010 0.012 0.009 0.011 0.010 0.010

WLSTM [6] 0.015 0.018 0.013 0.011 0.017 0.012 0.014
WSAEs-LSTM [6] 0.016 0.013 0.009 0.008 0.008 0.010 0.011

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.681 0.591 0.814 0.681 0.513 0.419 0.607
LSTM 0.831 0.761 0.733 0.891 0.912 0.737 0.811
ECNN 0.932 0.941 0.930 0.981 0.973 0.954 0.952

WLSTM [6] 0.915 0.871 0.963 0.911 0.817 0.927 0.901
WSAEs-LSTM [6] 0.922 0.928 0.984 0.952 0.953 0.952 0.949

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.031 0.026 0.018 0.015 0.023 0.018 0.022
LSTM 0.012 0.015 0.013 0.013 0.016 0.014 0.014
ECNN 0.007 0.005 0.010 0.004 0.006 0.007 0.007

WLSTM [6] 0.010 0.012 0.008 0.007 0.011 0.008 0.009
WSAEs-LSTM [6] 0.010 0.009 0.006 0.005 0.005 0.006 0.007

Finally, for the outcome of the trading strategy, we report annual returns of the six years of test data for the 3
algorithms, RNN, LSTM, and ECNN. These results are also compared to the returns of a buy-and-hold strategy.
Tables 1 and 3 confirms the better performance of ECNN over LSTM, RNN and buy-and-hold on the N225 and
S&P 500 indices respectively. Plots for the other 2 stocks are in Section 6.4 of the Appendix.

Table 3: Return of the models for the predicted S&P 500 Index.

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 17.44 12.35 15.83 -9.53 -11.36 6.37 5.18
LSTM -5.93 19.37 26.98 -1.94 3.83 44.27 14.43
ECNN 79.36 61.81 49.26 43.26 83.94 81.03 49.08

buy-&-hold -8.38 -6.38 20.37 10.31 -6.83 10.19 6.65

4 Extensions

As a form of extension, we investigate the impact of adding a smoothing pre-processing step to the ECNN. We
used one of the most popular smoothing techniques, that exponential smoothing.

4.1 ECNNs with Exponential Smoothing

Exponential smoothing is a technique developed in the late 1950s and early 1960s [14], [9] and [13]. It enhances
the accuracy of a correct prediction for short-term forecasting like it is shown in [10]. The original exponential
smoothing algorithms work on univariate data but progress has been made to use exponential smoothing also
with multivariate data [11]. In practice, the technique is smoothing data from time series and it thus works
as a window function. Unlike other window functions, the exponential smoothing (ES) - algorithm is using
exponentially decreasing weights for the time series data. Depending on the parameter, an emphasis is put on
data multiple time steps in the past or on more recent time steps. It is shown in Smyl’s state-of-the-art and M4
competition-winning approach [12] that the ES algorithm is useful to capture the main components like seasonality
and level of a time series. Here is the smoothing formula for non-seasonal data.

lt = αyt + (1− α)lt−1 (21)

The level lt is calculated for every time step of the series, while yt is the value of the series at the specified
time step. The parameter α ∈ (0, 1) is the smoothing coefficient. Although it could technically also assigned to
α = 0, there is no value in it since the level lt would be a constant. If we set α = 1 on the other hand, lt would
just be the value of the series again which is not smoothing our data either.



After calculating the seasonality and the level of the data, we want to apply the obtained time series to our
original data to get the input Xt:

Xt = ln(Inputt/lt) (22)

This time series Xt is normalized and squashed due to the ln function so it can be used as an input for the ECNN.
The output of the ECNN is

Ot = ECNN(Xt). (23)

Rescaling of Xt leads to the predicted time series data

Ŷt = lt · exp(Ot). (24)

4.2 Experimental Results

The datasets were checked for missing values and normalized as shown in the previous section. The Hang Seng
Index dataset was used to compare LSTM and ECNN including exponential smoothing and the ECNN without
exponential smoothing in regards to computational time and accuracy.

For the hyper-parameter selection of the exponential smoothing formula, we chose α = 0.8 as it got us good
results. For the LSTM and ECNN, we used different hyper-parameter for batch size, time step (rolling window),
neurons (units used in the ECNN layer), and the learning rate. The optimal hyper-parameters can be seen in
Table 4.

Table 4: Optimal hyper-parameters used in the experiment.

Epochs Time step Neurons Learning rate
1000 7 32 10−3

Batch size: ECNN = 64 LSTM ES = 8 ECNN ES = 32

The selection was performed using experimentation. The batch size values and the number of neurons tried

were among the following
{

2k
}10
k=0

. The time step values were between 5 and 20. The learning rate values tried

were in the range of 10−2 and 10−6. All the models were run over 1000 epochs and the model parameters were
updated using the Adam optimizer.

Table 5: Comparison of the 3 models: ECNN, ECNN with exponential smoothing, and LSTM with
exponential smoothing

Model ECNN LSTM ES ECNN ES
R2 0.989612 0.999619 0.999621

In terms of the R2 score the performance of the ECNN essentially remains the same when exponential smooth-
ing is used, see Table 5. The explanation is that the ECNN can squeeze out the noise where it does not contain
useful information and keeps the ‘noise’ that contain useful information. hence blanket smoothing or de-noising
may lead to loss of information.

Moreover, the downside of smoothing is that the computational effort is increased especially for LSTM, see
Table 6, where the run time is measured in seconds. The experiment is run on a local machine and on Google
Colaboratory (Colab) The local machine uses an 2.6GHz Intel Core i7-6700HQ (quad-core, up to 3.5GHz with
Turbo Boost) as CPU, 16GB of RAM and an Nvidia GeForce GTX 1060 (6GB GDDR5 VRAM) graphic card.
Google Colab runs with a Nvidia Tesla T4 (16 GB GDDR6 VRAM) GPU and an Intel(R) Xeon(R) CPU @
2.00GHz CPU.

Table 6: Runtime comparison of the three models, locally and on Google Colab. Time in seconds

Model Runtime local Runtime cloud
ECNN 2162.91 271.49
LSTM ES 16364.86 3521.72
ECNN ES 1704.60 440.76



5 Conclusion

This research implemented the ECNN in Python and offered evidence for the favourable performance on the
predictive accuracy and profitability of returns of ECNN over other models on Hong Kongs Hang Seng index,
Japans NIKKEI 225 index, and the USA’s S&P 500 and DJIA indices from 2010 to 2016. These experiments
demonstrates the ECNN’s ability to model unknown external forces of a dynamical system by the incorporation
of the error it is making as an input the system, where the error serves as a proxy for the missing external
input variables of the system. The performance is mainly attributed to the nature of financial markets, which
typify forecasting where only a part of the external variables is known or observable. Furthermore, we show that
universal approximators like the ECNN can learn high dimensional non-linear relationships from real world noisy
data without the need for smoothing. Smoothing will destroy information about micro-structures in economics
time series data.

6 Appendix

6.1 Detailed Derivations

We need to compute the gradient of our loss function with respect to the weight matrices A, B, C, D. The
parameter C is present in two functions which are state transition with the external force and output equation
as shown by (5). Lets consider the network parameters in Figure 1 as the set {β = A,B,C,D}, and s(t) as the
hidden state of the network at time t, we can write the gradients as

∂L

∂β
=

T∑
t=1

∂L(t)

∂β
(25)

where L(t) is the loss at time t. The expansion of loss function gradients at time t is

∂L(t)

∂β
=

t∑
k=1

∂L(t)

∂y(t)
∂y(t)

∂s(t)
∂s(t)

∂s(k)
∂s(k)

∂β
(26)

This shows how parameters in the set β affect the loss function at the previous time-steps (i.e. k < t).
The gradient ∇y(t)L on the outputs at time step t, for all i, t, is as follows:

(
∇y(t)L

)
i

=
∂Lt

∂y
(t)
i

= y
(t)
i − ŷ

(t)
i . (27)

Going backward, starting from the end of the sequence, at the final time step T , s(T ) only has y(T ) as a descendent,
so its gradient is simple:

∇s(T )L =
(
∇s(T )y

(T )
)T
∇y(T )L = CT∇y(T )L (28)

where ∇y(T )L = y(T )− ŷ(T ), ŷ(T ) and y(T ) are the target and predicted values at the final time step T respectively.

For each time t < T , in decreasing order of t, we proceed backward along each path starting at s(t+1) and finishing
at s(t) and also starting at the L(T ) proceed backward similarly until reaching s(t). This gives ∂L

∂s(t)
as follows:

∇s(t)L =

(
∂s(t+1)

∂s(t)

)T

(∇s(t+1)L) +

(
∂y(t)

∂s(t)

)T (
∇y(t)L

)
. (29)

Now at time step t+ 1 (5) can be written as

s(t+1) = tanh
(
As(t) +Bx(t) +D tanh(Cs(t) − y(t)d )

)
. (30)

This enables us to obtain our Jacobian matrix for the hidden state parameter as(
∂s(t+1)

∂s(t)

)T

=

(
AT +

(
∂

∂s(t)
tanh

(
Cs(t) − ŷ(t)

))T

DT

)
× diag

(
1− s̃(t+1)

)
,

=

(
AT +

(
diag

(
1− z̃(t)

)
C
)T

DT

)
× diag

(
1− s̃(t+1)

)
=
(
AT + CT diag

(
1− z̃(t)

)
DT
)
× diag

(
1− s̃(t+1)

)
(31)

where (here and the sequel) ũ is a vector with the components of vector u squared, i.e ũi = u2
i . Also

(
∂y(t)

∂s(t)

)T
is

given by (
∂y(t)

∂s(t)

)T

= CT (32)



Substituting (31) and (32) into (29) gives

∇s(t)L =
[(
AT + CT diag

(
1− z̃(t)

)
DT
)
× diag

(
1− s̃(t+1)

)
+ CT

]
(∇s(t+1)L) (33)

For parameter A, it appears in the arguments for both s(t) and y(t), so we will have to check in both s(t) and
y(t). We also make note that y(t) depends on A both directly and indirectly (through s(t−1)). Using notation
described in Section 2.2, the gradient on the remaining parameters is given by:

∇AL =
∑
t

∑
i

(
∂L

∂s
(t)
i

· ∂s
(t)
i

∂A

)
(34)

The final term, however, requires us to notice that there is an implicit dependence of s(t) on Aij through
s(t−1) as well as a direct dependence. Now, the derivative of the internal hidden state w.r.t. weight matrix A is

∂s(t)

∂A
= diag

(
1− s̃(t)

)
s(t−1)T . (35)

Then we substitute (35) into (34) to get (10) where ∇s(t)L is described by (29). Taking the gradient of B and
D is similar to doing it for A since they both require taking sequential derivatives of s(t). Hence for B and D we
get (11) and (13). To find the derivative of the loss function w.r.t. parameter C, we firstly define ∇CL as

∇CL =
∑
t

∑
i

(∇
y
(t)
i

L)(∇Cy
(t)
i ) (36)

Since y(t) = Cs(t), then (36) becomes

∇CL =
∑
t

∑
i

(
∇

y
(t)
i

L
)
∇C(Cs(t))i

=
∑
t

(∇y(t)L)s(t)
T

+
∑
t

∑
i

∑
j

Cij(∇y
(t)
i

L)(∇Cs
(t))j .

which simplifies to (12).

6.2 Technical Indicators

The descriptions of the technical indicators are as follows:

Moving Average A moving average (MA) is a trend indicator that dynamically calculates the mean average
of prices over a defined number of past, defined as follows.

MA = CCP −OCP

where CCP and OCP are current closing and old closing price for a predetermined period (5 and 10 days).

Exponential Moving Average Exponential Moving Average (EMA) for a predetermined period (20 days)
in each point is calculated according to the following formula:

EMA(t) = EMA(t−1) + α
(
x(t) − EMA(t−1)

)
where α = 2

n+1
, n is the length of the EMA, x(t) is the current closing price, EMA(t−1) is the previous EMA

value, and EMA(t) is the current EMA value.

Moving Average Convergence Divergence It, for a predetermined period (12 and 26 days), is con-
structed based on exponential moving averages. It is calculated by subtracting the longer exponential moving
average (EMA) of window length N from the shorter EMA of window length M , where the EMA is computed
as follows:

EMA(t)(N) = EMA(t−1)(N) +
2

N

(
P (t) − EMA(t−1)(N)

)
where EMA(t)(N) is the exponential moving average at time t, N is the window length of the EMA, and P (t) is
the value of index at time t.

Average True Range The average true range (ATR) is a measure of price volatility. ATR is calculated by
selecting 14 days, which is commonly used and by adding the true range of the present day to that of the previous
13 days, then dividing by 14. This would be your initial ATR:

ATR = (13 previous ATR+ todays true range )/14.



Stochastic Fast (%K) The stochastic fast ( %K ) is a momentum indicator comparing the closing price of
a security to the range of its prices over a certain period and is defined by the following expression:

%K = (CCP − L14)/(H14− L14)

where L14 and H14 denote the lowest low and highest high of the past 14 days respectively.

6.3 Performance Criteria

The definitions of performance criteria are presented below.

Theil U It is the relative measure of the difference between two variables. It squares the deviation to give
more weight to large errors and exaggerates errors. Theil U is defined as follows:

Theil U =

√
1
N

∑N
t=1 (ŷ(t) − y(t))2√

1
N

∑N
t=1 (ŷ(t))

2
+
√

1
N

∑N
t=1 (y(t))

2
,

where N is the number of predictions and ŷ(t) and y(t) are predicted and actual values, respectively.

Mean Absolute Percentage Error The Mean Absolute Percentage Error (MAPE) is used as a predictive
accuracy measure to determine which model performs the best [22]. MAPE can evaluate and compare models’
predictive power and is defined as follows.

MAPE =
1

N

N∑
t=1

∣∣∣(ŷ(t) − y(t)) /y(t)∣∣∣ ,
where ŷ(t) is the target value and y(t) is the predicted value. A lower MAPE value indicates better network
performance, but we cannot expect it to be close to zero, as financial markets are so volatile and fluctuating.

Pearsons correlation coefficient Pearsons correlation coefficient (R) is the measurement of the linear
correlation between two variables. Large R values mean more shared variation which means more accurate
predictions are possible about one variable based on nothing more than knowledge of the other variable. R is
defined as follows:

R =

∑N
t=1

(
y(t) − y(t)

)(
ŷ(t) − ŷ(t)

)
√∑N

t=1

(
y(t) − y(t)

)2 (
ŷ(t) − ŷ(t)

)2
where ŷ(t) and y(t) are predicted and actual values respectively and N represents the prediction period.

6.4 Extra Tables

More plots of sample results of the rolling window of 60 for the test data of N225, DJIA, and S&P 500 shown in
Figure 4.

Figure 4: Comparisons of actual and predictions using RNN, LSTM and ECNN with a rolling window
of 60, (top left) N225, (top right) DJIA, (bottom) S&P 500.



More tables depicting how the ECNN outperforms the RNN, and LSTM, and compares favourably with
WLSTM and WSLSTM. Tables 7, 8, and 9 for the HSI, N225, and S&P 500 indices respectively in the 3
performance criteria (i.e. MAPE, R, and Theil U).

Table 7: Predictive accuracy for HSI of the different models using performance criteria: (top) MAPE,
(middle) R, (bottom) Theil U.

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.031 0.038 0.034 0.040 0.033 0.030 0.034
LSTM 0.027 0.030 0.026 0.021 0.024 0.023 0.025
ECNN 0.013 0.015 0.015 0.011 0.012 0.011 0.013

WLSTM [6] 0.020 0.027 0.017 0.018 0.028 0.021 0.022
WSAEs-LSTM [6] 0.016 0.017 0.017 0.011 0.021 0.013 0.015

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.782 0.631 0.671 0.812 0.677 0.791 0.727
LSTM 0.863 0.866 0.815 0.910 0.795 0.841 0.848
ECNN 0.951 0.966 0.931 0.953 0.967 0.981 0.958

WLSTM [6] 0.935 0.810 0.858 0.833 0.900 0.917 0.876
WSAEs-LSTM [6] 0.944 0.924 0.920 0.927 0.904 0.968 0.931

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.023 0.024 0.019 0.022 0.021 0.019 0.021
LSTM 0.014 0.011 0.013 0.016 0.015 0.015 0.014
ECNN 0.009 0.011 0.006 0.006 0.007 0.008 0.008

WLSTM [6] 0.012 0.017 0.011 0.011 0.021 0.013 0.014
WSAEs-LSTM [6] 0.011 0.010 0.008 0.007 0.018 0.008 0.011

Table 8: Predictive accuracy for N225 of the different models using performance criteria: (top) MAPE,
(middle) R, (bottom) Theil U.

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.043 0.037 0.033 0.035 0.038 0.029 0.036
LSTM 0.037 0.030 0.029 0.031 0.030 0.023 0.030
ECNN 0.012 0.011 0.016 0.011 0.015 0.017 0.014

WLSTM [6] 0.033 0.025 0.032 0.025 0.022 0.027 0.028
WSAEs-LSTM [6] 0.020 0.016 0.017 0.014 0.016 0.018 0.017

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.631 0.694 0.893 0.779 0.832 0.833 0.780
LSTM 0.773 0.877 0.927 0.883 0.910 0.818 0.865
ECNN 0.899 0.933 0.989 0.991 0.986 0.963 0.960

WLSTM [6] 0.748 0.838 0.973 0.786 0.951 0.906 0.867
WSAEs-LSTM [6] 0.895 0.927 0.992 0.885 0.974 0.951 0.937

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.028 0.023 0.021 0.020 0.025 0.024 0.022
LSTM 0.019 0.018 0.021 0.023 0.019 0.020 0.032
ECNN 0.011 0.009 0.010 0.008 0.009 0.011 0.010

WLSTM [6] 0.021 0.017 0.021 0.015 0.013 0.017 0.018
WSAEs-LSTM [6] 0.013 0.010 0.010 0.009 0.010 0.011 0.011



Table 9: Predictive accuracy for S&p 500 (GSPC) of the different models using performance criteria:
(top) MAPE, (middle) R, (bottom) Theil U.

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.024 0.015 0.031 0.015 0.031 0.036 0.025
LSTM 0.031 0.023 0.011 0.029 0.033 0.021 0.024
ECNN 0.009 0.013 0.013 0.007 0.015 0.012 0.011

WLSTM [6] 0.015 0.020 0.012 0.010 0.015 0.015 0.015
WSAEs-LSTM [6] 0.012 0.014 0.010 0.008 0.011 0.010 0.011

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.874 0.915 0.673 0.779 0.821 0.787 0.801
LSTM 0.883 0.921 0.891 0.941 0.960 0.811 0.901
ECNN 0.966 0.985 0.972 0.891 0.974 0.981 0.962

WLSTM [6] 0.917 0.886 0.971 0.957 0.772 0.860 0.894
WSAEs-LSTM [6] 0.944 0.944 0.984 0.973 0.880 0.953 0.946

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 0.012 0.013 0.012 0.008 0.011 0.014 0.012
LSTM 0.007 0.011 0.009 0.010 0.008 0.010 0.014
ECNN 0.006 0.005 0.007 0.008 0.008 0.006 0.007

WLSTM [6] 0.011 0.014 0.008 0.007 0.011 0.011 0.010
WSAEs-LSTM [6] 0.009 0.010 0.006 0.005 0.008 0.006 0.007

With regards to the profitability test of the trading strategy, Tables 10 and 11 confirming the better perfor-
mance of ECNN over LSTM, RNN and buy-and-hold on the HSI and DJIA indices respectively.

Table 10: Return of the models for the predicted HSI.

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 7.35 44.03 -14.33 -17.33 38.34 41.05 16.52
LSTM 25.57 22.76 3.85 15.14 63.30 27.44 26.34
ECNN 80.86 62.74 77.45 57.54 53.59 69.23 66.90

buy-&-hold -29.62 19.34 11.31 9.65 -1.78 -2.02 1.15

Table 11: Return of the models for the predicted DJIA Index.

Model Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

RNN 8.36 3.44 11.12 6.36 -3.45 40.26 11.02
LSTM 44.28 31.44 21.38 -6.35 7.38 41.37 23.25
ECNN 79.36 61.81 49.26 43.26 83.94 81.03 66.45

buy-&-hold -8.38 -6.38 20.37 10.31 -6.83 10.19 3.22
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