
 
 

Delft University of Technology

Multi-Task Sensor Resource Balancing Using Lagrangian Relaxation and Policy Rollout

Schöpe, M.I.; Driessen, Hans; Yarovoy, Alexander

DOI
10.23919/FUSION45008.2020.9190546
Publication date
2020
Document Version
Accepted author manuscript
Published in
2020 23rd International Conference on Information Fusion (FUSION)

Citation (APA)
Schöpe, M. I., Driessen, H., & Yarovoy, A. (2020). Multi-Task Sensor Resource Balancing Using Lagrangian
Relaxation and Policy Rollout. In 2020 23rd International Conference on Information Fusion (FUSION):
Proceedings (pp. 1-8). IEEE. https://doi.org/10.23919/FUSION45008.2020.9190546

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/FUSION45008.2020.9190546
https://doi.org/10.23919/FUSION45008.2020.9190546


Multi-Task Sensor Resource Balancing Using

Lagrangian Relaxation and Policy Rollout
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Abstract—The sensor resource management problem in a
multi-object tracking scenario is considered. In order to solve it,
a dynamic budget balancing algorithm is proposed which models
the different sensor tasks as partially observable Markov decision
processes. Those are being solved by applying a combination
of Lagrangian relaxation and policy rollout. The algorithm
converges to a solution which is close to the optimal steady-
state solution. This is shown through simulations of a two-
dimensional tracking scenario. Moreover, it is demonstrated how
the algorithm allocates the sensor time budgets dynamically to
a changing environment and takes predictions of the future
situation into account.

Index Terms—Sensor Resource Management, Lagrangian Re-
laxation, Partially Observable Markov Decision Process, Policy
Rollout

I. INTRODUCTION

In recent years, the degrees of freedom of sensors like

radars, lidars or cameras have increased tremendously due to

technological improvements in hardware and software [1]. For

radar, the development has led to multi-function radar (MFR)

systems that can handle a variety of different tasks, often prac-

tically in parallel. This has been made possible e.g by using

phased array antennas, applying digital beamforming (DBF)

and the digital generation of a large variety of waveforms

[2]. As a result, sensors are becoming more flexible and an

adaption to the environment during run-time becomes possible.

This paper focuses mainly on single adaptive sensors like MFR

systems or cameras. However, our approach is generic and is

in principle applicable to all kinds adaptive sensor systems.

A. Sensor Resource Management

One of the most challenging problems of modern adaptive

sensors is how to control them while they are in operation.

For radar, a lot of research aims for automatic adaption to

changing situations, like changing weather conditions, inter-

ference or quickly changing numbers of observed objects (see

e.g. [3]–[6]). The automatic adaptation of radar resources

to a variable environment or mission is often called radar

resource management (RRM) or more generally speaking

sensor resource management (SRM). Possible applications of

these management approaches include automotive scenarios,

such as autonomous driving or traffic monitoring, (maritime)

surveillance and air traffic control, for example.

Much of the work on SRM and RRM presented in literature

(see for example the overview by Hero and Cochran in [1])

focuses on a single task, e.g. keeping a constant track quality

even under objects maneuvers. This usually means regulating

the time budget spent on a certain task. However, sensors

like MFR systems are mostly operating at their sensor time

budget limit, so increasing the budget for one task means at

the same time decreasing the budget of the others. This leads

to a deterioration of their performance. In this work which

continues the research in [7], the SRM problem is seen as a

budget or performance balancing act over the various tasks. We

strive to formulate the problem as an optimal control problem

and solve it in an approximately optimal manner with respect

to the optimal steady-state solution. It has been suggested that

a truly optimal solution could possibly lead to a significant

improvement of the performance of adaptive sensors [8].

B. Markov Decision Processes in Resource Management

Markov decision processes (MDP) and partially observable

Markov decision processes (POMDP) are an attractive frame-

work for SRM problems. They allow to formulate a dynamic

problem with different states in which the optimal actions can

be found through optimizing a cost or reward function. In

addition to that, they also allow a prediction of the future

state of the tasks.

It is possible to apply this framework to single tasks, which

has been done for instance by Charlish and Hoffmann in [9]

or by Krishnamurthy in [10]. The former applied policy roll-

out, while the latter used a stochastic dynamic programming

algorithm. Both methods optimize the time between conse-

quent measurement operations. Other single object POMDP

approaches have been published e.g. in [11] and [12].

Another problem formulation is to apply a constrained

(PO)MDP, meaning that there is a limit on the available

resources or budgets that can be distributed over all tasks. Pos-

sible applications are sensor networks or single sensors with

multiple tasks. In order to deal with the potential large compu-

tational complexity in these problems, Lagrangian relaxation

(LR) has been suggested to decouple the main optimization

problem into smaller and easier to solve sub-problems. One LR

approach for sensor networks has been published by Williams

et al. in [13]. Some notable LR approaches for multi-task radar

scenarios are e.g. [14] by Wintenby and Krishnamurthy and



[15] by White and Williams. Wintenby and Krishnamurthy

apply a Markov chain consisting of performance states for

each tracking task and solve it with a combination of LR and

approximate dynamic programming. We believe that in order

to include other kinds of tasks such as classification, a more

general framework than Markov chains needs to be applied.

White and Williams assume that the state space is discretized

and a fully observable MDP can be defined and solved by the

use of dynamic programming. This approach requires perfect

measurements, which is too big of a simplification in our eyes.

We see the potential in such solutions, but we believe that a

POMDP is needed to properly describe the problem. Other

publications that suggest the use of POMDPs can for example

be found in [16]–[19].

C. Previous Contribution

Previously, we have already shown the optimal balancing

of sensor budget in a linear time invariant (LTI) setting [7].

We introduced an optimal steady-state budget balancing (OSB)

algorithm which uses LR to distribute the available budgets

over multiple independent tasks. In this simplified setting, an

optimal solution can easily be calculated. Since most problems

cannot be described in an LTI setting, the results in [7] just

give a small indication of what is possible with this kind of

approach.

D. Novelty in this Paper

In this paper, we extend the previous approach to generic

dynamical problems by taking advantage of the POMDP

framework and introduce an approximately optimal dynamic

budget balancing (AODB) algorithm. It is approximately op-

timal with respect to the steady-state error-covariance of a

Kalman filter (see e.g. [20]). The SRM problem is solved non-

myopically by using an online Monte Carlo technique called

policy rollout, which stochastically predicts the future. This

technique has been described e.g. by Bertsekas et al. in [21]–

[23]. In this paper, we will demonstrate a way to apply this

technique to a simplified tracking scenario. We noticed that an

overall solution to the SRM problem has not been presented

so far, so our long term goal is to develop and evaluate

generic SRM approaches that can be applied in surveillance

applications, such as tracking, classification and detection.

In practice, it is important to define an operationally relevant

cost function to efficiently make use of these techniques. This

topic will not be covered in this paper. An example of an

operationally relevant cost function has been discussed by

Katsilieris et al. in [24].

E. Structure of the Paper

The rest of the paper is structured as follows. Section II

defines the problem as a constrained optimization problem

in a POMDP framework, while section III explains how the

combination of LR and policy rollout can be applied to

that problem. In section IV we describe a two-dimensional

tracking scenario that is solved using our proposed method.

We show the corresponding simulation results in section V,

while section VI comprises the conclusions.

II. SRM PROBLEM DEFINITION

In this section, the considered SRM problem is introduced.

For illustration purposes, it is based on a two-dimensional

tracking scenario. Firstly, the motion model, the measurement

model and possible tracking algorithms are introduced. Sec-

ondly, the sensor budget optimization problem is formulated.

A. Motion Model

At every moment in time k, each object that moves within

this model can be assigned a state based on its position in

x and y direction within a Cartesian coordinates system. For

object n this state is defined as

snk = [xn
k ynk ẋn

k ẏnk ]
T
, (1)

where xn
k , ynk and ẋn

k , ẏnk are the position and velocity of

object n in x and y respectively. It assumed that the object is

tracked every time step k with sensor action an
k ∈ R

m, where

m is the amount of adjustable action parameters. The future

state can be predicted at every time step k following a certain

function

snk+1 = f (snk ,w
n
k ;a

n
k ) , (2)

where k + 1 is the next following state and wn
k ∈ R

4 is

the maneuverability noise for object n at time k. The state

evolution equation (2) directly defines the evolution probability

density function which is given as

p
(

snk+1|s
n
k ;a

n
k

)

. (3)

B. Measurement Model

We assume a sensor that can make noisy observations of

certain elements of the state snk and does so at every time

step k. This could comprise e.g. range measured by a radar

sensor or x and y position observed by a camera. A typical

measurement of object n at time step k can therefore be

characterized by the measurement function

zn
k = h (snk ,v

n
k ;a

n
k ) , (4)

where vn
k ∈ R

p is the measurement noise for object n and p
is the amount of measurement parameters. The measurement

equation (4) directly defines the measurement probability

density function which can be written as

p (zn
k |s

n
k ;v

n
k ) . (5)

C. Tracking Algorithm

The tracking algorithm should aim at computing the pos-

terior density. For linear systems, a Kalman filter can be

adopted as exact solution. For non-linear systems, approximate

algorithms need to be considered, e.g. particle filter algorithms.



D. Budget Optimization Problem

As mentioned in section I, the sensor is assumed to have a

limited maximum budget of any kind, which will be called

θmax. For action an that is executed for each task n, a

certain amount of θmax is required. Typical actions are time,

frequency or energy allocations for instance. In an overload

situation, all the current tasks of the sensor require more

budget than is available at the moment. In that case, the

available budget has to be distributed over the tasks in a way

that minimizes the cost which is related e.g. to the uncertainty

of the current situation. Therefore, the SRM problem is

formulated as a minimization problem.

At time k, the optimization problem for N different tasks

can be written as

minimize
a

N
∑

n=1

c(an
k , s

n
k )

subject to

N
∑

n=1

θnk ≤ θmax,

(6)

where θnk ∈ [0, 1] is the budget for task n at time k, c(·) is the

used cost function and θmax ∈ [0, 1] is the maximum available

budget. A value of θnk = 0 means no assigned budget, while

θnk = 1 means that all available budget is assigned.

III. PROPOSED SOLUTION FOR SRM PROBLEM

In order to solve the problem defined in section II, an

approach involving a POMDP framework and a combination

of LR and policy rollout is proposed. This section explains the

solution approach in detail.

A. Distribution of Sensor Budgets Using LR

This paper is an extension of our previous research [7],

where we used LR to include the constraints into the cost

function. By doing so, the original optimization problem is

decoupled into smaller ones, one for each task. This leads

to the so-called Lagrangian dual (LD) which needs to be

optimized. This optimization problem is called the Lagrangian

dual problem (LDP) and is formulated as

ZD = max
λk

(

min
a

(

N
∑

n=1

(c(an
k , s

n
k ) + λk · θnk )

)

− λk · θmax

)

,

(7)

where λk ∈ R is the Lagrange multiplier for the budget con-

straint. In the beginning (l = 0), an initial Langrange multiplier

value λ0 is chosen, for which the LD is minimized with respect

to θnk and the resulting budget values are saved. Then, in order

to maximize the LD, λl+1 is determined by the use of the

subgradient method. The LD is again minimized with this new

Lagrange multiplier value. This process is repeated iteratively

until the solution converges with the desired precision. Thanks

to the sum in the LDP, the minimization problem with resprect

to a can be solved for each object n independently. The exact

procedure is shown in [7] and can be summarized as follows:

1) l = 0: Set initial Lagrange multiplier (λ = λ0).

2) Solve ZD(λ) and save resulting an
l and θnl .

3) Choose subgradient for Lagrange multiplier as µλ
l =

∑N

n=1 θ
n
l − θmax.

4) Check if µλ
l ≈ 0 with desired precision. If it is, stop the

process. The current budget values are the final solution.

5) Set λl+1 = max{0, λl+γlµ
λ
l }, where γl is the LR step

size at time l.
6) Go to step 2 and set l = l + 1.

Note that here an internal index l is used for the iterations

within the LR process. The final λl is the LR solution for λk

at time step k.

B. Definition of a POMDP

The novelty of this paper is the combination of the above

mentioned LR approach with policy rollout for a POMDP

framework. A POMDP describes an MDP in which the state

cannot be observed directly. Instead, an observation is taken

which generates a probability distribution over the possible

states. This is called the belief state. Based on the belief states

and the knowledge of the underlying MDP, a POMDP allows

to solve optimization problems non-myopically, meaning that

it takes the expected future into account.

The solution of a POMDP is a set of optimal actions which

minimizes the cost, the so-called optimal policy. It is defined

as the action a that minimizes the so-called Q-value:

π∗
t (bt) = argmin

a∈A

(QH−t(bt,a)), (8)

where H and t are the horizon and time step within this

horizon respectively and bt ∈ R
q is the so-called belief state

for time step t, with q being the number of elements of

the underlying state vector. A more detailed definition of a

POMDP is given in appendix A. Many publications consider

rewards rather than costs. In that case, the value is maximized

and not minimized, as it is done here. Many different solution

methods have been introduced in order to solve POMDPs.

There are both online, as well as offline approaches.

Most offline methods are based on the so-called Value Iter-

ation (VI), which iteratively calculates the cost/reward values

of all possible states. There are exact approaches to VI (e.g.

One-Pass algorithm [25]), as well as approximate point-based

algorithms (e.g. PBVI or Perseus [26]). The former techniques

often lead to very complicated optimization problems, while

the latter ones require many points (and therefore memory and

computational effort) in order to converge towards the exact

solution. The advantage of offline solutions is that the POMDP

is solved only once, but the solution is always valid afterwards.

Unfortunately, those methods are already infeasible for a small

dimensional state space.

Contrary to that, online algorithms only solve a small part

of the POMDP that is relevant at the current moment. This

makes them less accurate, but much easier and faster to

compute. Some of the online approaches involve approximate

tree methods (see for example the overview in [17]) or Monte

Carlo sampling (e.g. policy rollout).

Since an exact and complete solution of the POMDP is

usually infeasible in real scenarios, this paper focuses on the



implementation of policy rollout as an approximate solution.

The general structure of our proposed algorithm is illustrated

in figure 1. The output of the algorithm are the converged

budgets for each task.

Task 1 Policy Rollout 1 

Subgradient 

method 

Task 2 Policy Rollout 2 

Task N Policy Rollout N 

Initial λ 

λ 

Lagrangian relaxation 

. . . . 

. . . . 

. . . . . . 

Output of converged algorithm: 

Optimal budgets        𝜃𝑘1…𝜃𝑘𝑁  

𝜃𝑘1 

𝜃𝑘2 

𝜃𝑘𝑁 

Fig. 1: High level block scheme of the proposed algorithm.

C. Policy Rollout for POMDPs

The basic idea of policy rollout is to take Monte Carlo

samples of the expected future. Each sample of one possible

future is called a rollout. Within a rollout, observations and

belief states are generated for a given initial belief state and a

given action. There is at least one rollout per action a in the

action space A. The action to be evaluated is taken in the first

step of the rollout, while a so-called base policy πbase is used

for every following step, until the horizon H is reached. In

each rollout, the total cost is summed up. If several rollouts

are run per action, those cost results are averaged. This final

cost is the expected value of the evaluated action. Finally, the

action that produces the lowest cost is chosen for the next time

step. It has been shown that policy rollout leads to a policy

that is at least as good as the base policy with a very high

probability, if enough samples are provided [23]. The choice

of the base policy and the amount of samples to be taken is

therefore crucial to the performance of the algorithm.

The policy rollout can be expressed mathematically as

shown in (9) and (10). The Q-value is defined as

Qπbase(bt,a) = CB(bt,a) + E [V πbase(bt+1)|bt,a] , (9)

where E[·] is the expectation and CB(bt,a) =
∑

s∈S
bt(s)c(s,a) is the expected cost given belief state bt.

The best policy can then be found by applying

πt(bt) = argmin
a∈A

(Qπbase(bt,a)). (10)

This technique does not necessarily lead to the optimal policy,

rather to an improvement with respect to the chosen base

policy πbase.

IV. TWO-DIMENSIONAL TRACKING SCENARIO

In this section, a two-dimensional tracking example is

introduced that illustrates the performance of the proposed

algorithm. The application is set in a two-dimensional LTI

system and the applied tracking algorithm is a simple Kalman

filter. In the following subsections, the assumed situation is

described explicitly.

A. Assumptions

A constant velocity model is assumed. The distance between

the time steps k is defined through the action vector an
k ∈ R

2.

It consists of the dwell time τ and Tn
k , which is the revisit in-

terval for object n, as used e.g in radar applications. Therefore

(2) can explicitly be written as

snk+1 = F n
k · snk +wn

k , (11)

with F n
k ∈ R

4×4 defined as

F n
k =









1 0 Tn
k 0

0 1 0 Tn
k

0 0 1 0
0 0 0 1









(12)

and the maneuverability noise wn
k with covariance

Q(Tn
k ) =











(Tn

k
)2

2 0

0
(Tn

k
)2

2
Tn
k 0
0 Tn

k











[

(Tn

k
)2

2 0 Tn
k 0

0
(Tn

k
)2

2 0 Tn
k

]

σ2
w,n

=













(Tn

k
)4

4 0
(Tn

k
)3

2 0

0
(Tn

k
)4

4 0
(Tn

k
)3

2
(Tn

k
)3

2 0 (Tn
k )

2 0

0
(Tn

k
)3

2 0 (Tn
k )

2













σ2
w,n,

(13)

where σ2
w,n is the maneuverability noise variance of object n.

In this example we assume that the sensor produces inde-

pendent measurements in x and y direction. The measurement

equation in (4) for object n at time step k is then

zn
k = H · snk + vn

k , (14)

where H ∈ R
2×4 is the measurement matrix, defined as

H =

[

1 0 0 0
0 1 0 0

]

(15)

and vk
n ∈ R

2 is the measurement noise for object n which has

independent x and y components. It defined as

vn
k = [vx,nk vy,nk ]T (16)

with variances σ2
x,n and σ2

y,n. It is assumed that the mea-

surement variances are influenced by the so-called dwell time

τ through a factor 1/τ . Dwell time is a radar-related term

that defines the time the antenna beam spends on an object.

Due to independent measurements in x and y direction, the

measurement covariance can be defined as

Rn =

[

σ2
x,n 0
0 σ2

y,n

]

1

τ
. (17)

The two-dimensional tracking example in this paper is based

on the scenario used in our previous work [7]. It is assumed

that there are N objects in the environment which are being



tracked by a Kalman filter. The revisit interval T needs to be

optimized, while the dwell time τ is constant. Therefore the

SRM problem can be expressed as

minimize
T

N
∑

n=1

c(Tn
k , s

n
k )

subject to

N
∑

n=1

τ

Tn
k

≤ θmax,

(18)

where θmax ∈ [0, 1] is the total available budget. The term

budget refers to a ratio of dwell time τ and revisit interval T .

Furthermore, it is assumed that every observed object al-

ways generates a correctly assigned detection and that there

are no false alarms. The measurement variances are constant

for the observed area, but can differ from object to object.

This means that no influence of SNR is taken into account.

B. Cost Function

The assumed cost function is constructed from the predicted

error-covariance matrix at time step k + 1. The current pre-

dicted error-covariance matrix P n
k|k−1 ∈ R

4×4 at time step k
can be defined for object n as

P n
k|k−1(T

n
k−1) = F n

k−1P
n
k−1|k−1(T

n
k−1)(F

n
k−1)

T +Q(Tn
k−1),

(19)

where F n
k−1 is the transition matrix with interval length Tn

k−1

as defined in (12), Pk−1|k−1 ∈ R
4×4 is the last filtered error-

covariance matrix and Q(Tn
k−1) is the maneuverability at time

step k − 1 as defined in (13).

Another estimation and prediction cycle is then applied

to the error-covariance, in order to end up with the error-

covariance Pk+1|k ∈ R
4×4 for time step k + 1:

Pk+1|k(T
n
k ) = F n

k Pk|k,n(T
n
k )(F

n
k )

T +Q(Tn
k ), (20)

This expression will be used in the next section to define the

cost functions.

V. SIMULATIONS

In the following subsections, simulations are presented to

highlight some aspects of the proposed algorithm.

A. General Simulation Parameters

The general simulation parameter values are mentioned in

table I. If other values are used for the simulations, it is

explicitly mentioned in the corresponding subsection. The im-

plemented base policy is simply to apply the evaluated action

in every step of the policy rollout. Therefore πbase,k = a. A

constant LR step size is applied in all simulations. Within the

policy rollout, a Kalman filter is used for generating samples

of the expected future.

TABLE I: General simulation parameters.

Paramter Value

Maximum budget θmax: 1

Lagrange step size γk: 1000

Initial Lagrange multiplier λ0: 100

Precision of LR δLR: 0.001

Fixed value of dwell time τ : 50ms

B. Simulation 1: Comparison OSB and AODB in LTI scenario.

In order to prove the validity of the proposed AODB

algorithm, a comparison is conducted with the OSB algorithm

as proposed in [7]. In the LTI case, the steady-state error-

covariance given the optimal revisit interval T can easily be

calculated, for instance by using the equations by Kalata in

[20]. The OSB algorithm is used as explained in [7] with

the general simulation parameters in table I. It calculates the

optimal steady-state budget allocation. The AODB algorithm

implements the sum of the predicted error-covariance for the

position in x and y direction as cost function. Using (20) this

can be expressed as

c(Tn
k ) =

[

1 1 0 0
]

Pk+1|k(T
n
k )









1
1
0
0









. (21)

A long rollout of H = 200 is chosen in order to show the

convergence of the AODB algorithm to values close to the

optimal steady-state results from the OSB algorithm. For the

comparison, five object tracking tasks are considered with the

parameters shown in table II. Since the cost function is only

depending on the measurement and maneuverability variances,

the position of the objects is omitted here. The dwell time τ
is constant while the revisit interval is discretized as T ∈
[0.001 : 0.001 : 0.8]. It is assumed that the budget values

are recalculated every 5 seconds. In between, measurements

of the objects are taken with the previously calculated revisit

intervals Tn.

The simulation results are shown figure 2. It can be seen

that the budget allocations θnk = τ/Tn
k converge to results that

are very close to the values that have been determined with

the OSB algorithm. The longer the rollout horizon, the closer

the budgets approach those optimal results.

TABLE II: object tracking parameters for simulation 1.

Object σx,n[m2] σy,n[m2] σw,n[m2]
1 25 45 25

2 25 30 250

3 300 55 25

4 150 15 50

5 60 25 30

C. Simulation 2: Influence of Number of Tasks on AODB.

Theoretically, the AODB algorithm should work with a

larger number of tasks as well. In this section we present an
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Fig. 2: Budget per task over time after initialization of AODB

algorithm. Solid lines: results from AODB. Dashed lines:

Optimal steady-state results from OSB.

example with more tasks and show how a larger number of

objects leads to an increase in computational complexity.

The simulation of V-B has been repeated with 10 tasks.

Figure 3 shows the approximately optimal budget distribution.

A second simulation shows the influence of an increasing

number of tasks on the computational load and execution time

of AODB. A horizon of H = 20 is applied in the policy rollout

and the revisit interval is discretized as T ∈ [0.01 : 0.01 : 2].
The precision of the LR is set to 0.01. The implemented cost

function in this simulation is the same as shown in (21).

The results of this simulation can be found in figure 4 and

5. It can be seen that the final cost (after convergence of

LR) is increasing exponentially with rising number of object

tracking tasks. Therefore, a single initial Lagrangian multiplier

does not lead to a fast convergence for all numbers of tasks.

In addition to that, for a growing number of objects track

tasks, the time needed per LR iteration increases linearly. It

is important to note that these convergence times only apply

during the initialization phase. It should thus be seen as a

worst case scenario. When the algorithm uses extra knowledge

to choose a better Lagrange multiplier value, these times can

be reduced tremendously.
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Fig. 3: Budget per task over time after initialization of AODB

algorithm. Same simulation as in V-B with 10 tracking tasks.
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Fig. 4: Number of LR iterations needed for convergence (blue)

and final optimal total cost (red) for different number of object

tracking tasks. The data is normalized w.r.t. the resulting values

for 20 simulated objects (maximum values). It is assumed that

the AODB algorithm has just been initialized.
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Fig. 5: Average length of an LR iteration in the AODB

algorithm depending on the amount of object tracking tasks.

D. Simulation 3: Dynamic Tracking Scenario for AODB.

This simulation incorporates a dynamically changing sce-

nario with changes in budget, number of objects and object

tracking parameters. The same object parameters and cost

function are used as in section V-B (see table II and (21)).

The considered events are the following:

• 0s: Objects 1 to 4 are being tracked (θmax = 1).

• 20s: A track for object 5 is added.

• 45s: Available budget decreases (θmax = 0.9).

• 105s: Measurement variance in x direction of object 1

increases (σ2
x,1 = 210m2).

It is assumed that the budget values are recalculated every 5

seconds. In between, measurements of the objects are taken

with the previously calculated revisit intervals Tn. The general

simulation parameters apply, as mentioned in table I. The final

Lagrange multiplier from the previous LR balancing process

is reused as initial value. In addition to that, the chosen policy

rollout horizon is chosen as H = 50. The results of this

simulation are shown in figures 6 and 7. It can be seen that

the AODB algorithm manages to adapt to various situation

changes. For example, the algorithm starts to adapt the budgets

already about 20 seconds before the known variance change

at k = 105s. It is also obvious that the LR algorithm finishes

with a very low amount of iterations, if the situation does not

change much. In case of bigger changes, a longer convergence



time is needed to converge to the new value.

0 20 40 60 80 100 120

Time [s]

0.15

0.2

0.25

0.3

0.35

In
d
iv

id
u
a
l 
b
u
d
g
e
ts

0.5

0.6

0.7

0.8

0.9

1

T
o
ta

l 
b
u
d
g
e
t

New Track max
=0.9 Variance Change

Fig. 6: Dynamic budget allocation with AODB algorithm. The

algorithm adapts to three different changes over time. Track

colors: blue (1), red (2), yellow (3), purple (4), green (5). The

dashed line indicates the total available budget.
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Fig. 7: Amount of LR iterations needed for the AODB algo-

rithm to converge in a dynamic scenario with three situation

changes.

VI. CONCLUSIONS

In this paper, we have introduced the AODB algorithm for

approximately optimally solving a multi-object SRM problem.

In [7] we had already introduced the OSB algorithm which is

a resource balancing algorithm using LR. Here, it has been

extended with a POMDP framework that has been solved

non-myopically by using policy rollout. The OSB algorithm is

limited to LTI problems, while the the new AODB algorithm

can also be applied to dynamically changing scenarios.

The AODB algorithm was applied to a simplified tracking

example in order to illustrate its performance. The revisit

interval was optimized while using a cost function based on

the predicted position error-covariance that can be computed

using the Kalman filter.

The first scenario considered an LTI case like in [7]. We

have shown that the resulting budget of the AODB algorithm

approaches the result of the OSB algorithm already after a few

iterations in which the error-covariance matrix converges. The

AODB results converge to results that are very close to the

optimal steady-state solution. The length of the policy rollout

has an impact on how close the AODB algorithm gets to the

optimal results.

The second scenario explored the influence of different

numbers of object tracking tasks on the AODB algorithm.

We illustrated that the optimization can also be done for a

larger number of tasks. In addition to that, we showed that for

fast convergence the choice of the initial Lagrange multiplier

is crucial and depends on the amount of parallel tasks. We

concluded that it is useful to incorporate existing knowledge

into the choice of initial Lagrange multiplier value. The time

to complete a step in the LR process increases with growing

number of objects, which makes a fast convergence even more

important.

In the third simulation scenario we illustrated the perfor-

mance of the AODB algorithm in a dynamically changing

situation. The final Lagrange multiplier value of the last

budget update calculation is reused for the current one. For

small situation changes, the amount of LR iterations is very

small. Finally, we showed that the algorithm is capable of

allocating the current budgets based on changes that are

known in advance and changes that are not. It anticipated

a known change in measurement variance of a tracking task

and adjusted the object budgets early. Based on the chosen

cost function, also other changes can be anticipated if they

are known in advance or can be predicted.

In future work, we are planning to investigate the usage

of the AODB algorithm with more operationally relevant

cost functions. In addition to that, we will investigate how

to improve and accelerate the LR algorithm. Finally, we

will also investigate the usage of the AODB algorithm in a

tracking and classification scenario.
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APPENDIX

POMDP DEFINITION

A POMDP is defined by the following parameters (see for

example [17] and [18]):

State space S: Consists of all possible states that can be

reached within the process, see (1). At time k the state is

defined as sk. Based on the underlying states and the received

observations, the belief-state defines a probability distribution

over the possible states. At time k it is defined as bk.

Action space A: Consists of all possible actions within the

process. The action at time k it is defined as ak. Each action

has a certain cost defined by the cost function.

Observation space Z: Consists of all possible observations

that can be received within the process. An observation at time

k it is defined as zk.

Transition probability Ψ(sk, sk+1,ak): The probability

function p(sk+1|sk,ak) that defines the probability of transi-

tioning from state sk to state sk+1 given action ak.



Probability of observation O(zk, sk+1,ak): The proba-

bility function p(zk|sk) that defines the probability to receive

a certain observation zk when executing action ak with the

resulting state being sk+1.

Cost function c(sk,ak): The immediate cost of executing

action ak in state sk. Note: In this paper the cost function

does not directly depend on the state.

Discount factor γ: A discount factor that discounts future

time steps with respect to the present.

POMDPs can be solved for finite or infinite horizons. In

order to reduce the necessary computational power, a limited

horizon H is assumed in this paper. The value of H represents

the number of considered time steps with distance T . Every

time a new budget allocation is calculated, the horizon H will

be reapplied. This is therefore also called a receding horizon.

We would like to find the actions that minimize the total

cost (value VH over horizon H). This can be expressed as

VH = E

[

k0+H
∑

k=k0

c(sk,ak)

]

. (22)

Using belief states b and CB(bk,ak) =
∑

s∈S
bk(s)c(s,ak)

being the expected cost given belief state bk, VH can be written

as a so-called value function of the belief state bt:

VH(bt) = E

[

k0+t+H
∑

k=k0+t

CB(sk,ak)|bt

]

. (23)

For belief state b0 and taking action a, the optimal value

function is defined according to Bellman’s equation [27] as

V ∗
H(b0) = min

a∈A

(

CB(b0,a) + γ · E
[

V ∗
H−1(b1)|b0,a

])

.

(24)

Using this equation, the optimal policy can be expressed as

π∗
0(b0) = argmin

a∈A

(

CB(b0,a) + γ · E
[

V ∗
H−1(b1)|b0,a

])

.

(25)

The optimal so-called Q-value is then defined as

QH−t(bt,a) = CB(bt,a) + γ · E
[

V ∗
H−t−1(bt+1)|bt,a

]

.
(26)

Thus, another way to find the optimal policy is to find the

action a that minimizes the optimal Q-value:

π∗
t (bt) = argmin

a∈A

(QH−t(bt,a)). (27)

It is therefore necessary to calculate the Q-value for all

possible actions, which is generally infeasible.
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