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Abstract—This paper introduces a novel leader-follower model
for tracking a group of manoeuvring objects under a probabilistic
framework. The proposed model develops on the conventional
leader-follower model in which the followers are driven stochas-
tically towards the velocity and position of the leader. Here we
consider the dynamic of followers as a mean-reverting process
and express it in a continuous-time stochastic differential equa-
tion. Instead of using a standard global Cartesian or polar system,
an intrinsic coordinate model is utilised for the leader where
piecewise constant forces are applied relative to the heading of
the leader. Followers then mean revert towards the heading angle
and speed of the leader, leading to a more realistic behavioural
modelling than the more conventional global coordinate systems.
Such a dynamical model is readily incorporated into tracking
algorithms using for example the variable rate particle filtering
framework which can accurately capture and estimate the
manoeuvres of the leader and followers. The simulation results
verify its efficacy under challenging group tracking scenarios and
future work will explore automatic identification from groups of
moving objects.

Index Terms—leader-follower model, intrinsic coordinates,
variable rate particle filter, Bayesian inference

I. INTRODUCTION

Multiple Object Tracking (MOT) aims to estimate the
kinematic state (e.g., position, velocity, heading) of objects
based on the noisy measurements from sensors. In standard
MOT algorithms, objects are assumed to be scattered and
tracked independently. However, in real scenarios the inter-
action among a number of moving objects can often be
witnessed, e.g., in bird flocks, fish schools, crowds. Such
closed-spaced objects that present certain interaction pattern
are defined as a group. Methods for group tracking depart from
MOT as the interaction information is taken into account in
the group dynamics so as to enhance the tracking performance.

Interaction models have been extensively studied and a
thorough overview of these models in the tracking domain
is given in [1]. In this paper, we focus only on one particular
interaction model, dubbed the leader-follower model, in which
the followers steer to the kinematic state of the defined leader.
The bulk velocity model [2] and virtual leader model [3] are
two classical models which utilise an additional group state,
normally the averaged position and velocity of all objects, as
the virtual leader of the group. The leader-follower model
has been further developed in a continuous-time setting via
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a multivariate Stochastic Differential Equation (SDE) and
shown to be effective in enhancing group tracking accuracy
[4]. To identify a leader in groups, a causality reasoning
framework has been proposed to rank objects with respect
to their dominance effect [5]. An alternative method models
the leader-follower relationship using a sparse structure, and
interaction strength is deduced by inferring the interaction
term using Gibbs sampling [6]. Both these two methods utilise
batch inference methods (i.e., assume all related data, sensory
measurements, are available) and/or assume that the interaction
pattern within groups is fixed over time. However, practically
the interactions can vary over time. For example, studies have
shown that during migration, geese flying in a V-formation
take turns to lead [7], [8]. Therefore a rotated leadership
model has been proposed for inferring a dynamically changing
group structure, and an online Gibbs sampler and deterministic
particle filter (PF) have then been designed to infer sequen-
tially the leadership over time [9]. Nevertheless, these models
assume a constant velocity dynamic and do not address the
manoeuvrability of the group objects.

Here we specifically address the planar manoeuvring group
tracking where the manoeuvre inherently features a curvilinear
motion with sudden changes in heading and/or speed. Com-
pared to Cartesian coordinates, such curvilinear motion is more
convenient to be expressed in an intrinsic coordinate system
where an object is assumed to move along a curved path with
nonzero accelerations tangential and normal to the object’s
trajectory (see fig. 1). This intrinsic coordinate system has
been utilised in [10] and proven to be an efficient alternative
to the classic coordinated turn [11] and rectilinear models
[12]. Specifically in [10], nested multiple model trackers are
adopted to estimate the tangential and normal accelerations,
which is a variant of the standard interacting multiple model
[13]. However, the curvilinear motion model in [10] was
approximated on condition that the acceleration is relatively
small, consequently limiting its application in practice. A more
flexible variable rate tracking model was developed in [14]
in which the state sampling rate is not determined by the
measurement data. In addition, by assuming a constant force
between the manoeuvre time intervals, the movement of the
object can be viewed as a piecewise deterministic path, and
the sequence of state points can be estimated by a variable
rate particle filter (VRPF) [15]–[17].



Fig. 1. Illustration of intrinsic coordinates.

In this paper, we take a step further by developing a
new leader-follower model for tracking the planar motion of
actively manoeuvring group objects; in particular, we adopt
an intrinsic dynamic model to describe the manoeuvres of
the leader, with the followers reverting towards the leader.
Specifically, the followers’ motion can be mathematically
expressed by a continuous-time stochastic differential equation
(SDE). The posterior of the joint states for both the leader and
followers can be sequentially estimated by Bayesian inference,
and a VRPF is utilised due to the nonlinear property of the
model. Future work will explore the identification of the leader
in group tracking.

II. GROUP MODEL

In this section, we develop a 2-dimensional mathematical
model of group dynamics for depicting the manoeuvre be-
haviour and leader-follower interaction among group mem-
bers. Particularly, we introduce a variable rate framework, in
which the state arrival rate is not aligned with the observation
process. Given the arrival time sequence and motion param-
eters, the dynamic of the leader between arrival times is a
deterministic path under the intrinsic coordinate system; the
motion of the followers can be considered as an Ornstein-
Uhlenbeck random process which drifts to leader’s heading
and speed over time.

A. Intrinsic Leader-follower Model

Consider the measurements {zn}Nn=1 are observed with a
fixed sampling rate at time {t1, ..., tN}. Here we define a
variable state as sk = [τk, θk], which consists of the arrival
time τk and state vector θk at τk, where k = 1...K is the index
of arrival time and τK < tN . Different from the standard state
space models, we assume the states arrive at random and the
state sequence follows a Markov process, i.e.,

p(sk+1|s1:k) = p(sk+1|sk). (1)

Consequently, the states can be independently generated as
follows:

sk+1 ∼ p(sk+1|sk) = p(θk+1|θk, τk+1, τk)p(τk+1|τk). (2)

The distribution of time points is set as

τk+1 − τk ∼ exp(λ), (3)

where λ is the rate parameter of this exponential distribution.
Conditional on a sequence of arrival time, the entire trajec-

tories of group members are continuously linked by piecewise
trajectories between every interval (τk, τk+1).

Assume we have M objects in the group, and the Lth object
is the leader of the group with the others being followers,
L ∈ {1...M}. Define the variable state vector at arrival time τk
as sk = {sk,i}Mi=1, and sk,i = [τk,i, θk,i]. Then the transition
density p(θk+1|θk, τk+1, τk) conditional on the arrival time
can be rewritten as

p(θk+1|θk, τk:k+1) = p(θk+1,L|θk,L, τk:k+1)

× p(θk+1,f |θk,f , θk:k+1,L, τk:k+1),
(4)

where f = {i}Mi=1,∀i 6= L.
Since different dynamical models are applied to the leader

and the followers, the continuous-time motion model of them
between state arrival time (τk, τk+1) and their transition func-
tions will be discussed separately as follows.

1) The Leader: A 2D intrinsic coordinate system is utilised
for modelling the motion of the leader. Specifically, here we
define the state for the Lth leader at arrival time τk is

θk,L = [aT,k, aP,k, vL(τk), ψL(τk), xL(τk), yL(τk)],

where vL(τk) is the speed tangential to the path; ψL(τk) is
the heading that is anticlockwise relative to the x- axis, and
xL(τk), yL(τk) are the positions in Cartesian coordinates. Ma-
noeuvre parameters (i.e. the tangent and normal acceleration,
aT,k and aP,k) acting on the leader are also included in the
state vector.

In particular, we assume the force applied relative to the
heading of the leader to be constant between time interval
[τk, τk+1]. Correspondingly, aT,k and aP,k are constants sam-
pled according to aT,k ∼ N (µT , σ

2
T ), aP,k ∼ N (0, σ2

P ).
Thus the movement of the leader is a deterministic curvilinear
motion between [τk, τk+1] and the standard equations of which
can be expressed in a continuous-time model as follows:

v̇L(t) = aT,k, (5)

ψ̇L(t) =
aP,k
vL(t)

, (6)

ẋL(t) = vL(t)cos(ψL(t)), (7)
ẏL(t) = vL(t)sin(ψL(t)), (8)

where τk < t < τk+1.
By integration, the model for tangential speed vL(t) is

written as:

vL(t) = vL(τk) + aT,k(t− τk), (9)

and the heading ψL(t) is expressed as

ψL(t) = ψL(τk) +
aP,k
aT,k

ln

∣∣∣∣ vL(t)

vL(τk)

∣∣∣∣ . (10)

Subsequently, the location of the leader in a Cartesian
coordinates can be obtained by integrating (7)-(8) from time



τk to t, and hence the position on the x-axis and y-axis at
time t can be computed as:

xL(t) = xL(τk)

+
vL(t)2

4a2T,k + a2P,k
[aP,ksin(ψL(t)) + 2aT,kcos(ψL(t))]

− vL(τk)2

4a2T,k + a2P,k
[aP,ksin(ψL(τk)) + 2aT,kcos(ψL(τk))],

(11)
yL(t) = yL(τk)

+
vL(t)2

4a2T,k + a2P,k
[−aP,kcos(ψL(t)) + 2aT,ksin(ψL(t))]

− vL(τk)2

4a2T,k + a2P,k
[−aP,kcos(ψL(τk)) + 2aT,ksin(ψL(τk))].

(12)

Therefore, the transition function p(θL(t)|θk,L, τk:k+1) for the
leader can be described explicitly by (9)-(12).

2) The follower: The motion of the followers can be
considered as a mean-reverting process which steers towards
leader’s heading and speed. The state for the ith follower at
arrival time τk is

θk,i = [vi(τk), ψi(τk), xi(τk), yi(τk)],

where i is the index of the followers, ∀i 6= L. This dynamic
can be easily expressed in a continuous-time SDE:

dvi(t) = β (vL(t)− vi(t)) dt+ dBi,v, (13)
dψi(t) = γ (ψL(t)− ψi(t)) dt+ dBi,ψ, (14)

where Bi,v and Bi,ψ are independent Brownian motions with
variance σ2

i,v and σ2
i,ψ , and β, γ are parameters that control the

strength of the force the leader has on the followers. All these
parameters are assumed to be known scalars in this paper.

The speed at time t can be calculated as

vi(t) = e−βhvi(τk) +

∫ t

τk

eβ(u−τk−h)dBi,v

+

∫ t

τk

βeβ(u−τk−h) (vL(τk) + aT,k(u− τk)) du,

(15)

where h = t− τk and τk < t < τk+1.
The transition density p(vi(t)|vi(τk)) is a Gaussian with

mean mi,v(t) and covariance Qi,v(t) being

mi,v(t) = e−βhvi(τk) + (vL(τk)− aT,kτk))
(
1− e−βh

)
+
aT,k
β

(
βτk + βh− 1− e−βh (βτk − 1)

)
, (16)

Qi,v(t) =

∫ h

0

e−βuσi,vσi,ve
−βudu

= −
σ2
i,v

2β

(
e−2βh − 1

)
. (17)

Similarly, the heading ψi(t) at jump time t can be calculated
as

ψi(t) = e−γhψi(τk) +

∫ t

τk

eβ(u−τk−h)dBi,ψ

+

∫ t

τk

γeγ(u−τk−h)
(
ψL(τk) +

aP,k
aT,k

ln

∣∣∣∣ vL(u)

vL(τk)

∣∣∣∣) du.
(18)

Hence, the transition density p(ψi(t)|ψi(τk)) is a Gaussian
with mean mi,ψ(t) and covariance Qi,ψ(t).

mi,ψ(t) =e−γhψi(τk) + (1− e−γh)ψL(τk)

− aP,k
aT,k

e−γ(h+
1
m )

(
Γ(0,− γ

m
)− Γ(0,−γ(h+

1

m
))

)
+
aP,k
aT,k

ln(
vL(t)

vL(τk)
), (19)

Qi,ψ(t) =

∫ h

0

e−γuσi,ψσi,ψe
−γudu (20)

= −
σ2
i,ψ

2γ

(
e−2γh − 1

)
. (21)

where m = aT
vL(τk)

, and Γ(0, ·) is the incomplete Gamma
function.

The position for the ith follower in Cartesian coordinates
can be calculated by using the first-order Euler approximation,
which assumes that the speed and heading are constants over
a small enough time interval dt. Subsequently, the position in
Cartesian coordinates can be computed by

xi(τk + dt) = xi(τk) + vi(τk)cos(ψi(τk))dt, (22)
yi(τk + dt) = xi(τk) + vi(τk)sin(ψi(τk))dt. (23)

By substituting dt with h, we can obtain the approx-
imated position of the follower at time t in Cartesian
coordinates, nevertheless dt can be set to other value
as required for precision. Therefore, the transition func-
tion p(θf (t)|θk,f , θk:k+1,L, τk:k+1) continuously on interval
(τk, τk+1) can be deduced by (15)-(23).

B. Measurement Model

In this paper, the measurement equation takes the following
linear Gaussian form in the 2-d Cartesian coordinates:

zn = Hθ(tn) + wn, (24)

where zn ∈ <2M×1 denotes the measurement at observation
time step n, n = 1, ..., N . θ(tn) at time tn represents the joint
states of leader and followers, θ(tn) = [θ1(tn), ..., θM (tn)]′,
and the observation noise wn ∼ N (0, QwI2M×2M ). Qw is
the noise coefficient. When only position measurements are
available, the observation matrix is:

H =


H1 0 . . . 0
0 H2 . . . 0
...

...
. . .

...
0 0 . . . HM

 , (25)



where Hi, ∀i 6= L for the followers is

Hi =
[
02×2 I2×2

]
, (26)

and HL for the leader is

HL =
[
02×4 I2×2

]
. (27)

Therefore, the likelihood can be expressed as p(zn|θ(tn)) =
N (zn|Hθ(tn), QwI2M×2M ).

III. VARIABLE RATE STATE ESTIMATION

The aim of group tracking in a variable rate setting is to
compute the posterior probability distribution p(s1:kn |z1:n),
given all of the observations up to time tn. The kn indicates
the maximum index of state which satisfies kn ∈ {1, ...,K}
and 0 < τkn < tn. This problem can be effectively solved by
Bayesian filtering under the Markovian assumption as stated
in (2).

The predict step is formulated as:

p(s1:kn |z1:n−1) = p(skn |skn−1)× p(s1:kn−1 |z1:n−1), (28)

in which p(skn |skn−1) is the state transition density expressed
as

p(skn |skn−1) =

J∏
j=1

p(skn−1+j |skn−1+j−1). (29)

due to the fact that state may arrive one or more times between
observation time step n−1 and n. Let J = kn−kn−1 denotes
the number of manoeuvre; thus J = 0 indicates there is no
manoeuvre between time tn−1 and tn.

The update step is expressed as

p(s1:kn |z1:n) =

∫
p(s1:kn , θ(tn)|z1:n)dθ(tn)

∝p(s1:kn |z1:n−1)

∫
p(zn|s1:kn , θ(tn), z1:n−1)

×p(θ(tn)|s1:kn , z1:n−1)dθ(tn).

(30)

Note that the density p(θ(tn)|s1:kn , z1:n−1) is a delta function,
i.e.

p(θ(tn)|s1:kn , z1:n−1) = δ(θ(tn)− θ̂(tn)). (31)

where θ̂(tn) is the predicted state vector at exactly time tn
specified in II-A. The likelihood at tn only depends on its
corresponding state vector θ(tn):

p(zn|s1:kn , θ(tn), z0:n−1) = p(zn|θ(tn)). (32)

Therefore, (30) is further deduced as

p(s1:kn |z1:n) ∝p(s1:kn |z1:n−1)

∫
p(zn|θ(tn))

×δ(θ(tn)− θ̂(tn))dθ(tn)

=p(s1:kn |z1:n−1)p(zn|θ̂(tn)).

(33)

In this paper, we adopt a variable rate particle filter to
sequentially estimate the arrival time and states of the group
members. The posterior p(s1:kn |z1:n) is utilised as the target
distribution, approximated by a set of weighted particles.

Here, a bootstrap particle filter is employed where the tran-
sition density p(skn |skn−1) in (29) is used as the proposal
q(skn |skn−1

, z1:n). The steps of VRPF are as follows:
1) Suppose at observation time step n−1, we have Np par-

ticles {s(p)1:kn−1
, ω

(p)
n−1}

Np
p=1, then the posterior distribution

p(s1:kn−1
|z1:n−1) can be approximated as

p(s1:kn−1 |z1:n−1) ≈
Np∑
p=1

ω
(p)
n−1δ(s1:kn−1 − s

(p)
1:kn−1

).

(34)
where

∑Np
p=1 ω

(p)
n−1 = 1.

2) at time n, for p = 1 to Np, s(p)kn is sampled from
p(skn |s

(p)
kn−1

) which can be expressed as follows by
considering (2) and (29):

p(skn |s
(p)
kn−1

) =

J∏
j=1

p(τkn−1+j |τ
(p)
kn−1+j−1)

×p(θkn−1+j |θ
(p)
kn−1+j−1, τkn−1+j , τ

(p)
kn−1+j−1). (35)

Hence, we first sample a sequence of arrival times τ (p)kn
according to distribution in (3), and then the state vector
θ
(p)
kn

can be obtained by the transition function deduced
in (II-A).
The corresponding importance weight is updated as

ω(p)
n ∝ ω(p)

n−1p(zn|θ̂(p)(tn)), (36)

where p(zn|θ̂(p)(tn)) is the likelihood function.
3) Resample step is taken if effective sample size N̂eff is

smaller than the chosen threshold Nthres; particles will
be resampled according to their weight ω(p)

n under the
multinomial resampling scheme [18], and ω

(p)
n will be

set to 1
Np

.
4) Subsequently, the posterior distribution p(s1:kn |z1:n) at

observation time step n can be approximated by particles
{s(p)1:kn

, ω
(p)
n }Npp=1, and

∑Np
p=1 ω

(p)
n = 1.

IV. RESULTS

Synthetic and real scenarios are presented to verify the
performance of the proposed intrinsic leader-follower model
in group tracking.

A. Synthetic Data

In this part, we consider a synthetic scenario with manoeu-
vring objects moving in a group. Specifically, we simulate
100 independent trajectories of 3 objects over 200 time steps
by using the proposed group model, where the time interval
between observations is 1s. The object 1 is set as the leader of
the group for the whole process, and the motion is initialised
with a random velocity and position. The parameters used are
µT = 0.01, σ2

T = 0.02, σ2
P = 5, σ2

f,v = 0.01, σ2
f,ψ = 0.01,

β = 0.9, γ = 0.9. The interarrival time is assumed to follow
an exponential distribution with rate parameter λ = 10.

The measurements and the true trajectories for an example
simulation in 2-D Cartesian coordinates are shown in Fig. 2.



Fig. 2. Simulated tracks of 3 objects; pluses denote measurements, and solid
lines are the true tracks

Fig. 3. Estimated tracks and the corresponding 99% confidence ellipses; solid
lines are the true tracks, and dotted lines are estimations

It is clear that the motion of the group is highly manoeuvring
and presents a leader-follower group behaviour. Meanwhile,
we can observe that the followers do not strictly revert to the
position of the leader as in the standard leader-follower model;
instead, the followers keep in alignment with the heading and
the speed of the leader. This setting might be practical in cases
with known heading information.

TABLE I
PERFORMANCE AVERAGED ACROSS 100 RUNS.

Methods RMSE
Intrinsic Leader-follower Model 2.8633

Independent Intrinsic Model 3.8735
Constant Velocity Leader-follower Model 9.9504

A bootstrap VRPF algorithm is utilised with 2000 particles,
and is initialised according to a Gaussian distribution around
the true initial states. Fig. 3 shows the estimated tracks and
their corresponding 99.7% confidence ellipses of a group
of 3 objects. It can be seen that the group state are well-
estimated over time with high accuracy. Comparisons with
other methods are also given in Table. I by using the metric
of the Root Mean Square Error (RMSE). Especially, we first
consider a non-group based independent intrinsic model which
does not consider the leadership information, i.e., objects
in groups are moving independently and hence are tracked

Fig. 4. Pigeons trajectories; solid lines are the true tracks, and pluses denote
measurements.

Fig. 5. Estimated tracks and the corresponding 95% confidence ellipses; solid
lines are the true tracks, and dotted lines are estimations

individually. Particularly, we assume each object follows an
intrinsic tracking model as in [15]. We also compare our
method with the constant velocity leader-follower model in [9]
which assumes the leader follows a constant velocity model
with the followers reverting to leader’s kinematic position
states. The results show that all these methods can track group
objects properly, while two models based on the intrinsic
coordinate system show better tracking performance in such a
curvilinear motion case. Moreover, we can see that our model
has comparatively the lowest RMSE, thereby demonstrating
its superiority in the challenging manoeuvring group tracking
scenarios.

B. Pigeon Flock Data

To further prove the efficacy of this algorithm, it is evaluated
on the real pigeon flock data presented in [19]. The data we
utilise are high-resolution trajectories of four homing pigeons
flying in a flock, collected by miniature GPS devices at a
rate of 10 Hz. We use a 150 time step sub-segment and the
true trajectories and observations of the four pigeons are given
in Fig. 4. It can be seen that the flock trajectory features a
curvilinear motion, thus being well-suited to be analysed under
an intrinsic coordinate system.

Besides manoeuvres of the group, this scenario is especially
challenging due to the varying leadership in pigeon flock



Fig. 6. Estimated leader at each time step and its probability; black dotted
line indicates the output, i.e. the most probable leader; color bar denotes the
probability of the correctness

TABLE II
PERFORMANCE AVERAGED ACROSS THE 50 RUNS.

Methods RMSE
Intrinsic Leader-follower Model 1.1434

Independent Intrinsic Model 1.3328
Constant Velocity Leader-follower Model 2.0786

over time. Here we assume the leadership pattern is prior
information (e.g., estimated by the leadership identification
method in [9]), and the estimated leadership of the flock data
over 150 time steps is shown in Fig. 6. The color bar ranging
from white to red indicates the probability of this pigeon being
the leader, and the dotted line is the most probable leader
deduced at each time step. For more details see [9]. To track
these highly manoeuvring pigeons with varying dominance
hierarchy amongst the flock, the proposed intrinsic leader-
follower model is applied to model the dynamics of the group
members. The parameters are set as µT = 0.1, σ2

T = 50,
σ2
P = 1000, β = 10, γ = 10. σ2

f,v = 10, σ2
f,ψ = 10.

The interarrival time is assumed to follow an exponential
distribution with rate parameter λ = 10. A VRPF algorithm
with 1000 particles is utilised to estimate the group states.
From Fig. 5 we can see that our algorithm can accurately
capture the manoeuvres of the pigeons. Similarly, the proposed
method is compared with the independent intrinsic model
and constant velocity leader-follower model. The RMSEs of
these methods are listed in Table. II. Likewise, we can see
that our method has the smallest RMSE. It is noticeable that
the independent intrinsic model is a counterpart in tracking
performance to our algorithm with a slightly higher RMSE;
however, its computational burden should be considered when
the group size grows since this algorithm runs multiple particle
filters for objects in a group. Therefore, we can conclude that
our algorithm is effective in handling manoeuvring interacting
group tracking.

V. CONCLUSION

In this paper, an intrinsic leader-follower model is presented
for tracking manoeuvring group objects in a leader-follower
formation. Especially, we adopt a variable rate scheme which
proves to be more flexible and efficient in modelling manoeu-
vres of the objects. Correspondingly, the VRPF algorithm is
applied to estimate the states of objects in a group. Results
show that our proposed model outperforms both the normal

leader-follower model and the independent intrinsic tracking
model. Future work will refine our model corresponding to
realistic tracking settings, e.g., to include frictional resistance
force. Moreover, the identification of the group leader in real
time will also be studied.

APPENDIX

Here we present the detailed steps to calculate the speed
and heading for each follower, respectively.

A. Derivation of the Speed

To solve the SDE in (13), we multiply both sides by eβt:

eβtdvi(t) = −βeβtvi(t)dt+ βeβtvL(t)dt+ eβtdBi,v. (37)

Hence,

d
(
eβtvi(t)

)
= βeβtvL(t)dt+ eβtdBi,v. (38)

Substitute (9) into (38). The speed at jump time t can be
expressed as in (15). Specifically, the steps of calculation the
mean mi,v(t) of the transition density p(vi(t)|vi(τk)) is given
here:

mi,v(t) = e−βhvi(τk) +

∫ t

τk

βeβ(u−τk−h)vL(u)du

= e−βhvi(τk) + β (vL(τk)− aT τk))

∫ t

τk

eβ(u−τk−h)du

+ βaT

∫ t

τk

teβ(u−τk−h)du

= e−βhvi(τk) + (vL(τk)− aT τk))
(
1− e−βh

)
+
aT
β

(
βτk + βh− 1− e−βh (βτk − 1)

)
. (39)

where h = t− τk and τk < t < τk+1.

B. Derivation of the Heading

Similarly, we can deduce (14) by multiplying eγt on both
sides and substituting (10) into (14). In particular, here we
give the steps of calculating the mean mi,ψ(t) of transition
density p(ψi(t)|ψi(τk)). The expression of mi,ψ(t) is

mi,ψ(t) = e−γhψi(τk)

+

∫ t

τk

γeγ(v−τk−h)
(
ψL(τk) +

aP
aT

ln

∣∣∣∣ vL(v)

vL(τk)

∣∣∣∣) dv
= e−γhψi(τk) +

∫ t

τk

γeγ(v−τk−h)ψL(τk)dv + C (40)

where C is further deduced as follows:

C =

∫ t

τk

γeγ(v−τk−h)
(
aP
aT

ln

∣∣∣∣ vL(v)

vL(τk)

∣∣∣∣) dv
= γ

aP
aT
e−γt

∫ t

τk

eγv ln

∣∣∣∣ vL(v)

vL(τk)

∣∣∣∣ dv
= γ

aP
aT
e−γt

∫ t

τk

eγv ln

∣∣∣∣vL(τk) + aT (v − τk)

vL(τk)

∣∣∣∣ dv
(41)



Define m = aT
vL(τk)

. Then

C = γ
aP
aT
e−γt

∫ t

τk

eγv ln |1 +m(v − τk)| dv

=
aP
aT
e−γt

eγv ln |1 +m(v − τk)|

∣∣∣∣∣
t

τk


− aP
aT
e−γt

∫ t

τk

eγv ln |1 +m(v − τk)|
′
dv

=
aP
aT

ln |1 +mh|

− aP
aT
e−γt

∫ t

τk

eγv ln |1 +m(v − τk)|
′
dv

(42)

Note that

[ln |1 +m(v − τk)|]′ =
1

|1 +m(v − τk)|
× [|1 +m(v − τk)|]′

=

1+m(v−τk)
|1+m(v−τk)| × [1 +m(v − τk)]

′

|1 +m(v − τk)|
=

m

1 +m(v − τk)
(43)

Hence, ∫ t

τk

eγv ln |1 +m(v − τk)|
′
dv

=

∫ t

τk

meγv

1 +m(v − τk)
dv

= e
−γ(1−τkm)

m

∫ u2

u1

eu

u
du

= e
−γ(1−τkm)

m (Γ(0,−u1)− Γ(0,−u2))

(44)

where u = γv + γ(1−τkm)
m , and u1 = γ

m , u2 = γ(h + 1
m ).

h = t − τk and τk < t < τk+1. In this way, the C can be
calculated, and the final expression for the mean of the heading
is given in (19).
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