
This is a repository copy of A weighted variance approach for uncertainty quantification in 
high quality steel rolling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/161390/

Version: Accepted Version

Proceedings Paper:
Wang, P., Lin, Y., Muroiwa, R. et al. (2 more authors) (2020) A weighted variance approach
for uncertainty quantification in high quality steel rolling. In: Proceedings of 2020 IEEE 
23rd International Conference on Information Fusion (FUSION). 2020 IEEE 23rd 
International Conference on Information Fusion (FUSION), 06-09 Jul 2020, Rustenburg, 
South Africa. IEEE , pp. 1-7. ISBN 9781728168302 

10.23919/FUSION45008.2020.9190527

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A Weighted Variance Approach for Uncertainty

Quantification in High Quality Steel Rolling

Peng Wang∗, Yueda Lin∗, Ree Muroiwa†, Simon Pike†, and Lyudmila Mihaylova∗

∗The University of Sheffield, Sheffield, UK. Email: {peng.wang, ylin42, l.s.mihaylova}@sheffield.ac.uk
† Liberty Speciality Steel. E-mail: {ree.muroiwa, simon.pike}@specialityuk.com

Abstract—This paper proposes a computer vision framework
aimed to segment hot steel sections and contribute to rolling
precision. The steel section dimensions are calculated for the
purposes of automating a high temperature rolling process. A
structured forest algorithm along with the developed steel bar
edge detection and regression algorithms extract the edges of
the high temperature bars in optical videos captured by a
GoPror camera. To quantify the impact of noises that affect
the segmentation process and the final diameter measurements,
a weighted variance is calculated, providing a level of trust in
the measurements. The results show an accuracy which is in line
with the rolling standards, i.e. with a root mean square error
less than 2.5 mm.

Index Terms—Manufacturing and automation, Metrology,
Computer vision, High temperature steel production, Uncertainty
quantification

I. INTRODUCTION

An Automated, Intelligent, Online-decision-making, and

Non-contact (AI-ON) measuring system is critical to automat-

ing steel rolling processes, and to operational-cost reduction.

Such systems have higher efficiency compared with traditional

rolling systems with contact-based measuring methods and

protect human operators from hazardous environments.

Among non-contact measuring methods, Light Detection

And Ranging (LiDAR) based methods such as [1], have

demonstrated high accuracy. However, this comes with a

significant economical cost. Alternatively, computer vision

methods provide high accuracy and are inexpensive. For

instance, by projecting structured light onto steel bar surfaces,

the method developed in [2] is able to measure the diameter

of a 53 tonnes round steel bar with a maximum error of

0.38%. Liu et al. [3] propose an approach for online diameter

estimation of cylindrical forgings, obtaining relative errors

less than 0.7%. Similarly, Yang et al. [4] propose a method

that shows improved measurement accuracy of rectangular

forgings, attaining an average 0.48% estimation error. Since

the encoded structured light can be easily perceived as intense

light, this approach cannot be used easily in rolling applica-

tions where there are various intense light sources.

To avoid the disadvantages of the aforementioned measuring

systems, Zatočilová et al. [5] design a passive, stationary

multi-image system for fast measuring of dimensions and

straightness of rotationally-symmetric forgings. An edge de-

tection algorithm that exploits simple shapes of the forging

is developed. After extracting four boundary curves of the

forging in a pair of images, a 3D model reconstruction is

performed where the length, diameter, and straightness of the

forgings are calculated. The system is proved capable of per-

forming diameter measuring with deviations less than 1%. Wu

et al. [6] propose a monocular-vision-based method for online

measuring of a weld stud. An accurate mathematical model

constrained by the measuring principle is developed. Based

on the model, a further calibration is proposed to optimise

the projective transformation parameters. They show that the

model is flexible, fast, and capable of achieving high-precision

measurements of the weld stud. Nevertheless, the temperature

in these two cases is not as high as to 1000 - 1500◦C, at which

the intense radiation of the Hot Rolled Bar (HRB) can cause

overexposure problems easily. Figure 1 shows video frames

(a) (b) (c)

Fig. 1. Hot rolled bars whose size is estimated remotely



of such HRBs. Due to the high temperature radiation and

the HRBs are cooling down unevenly while moving on the

conveyor, the edges of the HRBs are often blurred.

This paper presents a framework for high temperature HRB

size measuring with a non-industrial GoPror camera, and

gives a level of trust in the obtained results. The framework can

be applied in low-cost non-industrial devices for automating

the high quality steel rolling process. We start by presenting

the algorithm for extraction of the boundaries of interest

to detect and extract the edge boundaries of HRBs. The

boundaries of interest define an ‘area’ where the HRB edges

are most likely to be, which makes the algorithm more resilient

to environmental changes, such as to glare and changes of

the lighting conditions. The proposed sliding window random

regression algorithm applies random regression within the

Current Boundary Of Interest (CBOI), which is defined as the

region enclosed by the current sliding window and boundaries

of interest, to fit the HRB edges.

The challenges faced include: 1) Multiple edges are detected

as shown in Figure 2; 2) Edges detected are diffuse [7].

Both challenges lead to accuracy degradation. This makes

a regression model necessary to fuse pixel-wise information

and fit line segments to them. Pixel coordinates of the fitted

line segments are then transformed into the physical plane for

dimension calculation, with the help of translation and rotation

matrices obtained from camera calibration. However, while

boundaries of interest constrain the possible locations of the

edges, they also bring in uncertainties to measurements. We

have applied the sliding window random regression algorithm

to concentrate pixel-wise information to reduce the impact

of uncertainties. The uncertainty is then quantified by the

weighted variance algorithm to provide a level of trust in the

achieved results.

The main contributions of this work are: 1) A framework

for automating the sizing process of steel bars in a high-

temperature rolling process is proposed; 2) A weighted vari-

ance algorithm is developed to quantify the impact of uncer-

tainties on the measurements; 3) The proposed framework is

evaluated and validated over real data from a rolling process

for high quality steels.

The remaining part of the paper is structured as follows.

Section II describes how the HRBs are detected, and the

sliding window random regression algorithm that determines

the edges is presented. The algorithm for uncertainty quan-

tification is given in Section III. Section IV presents the

algorithms performance validation and evaluation, and Section

V concludes the paper.

II. EDGE DETECTION AND RANDOM REGRESSION

A. Edge Detection

In spite of the existence of both traditional edge detection

methods [8] and the current deep learning based state-of-the-

art edge detection methods [9], we adopt the structural random

forests algorithm [7] to extract edges in the video frames.

Compared with traditional edge detection methods whose

performance relies on setting up good thresholds, the structural

Fig. 2. Edges detected by the structural random forests. The black rectangle
shows that more than one edges are detected, where only one is expected.
Prominent edges are marked in dark blue, while other weak edges are marked
in light colours.

random forests algorithm can provide relatively stable and

adaptive results without setting up parameters. In addition,

the structural forests can deal with Red, Green, Blue (RGB)

images directly, while traditional edge detection methods such

as Canny require to convert RGB images to gray scale images,

which would limit the efficiency. Compared with deep learning

based edge detection methods, the structural random forests

algorithm is easier to train, lighter to be deployed, and less

dependent on expensive hardware like GPUs.

Edges detected by the structural random forests provide

inputs to our proposed measuring framework. Both HRB edges

and environment edges are detected at this stage. Preliminary

results with the structural random forests algorithm [7] and

with thermal images are reported in our preceding paper [10].

The main idea is to detect edges in images via constructing

a structured forest. One of the disadvantages of the structured

forest algorithm, as discussed in [7], is the occurrence of

diffused edges, which causes accuracy degradation. We imple-

ment the algorithm by enabling the Non-Maximum Suppres-

sion (NMS) [7] to sharpen the extracted edges. Figure 2 shows

sharpened edges from the structural random forests algorithm.

Three types of edges are detected: 1) Edges of the HRB, which

are the two longest edges marked in dark blue. 2) Strong non-

HRB edges, e.g., the dark blue edge apart from the HRB edge

within the rectangle. 3) Weak non-HRB edges, e.g., all edges

apart from the two strong ones.

The hot steel bars, however, have only two prominent edges

and we need well pronounced edges in order to calculate the

diameter of a cylindrical bar. As it can be seen within the

rectangle shown in Figure 2, there are more than one detected

edges, although we are expecting just one. The reasons for this

ambiguity are twofold. From the HRB aspect, while rolling

along the conveyor, the HRB is cooling down unevenly. This

results in intensity changes in the images and hence leads to

extra ‘edge’ detection by the algorithm. From the structural

random forests algorithm aspect, Dollar et al. [7] explain that



the edges can be diffused due to the fact that edge estimation

can shift a few pixels from the true location. The underlying

cause is that the voting mechanism used cannot ensure the

noisy edge predictions to be well aligned. This also causes

weak edges (marked in light colours) as shown in Figure 2.

To mitigate the effects of those extra edges and to achieve

high accuracy in the measurements, a sliding window random

regression algorithm is further applied to process the edges

detected by the structural random forests.

B. Sliding Window Random Regression

To find the edges of interest, which are edges of a HRB,

in a given frame IRGB , we propose Algorithm 1 to subtract

the background and get boundaries of interest of the HRB

edges. In order to do that, IRGB is binarised according

to [11] based on histogram information, resulting in IBW .

It is then processed with opening morphological methods

followed by a dilation [12] to remove imperfections, caused

by temperature diffusion and background noises. The resulted

IMOR is applied to mask the edges IEDGE detected by the

structural random forests, resulting in IGEDGE with mainly

edges of the HRB.

To remove weak edges, pixels in IGEDGE with intensities

less than a threshold β are suppressed. Edges in IGEDGE are

further binarised and denoised with morphological methods

resulting in IMEDGE . Figures 3 (a) and (b) show examples

of edges detected by Algorithm 1. We can see that edges of

HRBs become prominent and most weak edges are removed.

However, there are still environmental edges that mix up with

the HRB edges. They are caused by the cooling process. Their

intensities are usually weaker than those of the HRB edges,

while still stronger than those weak edges. If we set up the

parameters of Algorithm 1 to be with high values, there is a

risk that the HRB edges are removed as well. We, therefore,

set up moderate values of the parameters in Algorithm 1 to

remove weak edges.

Next, we use the Moore-Neighbor tracing algorithm [13] to

extract the boundaries of interest IBOI of IMEDGE and to

make sure that HRB edges are enclosed within the boundaries

of interest. Figures 3 (c) and (d) show in green the extracted

boundaries of interest. Obviously, the presence of environ-

mental ‘edges’ is inevitable. This, however, makes the remote

sizing even more challenging and increases the necessity of

uncertainty quantification of the measurements.

With boundaries of interest obtained from Algorithm 1, we

now give details of the sliding window random regression

algorithm in Algorithm 2. We define a binary sliding win-

dow IH×W (shown in white in Figures 3 (c) and (d)) with

height H and width W to select a region of interest for the

sliding window random regression algorithm. Considering the

background is subtracted by Algorithm 1 and the HRB moves

vertically, W can be set to the width of the image. In this

paper, we set up the sliding stride to be equal to H without

loss of generality, and assume that the sliding window IH×W

can move m steps in total.

Fig. 3. Results of the sliding window random regression algorithm. (a) and (b)
are the edges detected by Algorithm 1. (c) and (d) show the sliding window
random regression results, where the green curves are boundaries of interest,
white lines indicate the sliding windows, and black line segments are from
sliding window random regression algorithm. (c) also shows a CBOI with its
area marked in dark blue, and the area is denoted by C.

Algorithm 1 Boundaries Of Interest Extraction

Input: IRGB

Output: Detected HRB edge boundaries IBOI

1: Binarise IRGB according to Otsu’s method → IBW [11]

2: Morphological denoising IBW → IMOR

3: Structural Random Forests with NMS enabled → IEDGE

4: Mask IEDGE with IMOR and convert the result to grey-

scale IGEDGE = IMOR ⊙ IEDGE

5: Strength edges in IGEDGE

6: Morphological denoising ICEDGE → IMEDGE

7: Moore-Neighbor Tracing Algorithm to extract boundaries

of IMEDGE → IBOI .

For the i-th sliding window IH×W , with i ∈ {1, · · · ,m},

we suppose that there are ni HRB edges within it. For the j-

th HRB edge, with j ∈ {1, · · · , ni}, there is a corresponding

CBOI that encloses the HRB edge. Figure 3 (c) shows an

example of CBOI in the center of the figure. It is enclosed

by the current sliding window edges (on the top and bottom

of the dark blue area) and boundaries of interest (on the left

and right of the dark blue area). We denote the left and right

edges of the CBOI as Bj . The coordinates belong to Bj are

then concatenated as x̂ij and ŷij , which are further classified

by the K-means algorithm [14] into several clusters, depending

on the number of HRB edges.

As it can be seen from Figures 3 (c) and (d), the HRBs

are not segmented well due to the unevenly cooling process

and other factors. This directly leads to corrupted CBOIs, or

expansion of CBOIs. It would ultimately degrade the accuracy



Algorithm 2 Sliding window Random Regression of Hot

Rolled Bar Edges

Input: IBOI , a binary sliding window IH×W

Output: xij , yij , i = 1, · · · ,m, and j = 1, · · · , ni.

1: for i = 1, · · · ,m do

2: Determine the HRB edges number ni within IH×W

3: for j = 1, · · · , ni do

4: Concatenate the coordinates of Bj as x̂ij and ŷij .

5: Using k-means to classify x̂ij and ŷij into two

clusters, each corresponds to a HRB edge.

6: Linear regression

fij(x) = aijx+ bij
7: Re-calculate y coordinates from row (i− 1) ∗H +1

to row i ∗H within the sliding window

xij = [(i− 1) ∗H + 1, · · · , i ∗H]
yij = aijxij + bij

8: end for

9: end for

of the calculated diameters of the steel sections. Thus, we

randomly sample S point pairs from x̂ij and ŷij and next

apply a polynomial model to fit the HRB edges from the

samples.

Without any loss of generality, the following polynomial

regression model

f(x) = c0 + c1x
1 + c2x

2 + · · ·+ ckx
k (1)

is applied. In our case, we aim to measure the diameter of a

cylindrical HRB. Therefore, a first order polynomial regression

model is sufficient. By assigning c1 , aij and c0 , bij , we

have a linear model

fij(x) = aijx+ bij . (2)

After the HRB edges are fitted, we use (2) to generate a

new set of points to represent the corresponding HRB edges.

In our case, we set

xij = [(i− 1) ∗H + 1, · · · , i ∗H], (3)

and yij is then produced by

yij = aijxij + bij . (4)

The black line segments in Figures 3 (c) and (d) show the

results of Algorithm 2. The results shown in these figures

are obtained after T = 10 times sampling from each CBOI.

We can see that, if the CBOIs are not severely corrupted,

the line segments from the sliding window random regression

algorithm define well the HRB edges. However, when CBOIs

are corrupted, the line segments from the sliding window

random regression algorithm no longer represent the HRB

edges accurately. Here, we first provide the transformation

from the image plane to the physical plane. The treatment of

the measurement uncertainty will be given in the next section.

In our case, two HRB edges are expected within the sliding

window IH×W . Therefore, we set up all ni to be equal to

n = 2. The xij and yij coordinates from the image plane

are converted to coordinates in the physical plane through the

transformation









xw
ij

ywij
zwij
1









=

[

R T

0 1

]

K





xI
hj

yIhj
1



 , (5)

where R and T are respectively the rotation and transla-

tion matrices, and K is the intrinsic matrix of the camera

parameters. These matrices are obtained via the calibration

process. The coordinates xI
ij ∈ xij and yIij ∈ yij are

from the image plane and [xw
ij , y

w
ij , z

w
ij , 1]

T is the vector of

corresponding coordinates in the physical plane. Given the

vectors Ii1 = [xI
i1, y

I
i1]

T and Ii2 = [xI
i2, y

I
i2]

T on two HRB

edges with xI
i1 = xI

i2, the diameter l of the HRB is then

calculated through

l = ‖P1 − P2‖2 , (6)

with P1 = [xw
i1, y

w
i1]

T and P2 = [xw
i2, y

w
i2]

T , which are physical

plane correspondences to Ii1 and Ii2. Here ‖.‖
2

denotes the

Euclidean norm.

III. WEIGHTED VARIANCE FOR UNCERTAINTY

QUANTIFICATION

Similarly to the measurement accuracy, the level of trust

in the measurements is also essential to this task as it sup-

ports downstream decision-making. In this paper, we quantify

the measurement uncertainties on the final results with the

weighted variance as part of the Algorithm 3. In our case, the

trust level reflects how severely the measurements are affected

by corrupted CBOIs along with other noises. Figures 4(a)

and (b) show well determined boundaries of interest, while

Figures 4(c) and (d) show boundaries of interest with corrupted

CBOIs. When the measurements are from corrupted CBOIs,

the variance value will go high.

Given the i-th sliding window, there are ni CBOIs in it,

and each corresponds to a Bj with j ∈ {1, · · · , ni}. For

each Bj , we sample T times, each time with S point pairs

from x̂ij and ŷij . From each point pair, we use (5) and (6) to

calculate S diameters, which are further averaged to find the

representative diameter value lit, with t = 1, · · · , T . Then the

measurement and variance in the current sliding window are

calculated respectively from

li =
T
∑

t=1

lit/T, σi =

√

√

√

√

T
∑

i=1

(lit − li)
2
/T . (7)

With the sampling strategy, impacts of the corrupted CBOIs

on the measurements are mitigated, especially when the area

of a CBOI is small. However, when the area of a corrupted

CBOI is big, it becomes difficult to use the fitted line segments

to represent the HRB edges. The reason lies in that compared

with samples constrained in a smaller CBOI, samples from



Algorithm 3 Uncertainty Quantification

Input: x̂ij and ŷij after clustering, a binary sliding window

IH×W , and sampling times T .

Output: diameter li and weighted variance Σi

1: for i = 1, · · · ,m do

2: CBOI areas in current window, Ai1, · · · , Aini
, with

average Ai =
∑ni

j=1
Aij/ni, and similarity ratio Ri =

Ai/C.

3: Calculate weight Li from (9).

4: Weighted variance calculation from (10).

5: end for

a bigger CBOI are more dispersed. Hence, we consider this

CBOI area for quantifying the measurement uncertainty.

In this paper, we have taken the CBOI areas into considera-

tion by using CBOI areas as weights, and each σi from (7) is

then adjusted by the weight. To achieve that, for the i-th sliding

window, we first calculate the area of each CBOI within it and

get the respective areas Ai1, · · · , Aini
. A similarity ratio Ri

is next calculated via

Ri =
(

ni
∑

j=1

Aij/ni

)

/C, (8)

where C is the average area of uncorrupted CBOIs. We use

it to normalise the similarity ratio. Figure 3 (c) shows an

uncorrupted CBOI and C is the area of the region marked

in dark blue. The values of the similarity ratio Ri could fall

into the following three cases: 1) Ri < 1, 2) Ri = 1, and

3) Ri > 1. We would prefer the first two cases because it

means Ai1, · · · , Aini
are on average smaller or equal to C.

This indicates that samples from the corresponding CBOIs

are constrained in small areas, and line segments fitted from

these samples are more likely to align with the HRB edges.

On the contrary, when the third case happens, we would know

that the samples are from CBOIs with areas greater than C,

which will increase the chance that fitted line segments from

these samples are unaligned with HRB edges. To convey the

information, we, therefore, define the variance weight as

Li = R2

i ∗ exp(Ri − 1), i = 1, · · · ,m. (9)

We use R2

i to indicate that the weight is proportional to the

CBOI area. It is obvious that Ri values greater than 1 would

lead to greater Li, when compared with Ri values equal to or

are smaller than 1.

We now give the trust level in the measurements as

Σi = Li ∗ σi, i = 1, · · · ,m. (10)

Note that a big value of Σi means a reduced trust in the

measurement, compared with a measurement with a small

Σi value. The bigger the Σi value is, the more scattered the

measurement is, in a wide area.

IV. PERFORMANCE VALIDATION AND EVALUATION

To demonstrate the effectiveness of the framework, we

processed video frames captured by a GoPror Hero 7 Black

Fig. 4. Boundaries of interest from four randomly selected images

TABLE I
EFFICIENCY EVALUATION OF THE ALGORITHMS

Algorithm 1 Algorithm 2 Algorithm 3

Time(ms) 407 38 52

camera with Matlab 2018a programs. The PC configuration

includes an Intel(R) Core(TM) i7-7800X CPU and 16.0GB

RAM. The 2.7K camera mode is used and the shutter speed is

set up to 1/480 s, to restrain the distortion and overexposure.

The camera is calibrated on the scene with a checkerboard

of 8 × 5 squares of size 50 × 50 mm. Although the whole

HRB is visible in the images, we only focus on the region

where the checkerboard was placed to exclude errors caused

by calibration parameters. The ground-truth diameter of the

HRB is 265.5 mm. The parameters α and β are set to 0.95
and 240, respectively. Here the height H is equal to 5 pixels

and the width W of the image is equal to 2704 pixels. Table I

shows the average computational costs of each algorithm. The

computational time is suitable for real time applications since

the HRBs move slowly (even stop for sawing the ends) on the

conveyor.

Figure 5 shows results from the proposed framework. For

a compact representation of the results, we have aggregated

the HRB diameter ground-truth (265.5 mm) and the tolerance

zone ([265.5− 3.0 mm, 265.5+3.0 mm]), the measurements

from our framework, and the weighted variance for uncertainty

quantification into a single figure. In each sub-figure, the x-

axis indicates the number of sliding windows. The left y-axis

shows the ground-truth, measurements, and the tolerance zone.

The right y-axis shows only the one Σ interval, to show the

trust level in the diameter measurement. Compared with the

narrower Σ intervals, a wider one Σ interval (or even a peak



(a) (b)

(c) (d)

Fig. 5. Diameter measurements and trust level from four randomly-selected frames: (a) and (b), measurements with high trust level, (c) measurements
correspond to one corrupted CBOI, (d) measurements correspond to two corrupted CBOIs.

interval) means a reduced level of trust in the measurement,

as it means to us that the measurement scatters in a big area.

The measurement is not necessarily enclosed by the one Σ
interval due to different scales of the two y-axes. However, the

trends of the one Σ interval and the corresponding measure-

ment should be kept consistent. Especially, the one Σ interval

should convey the information when the measurement goes

over the tolerance zone.

For instance, we can see in Figures 5(a) and 5(b) that,

the measurements fluctuate around the ground-truth and the

one Σ intervals change in accordance. There are no dramatic

changes of the measurements or the one Σ intervals observed

in these two figures. All the measurements are bounded by

the tolerance zone. This indicates that these measurements are

trust-able. In fact, Figures 5(a) and 5(b) show typical results

from images that are similar to Figures 4(a) and 4(b), where

the CBOIs are not corrupted.

In comparison, when CBOIs are corrupted as shown in

Figures 4(c) and 4(d), we can observe drastic changes of

the measurements and the one Σ intervals. Typical results

are shown in Figures 5(c) and 5(d). There are one prominent

measurement peak in Figure 5(c) and two in Figure 5(d). We

can see measurements corresponding to the peaks go over

the tolerance zone, and thus should not be trusted. With our

proposed uncertainty quantification algorithm, this information

is encoded in the corresponding one Σ interval. As can be

seen from Figures 5(c) and 5(d), wide one Σ intervals emerge

in accordance with the measurement peaks. Therefore, the

one Σ interval would provide us with a trust level in the

measurements.

With the proposed framework, when the one Σ interval

changes drastically, we would discard (not trust-able) the

corresponding measurements. While we have shown mea-

surements within sliding windows in Figure 5, we now give

measurements from a whole frame by integrating all the trust-

able measurements from the sliding windows. For frame-wise



Fig. 6. Diameter measurements from frames

measurements, we use the following relations to calculate the

measurement and variance.

li =

mf
∑

i=1

li/mf , σ =

√

√

√

√

mf
∑

i=1

(

li − li
)2

/mf , (11)

where mf is the number of the processed frames.

The frame-wise measurements are shown in Figure 6.

Note that the x-axis now indicates the frame numbers. Since

measurements from corrupted CBOIs are discarded, we now

use (11) to represent the one σ interval. Be aware that

the weighted variance Σ is used to quantify measurement

uncertainty, while σ here is just a normal variance describing

how spread out the frame-wise measurements are. We can see

that the difference between each measurement and ground-

truth pair is within [−2.5 mm, 2.5 mm], which is in line with

the rolling standards [−3.0 mm, 3.0 mm].

V. CONCLUSION

In this paper, a computer vision framework is proposed to

measure the diameter of hot rolled steel bars. We detect and

constrain the edges of HRBs within a boundary of interest

accounting for uncertainties. The sliding window random

regression algorithm is then applied to sample from CBOIs

and fit the HRB edges in the image plane, which are further

transformed to the physical plane for diameter calculation.

To reflect the impacts of environmental noise and corrupted

CBOIs on the measurements, we present the weighted variance

algorithm and this provides trust levels in the measurements.

With the proposed framework, we have successfully seg-

mented HRBs in images and provide the diameter estimates

with acceptable accuracy. The weighted variance enables un-

certainty quantification on the measurements and ultimately

provides a trust level to discard outlier measurements, resulting

in accurate diameter measurements.

Our future work will continue in three directions: 1) Deploy-

ing the developed framework in the factory to help our indus-

trial partner to monitor the production process in real time; 2)

Applying three dimensional reconstruction to obtain dimen-

sional measurements of steel sections of different shapes; 3)

Fusion of thermal and optical images for autonomous size

measurement of the HRBs.
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