
DISSERTATION

Data-Driven Evolutionary Optimisation for

the design parameters of a Chemical Process:

A Case Study

Author:

Liezl STANDER (715347)

Supervisor:

Prof. Terence VAN ZYL

Dr. Matthew WOOLWAY

submitted to

the Faculty of Science, in fulfilment of the requirements for the degree of

MSc in Computer Science

in the

Wits Institute of Data Science (WIDS)

School of Computer Science and Applied Mathematics

June 21, 2021



i

Declaration of Authorship
I, Liezl STANDER (715347), declare that this Dissertation titled, “Data-Driven Evolutionary

Optimisation for the design parameters of a Chemical Process: A Case Study” and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at

this University.

• Where any part of this Dissertation has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this Dissertation is entirely my own work.

• I have acknowledged all main sources of help.

• Where the Dissertation is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

Signed: LS̊t´a‹n`d`eˇrffl

Date: Jˇu‹n`e 21, 2021



ii

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

Abstract
Faculty of Science

School of Computer Science and Applied Mathematics

MSc in Computer Science

Data-Driven Evolutionary Optimisation for the design parameters of a Chemical

Process: A Case Study

by Liezl STANDER (715347)

The optimisation of Chemical plant design and operation has proven to be challeng-

ing due to the complexity of real-world systems. The complexity translates into high com-

putational costs from the mathematical representations and simulation models for these

systems. Research has illustrated the benefits of using surrogate models as substitutes for

computationally expensive models. This research investigates two main concepts. The

first one being the resource cost reduction when implementing surrogate assisted genetic

algorithms for the optimisation of computationally expensive simulation models repre-

senting chemical systems. The second component focuses on determining the robustness

of these algorithms towards stochastic and multi-objective systems. Two main algorithms

were developed to optimise four different chemical plant systems. The Chemical Plant

System - Basic (CPS-B) is a stochastic chemical process including buffer tanks, process-

ing units, and a tank with multiple feed streams. The Chemical Plant System - Parallel

(CPS-P) and Chemical Plant System - Feedback (CPS-F) are more complex variants of the

CPS-B introducing additional complexities in the form of parallel and feedback loop sys-

tems respectively. The Surrogate Assisted Genetic Algorithm (SA-GA) was used to opti-

mise these three systems. The SA-GA algorithm was adapted for multi-objective optimi-

sation. The new adapted algorithm called the Surrogate Assisted NSGA-II (SA-NSGA) algo-

rithm was tested on a popular literature case, the Pressure Swing Adsorption (PSA) system.

The optimisation results for all the chemical systems illustrated that using Genetic Algo-

rithms as an optimisation framework for complex stochastic, single and multi-objective

chemical plant systems results in significant computational benefits. Introducing Ma-

chine Learning Surrogate models as substitutes for computationally expensive simulation

models into a Genetic Algorithm framework yielded significant computational efficiency

improvements. The optimisation of CPS-B, CPS-P, CPS-F, and PSA achieved 1.8, 1.74, 1.95,

and 5 times speedup of the total elapsed run time, despite the increased complexity in

the systems. It is worth noting that the SA-GA and SA-NSGA algorithms implemented in

this research yielded results confirming both their flexibility and robustness towards more

complex stochastic, single and multi-objective systems.
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Chapter 1

Introduction

1.1 Background

Optimisation of chemical processes plays a crucial role in decision-making related to pro-

cess improvement and enhancing performance while reducing costs [4]. The Industrial

Chemicals Industry contends with a significant amount of complexity, usually involving a

large number of control variables and multiple (often) conflicting objectives [5]. Optimi-

sation of systems like these requires the system’s behaviour to be represented in a model

[6]. A popular approach to these models within chemical plant design is computer sim-

ulation as system representations [7]–[9]. The simulation models play a central role in

enabling the optimisation of these systems as they are often used as the primary evalua-

tion platform [8], [10].

Evolutionary Algorithms (EA) are common in multi-objective optimisation domains [6],

[11]–[13]. EA techniques are flexible across a broad range of problems as they do not re-

quire information specific to the problem such as derivatives [6]. The framework for EA’s

start with an initial population (set of solutions) and converges these towards improved

solution spaces using selection, crossover, and mutation operators [14]; with the litera-

ture showing promising results when applied to chemical process problems [15]–[18].

Combining simulation and EAs can result in higher computational costs as multiple

evaluations of the simulation model may be required to achieve an optimal solution. Sur-

rogate Models are computationally cheaper models acting as proxies for the original com-

putationally costly simulation models [7], [19]. The existing literature on the topic of

surrogate assisted optimisation has demonstrated that optimal solutions can be achieved

with fewer function evaluations [11], [20]–[22].

For various complex chemical systems, the use of a Surrogate Assisted Genetic Algo-

rithm speeds up the optimisation of complex chemical systems while maintaining the

quality of solutions [1], [2]. This research focuses on testing Surrogate Assisted Genetic

Algorithms on four different complex chemical systems to determine the computational

efficiency gains. The order of the systems represents the order of complexity (i.e. lowest

complexity systems first and highest complexity systems last). The first system, represent-

ing the motivating example of this research, is a basic chemical process including buffer

tanks, processing units, and a tank with multiple feed streams. This system will be referred

to as the Chemical Plant System - Basic (CBP-B) and is detailed in Section 2.3. The second
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and third systems, namely the Chemical Plant System - Parallel (CPS-P) and Chemical

Plant System - Feedback (CPS-F) are two more complex variants of CPS-B. The additional

complexities introduced include a parallel system in CPS-P and a feedback loop in CPS-F.

The details of CPS-P and CPS-F are detailed in Sections 2.4 and 2.5 respectively. The fourth

chemical process is the Pressure Swing Adsorption System (PSA). The optimisation of the

PSA system involves maximising two objectives, namely the CO2 purity and recovery. A

specific variant of the PSA system studied by Yancy-Cabellero et al. (2020) [23] has been

used in this research. The PSA introduces a spectrum of complexities, including multiple

feedback loops. The details of the PSA system are included in Section 2.6.

The optimisation of PSA systems receive a significant amount of interest [24]–[30]. The

PSA system usually involves optimisation across multiple objectives. NSGA-II is a popu-

lar multi-objective optimisation approach used for multiple-objective type systems [23],

[26], [28]. Additionally, NSGA-II is robust in optimising a wide variety of problems [30]–

[32]. Problems having multiple objectives, usually have a set of "Pareto-optimal" solu-

tions, none of which is better than the others [33].

The first three CPS systems involve multiple objectives that can be combined into

one for optimisation. The optimisation performance metric for the first three systems

is the annual revenue generated from the final product produced. The multi-objective

nature of the PSA system necessitates additional performance metrics. Riquelme et al.

(2015) [34] investigated and reviewed 54 performance metrics for multi-objective opti-

misation and concluded that the most popular metrics include the generational distance

(GD),hypervolume (HV), epsilon indicator and the inverted generational distance (IGD)

[34]. The HV, GD, IGD, and visual inspection of the Pareto frontiers have been adopted for

this research.

1.2 Problem Statement

Having an accurate surrogate model to reproduce the results from a complex simulation

model has computational cost benefits. Implementing these surrogate models in combi-

nation with evolutionary algorithms will reduce the computational resource cost associ-

ated with the optimisation of Chemical Plant design and operation.

Although these simulation models provide an improved representation of the system,

most of the current optimisation in literature is implemented with a non-stochastic tar-

get function. The stochasticity of the simulation introduces challenges for the surrogate

model to learn and the Genetic Algorithm (GA) to search the solution space as each sim-

ulation run yields different results. The additional complexity of multiple objectives in a

chemical system also poses a challenge to the optimisation algorithm as multiple optimal

solutions exist.

In response to this, we propose to derive, implement and evaluate the performance

of an algorithm that makes use of both the simulation and the surrogate model at certain

criteria to evaluate the fitness function for the optimisation.
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1.3 Significance and Motivation

The decision-making process within chemical process performance enhancements, pro-

cess improvement, and cost reduction relies heavily on chemical process optimisation [4].

This dependence highlights the importance of having true optimal design and operation

of your chemical systems. The chemical systems that are categorised within the Industrial

Chemicals Industry involve a significant amount of complexity. The chemical systems

usually involve multiple (often) conflicting objectives and are made up of large numbers

of control variables [5].

Stochastic simulation models are important to enable the accurate representation of

the systems. Additional complexities in the form of multiple objectives also need to be

taken into account for accurate system representation. Both of these components result

in higher computational costs for chemical plant design and operation optimisation. To

ensure that costs are minimised, an accurate surrogate model to reproduce the results

from computationally expensive simulation models can be implemented. The optimi-

sation process can be done with reduced computational resource cost which results in

reduced overall costs.

1.4 Research Aims and Objectives

The research aims to investigate two primary concepts. The first being the potential com-

putational cost reduction in making use of surrogate assisted genetic algorithms for chem-

ical plant design and operation optimisation. The second concept is to investigate the ro-

bustness of the surrogate assisted genetic algorithms towards stochastic and multi-objective

systems.

The aims of this research project will be achieved through the following objectives

(goals):

• Investigate the current algorithms and approaches to optimising chemical plant de-

sign and operation in the literature;

• Develop and source various stochastic simulation models representing chemical

plan systems;

• Source a simulation representing a real-world complex chemical system that in-

cludes multiple objectives;

• Develop the surrogate assisted algorithms to optimise the various simulation mod-

els.

• Collect data on the performance of the algorithms on the various test systems.

• Analyse and discuss the results and summarise the findings.
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1.5 Research Questions

1. What are the impacts of the stochasticity of the simulation model on the optimisa-

tion algorithms?

2. What are the impacts of introducing multiple objectives into the optimisation algo-

rithms?

3. By how much, can the addition of a Machine Learning surrogate model in the opti-

misation of complex chemical systems represented by simulation models, improve

the speed of convergence towards the optimal solution?

1.6 Delineations, Limitations and Assumptions

This research will only focus on four specific chemical plant system test cases detailed

in Chapter 2. As a result, the outcomes of the research may not be generalisable to case

studies outside the realm of chemical system design and operation.

1.7 Outline

The remainder of the dissertation is structured as follows. Chapter 2 explores the avail-

able literature on the research topics. Chapter 3 outlines the research methodology and

algorithms executed in this research. The research results have been summarised and

discussed in Chapter 4 and the conclusions are included in Chapter 5.
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Chapter 2

Literature Review

This chapter details the topic of genetic algorithms and the existing literature related to

surrogate assisted optimisation within the field of chemical engineering, including the

unpacking of various papers, their techniques, cases, and results. The four chemical plant

system use cases are detailed in this chapter.

2.1 Genetic Algorithms

Genetic algorithms (GA) is an extremely popular and effective optimisation technique for

solving complex, often multi-objective, optimisation problems [6], [11], [12]. The algo-

rithm has been developed in such a way that it can simultaneously process multiple solu-

tions. This capability makes the genetic algorithms robust towards multi-objective prob-

lems [13]. Genetic algorithms are also able to be applied to a broad range of different

types of problems because they do not require any information specific to the system, like

derivatives [6]. The general framework of the genetic algorithm originated from organic

evolution [14]. The general process of the GA starts with an initial population set and pro-

gressively moves towards improved solution spaces [14]. This progression is achieved by

implementing selection, crossover and mutation techniques [14], [15], [17].

2.2 Surrogate Assisted Optimisation

Multi-objective optimisation in the field of chemical engineering is an extremely popu-

lar topic illustrated by the existing substantive literature. Reduced function evaluation

requirements and improved computation costs for optimisation are some of the benefits

shown by from the topic of surrogate assisted optimisation [11], [20], [31], [35]–[39].

Wahid et al. [36] investigated minimising the compression energy in a single mixed re-

frigerant process of natural gas liquefaction. The paper illustrated significant time reduc-

tions by using surrogate assisted optimisation, specifically using Radial basis functions

as their surrogate model. This approach allowed their optimisation algorithms to be re-

duced from 5.87 hours to only 6.75 minutes (for the Genetic Algorithm implementation)

while still improving their objective value from the base case. The solutions achieved are

either extremely close or at the optimal solutions.
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Beck et al. [31] achieved a five times reduction in computational effort by imple-

menting a Kriging surrogate model. The system they were optimising was the design of a

Vacuum/pressure swing adsorption system for the separation of CO2 and N2 mixture.

The optimisation of a Pressure Swing Adsorption unit for methane nitrogen separa-

tion was investigated by Anna et al. [35]. The objectives were to maximise Purity and

Recovery of Nitrogen. The optimisation time decreased from 15.7 hours to only 50 sec-

onds when they implemented an Artificial Neural Network as their surrogate model while

simultaneously improving their recovery and purity objectives.

Ibrahim et al. [20] investigated the optimisation of the design of crude oil distillation

units using Artificial Neural Networks as the surrogate model. The results of the paper

presented that the surrogate assisted optimisation yielded a 44% time reduction while

maintaining the accuracy and optimality of the solution.

Another paper investigating the optimisation of crude oil distillation units by Shi et

al. [39] used adaptive radial basis functions for their surrogate modelling strategy and

achieved a reduction in function calls from 1236 to 562.

A review paper detailing the advances in surrogate based modeling, feasibility analy-

sis and optimisation done by Bhoesekar et al. [40] highlights the popularity of surrogate

modeling in a range of applications within multiple engineering disciplines. Each surro-

gate modeling approach yields its own set of trade-offs making the selection process of

the correct model for the problem quite challenging. Categorising the problem into either

feasibility, prediction or optimisation focuses the selection of surrogate models as certain

surrogate models are more suited towards specific problem categories.

Carpio et al. [38] made use of surrogate modeling and achieved better numerical re-

sults that were more stable, requiring less rigorous simulation model evaluations in com-

parison to the classical optimisation and achieving near-optimal solutions. The case that

was investigated was the optimisation of a Biorefinery aimed at profit maximisation.

Complex problems such as the one detailed by Chugh et al. [11] where an Industrial

blast furnace with eight competing objectives was successfully simultaneously optimised

using surrogate models for the various objectives.

Various optimisation techniques are used in case studies focusing on the optimisation

of chemical plant design [20], [24], [25], [31], [39], [41]. Evolutionary Algorithms (EA) is a

popular technique within literature which is illustrated by the amount of existing research

[20], [31], [39], [41]. This includes Genetic Algorithms (GA) [20], [31] and Differential Evo-

lution [41].

The optimisation of a Pressure Swing Adsorption (PSA) unit for methane nitrogen sep-

aration was investigated by Anna et al. [35]. The objectives were to maximise Purity and

Recovery of Nitrogen. The optimisation time decreased from 15.7 hours to only 50 sec-

onds when they implemented an Artificial Neural Network as their surrogate model while

simultaneously improving their recovery and purity objectives.

The PSA system is an extremely popular chemical process within literature [24], [25],

[31], [37], [42]. This system achieves the separation of certain required gases and plays piv-

otal roles in applications such as CO2 capture [24], [25], the Separation and purification of
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Hydrogen [24], and other Industrial systems requiring gas separation [26]. The optimisa-

tion of the PSA system has received a significant amount of interest, based on the number

of available literature articles [24], [25], [31], [37]. As detailed in the paper by Anna et al.

[35], surrogate modelling has been a solution implemented across various studies for the

optimisation of the PSA system [24], [25], [31], [37].

The remainder of this chapter includes the description and details of the four systems

that were used to test the algorithms described in Chapter 3. The first system, referred

to as the Chemical Plant System Basic (CPS-B), represents the motivating example for the

research and is detailed in Section 2.3. The next two systems are more complex variants

of CPS-B which include additional complexities such as an additional parallel system and

a feedback loop. The system including the parallel stream is referred to as the Chemical

Plant System Parallel (CPS-P) and is detailed in Section 2.4. The feedback loop is included

in Section 2.5 and is referred to as the Chemical Plant System Feedback (CPS-F). Due to

the similarities in the CPS-B,CPS-P and CPS-F, only the additional complexities have been

detailed in Sections 2.4 and 2.5. The simulation modelling approach remained the same

with differences including the decision variables and their bounds and the objective func-

tions. The final system is a Pressure Swing Adsorption (PSA) system for post-combustion

capture of carbon and is detailed in Section 2.6.

2.3 Chemical Plant System - Basic

2.3.1 Design Parameters

CPS-B is illustrated in Figure 2.1. This system is a general representation of a chemical

plant system and has been used as the motivating example for this research.

Feed 1

Feed 2

Flare 1

Flare 2
Tank 1

Process 1

Tank 2

Process 2

FIGURE 2.1: Chemical Plant System - Basic

The plant system in Figure 2.1 starts with two feed streams flowing into Tank 1, repre-

senting the first buffer tank. The feed from Tank 1 is processed by Process 1 and gets stored

in the second buffer tank, Tank 2. Flare 1 is activated if tank 1’s capacity is exceeded due to

unplanned events such as process 1 not being able to absorb the feed streams. Flare 1 then
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flares (release into the atmosphere through a process of burning) the unprocessed prod-

uct. The product in Tank 2 is then transported via Pump 1 to Process 2, which produced

the final product. Flare 2 is activated if the tank 2’s capacity is exceeded due to unplanned

events such as Process 2 not being able to absorb the feed stream or pump 1 being out of

service. The product produced by process 2 is the system’s major revenue generator. The

cost of flaring product and failures on the various system components (Process 1, Process

2 and Pump 1) negatively impact the final revenue of the system. The minimum number

of spares to keep on-site, tank capacities,minimum number of pumps to procure and the

pump capacity were the decision variables identified as the primary features to optimise

the system. Table 2.1 includes the objective functions for CPS-B.

TABLE 2.1: Objective Functions for Chemical Plant System - Basic

No. Max/Min Variable

1 Maximise Final Product Stream
2 Minimise Flare 1
3 Minimise Flare 2
4 Minimise Tank Sizes
5 Minimise Pump Sizes
6 Minimise Holding stock level
7 Minimise Amount of stock purchased

2.3.2 Simulation Model

The operation of the CPS-B system was replicated in a continuous-time stochastic event

simulation model. All seven objective functions described in Table 2.1 are able to be ex-

pressed into one single objective. At every run of the simulation model, the seven objec-

tives were evaluated resulting in a single Revenue (monetary units/year (m.u)) value.

The overall duration of the simulation run is 365 days to allow the model to iterate all

the real-life events at a frequency experienced in practice. An hourly time increment was

chosen for the simulation model to account for the lowest true frequency variables.

Table 2.2 illustrates the design specifications for the system. These specifications in-

clude the maximum and minimum capacities of the various components in CPS-B.

TABLE 2.2: Processing Capacities of Chemical Plant System - Basic

Equipment/Process Minimum Maximum

Process 1 100 m3/hour 100 m3/hour
Process 2 100 m3/hour 100 m3/hour
Pump 1 60 m3/hour 120 m3/hour

Tank 1 & 2 50 m3 1000 m3/hour

The mean time between failures (MTBF) summarised in Table 2.3 represent the first

component of modelling the failures. These times were implemented as sampled values
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from the exponential distribution due to its applicability in the reliability environment for

equipment failure. The assumptions on failures include:

• Repairs done on equipment achieve an almost new state;

• Failures are not as a result of deterioration; and

• Failures are entirely random.

The mean time to repair (MTTR) or failure times included in Table 2.4 represents

the second component of modelling the system failures. The log-normal (LOGN), uni-

form (UNIF), and normal (NORM) distributions were used and determined from indus-

try norms. The “Spares Available" column illustrates the relationship between the failure

times and the available spares on-site (i.e. if spares are available, the failure time is quicker,

and where there is a N/A in the column it represents that there is no relationship between

the spares and the failure distribution).

TABLE 2.3: Mean Time Between Failures (MTBF) Distributions

Equipment/Process MTBF (Hours)

Process 1 EXPO(480)
Process 2 EXPO(720)
Pump 1 EXPO(600)

TABLE 2.4: Mean Time To Repair (MTTR) Distributions

Equipment/Process MTTR (Hours) Spares Available

Process 1 LOGN(2.5, 0.5) +2 Yes
Process 1 UNIF(72, 168) No
Process 2 NORM(36,5) N/A
Pump 1 LOGN(1.5, 0.46) + 4 N/A

The empirical distributions illustrated in Figure 2.2 were randomly sampled for the

flow rates for feed 1 and 2. Two separate peaks at either end of the figure are evident in the

distributions of the data. The peak on the left represents times when the feed producing

units are offline due to planned or unplanned maintenance. The peak on the right repre-

sents stable operations for the units. These peaks were included in the data to incorporate

the impacts of any challenges upstream resulting in low to no feed to the system.

2.4 Chemical Plant System - Parallel

2.4.1 Design Parameters

CPS-P is represented in Figure 2.3. This system is different to CPS-B, due to a parallel sys-

tem being introduced. The additional complexity from the parallel system results in two

stochastic systems relying on a centralised spares pool. The shared spares pool needs to
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FIGURE 2.2: Empirical Distributions of Feed Streams

TABLE 2.5: Fitness Function Values for the Chemical Plant System - Basic

Equipment/Process Value (Monetary Units) Cost/Revenue

Product 6042/m3 Revenue
Flare 1 2848/m3 Cost
Flare 2 3907/m3 Cost

Per Tank 9.94×107 + 1.52×106/m3 Cost
Per Pump 4.44×106 + 2.96×105/m3 Cost

be optimised to reduce the failure times for both systems while balancing the cost associ-

ated with the number of spares bought. The minimum number of spares to keep on-site,

tank capacities,minimum number of pumps to procure and the pump capacities repre-

sent the decision variables for the system. The maximum bounds of the number of spares

to keep and purchase were doubled as well as introducing three additional decision vari-

ables, specifically two tank capacities and a pump capacity.

2.5 Chemical Plant System - Feedback

2.5.1 Design Parameters

CPS-F is illustrated in Figure 2.4. This system includes the complexity of product that

needs to be reprocessed due to quality specification failures (recycle stream). To quan-

tify this recycle stream, α represents the ratio of recycled product to the final product. To

reduce this ratio, more man-hours can be spent maintaining the system. These mainte-

nance hours spent on the system (online basis) represents the critical lever to influencing

this ratio. The α ratio was incorporated into the model by sampling from a normal dis-

tribution with a mean that is a function of the number of maintenance hours spent and

has a maximum variance of 10% of the mean of the maintenance hours. The maintenance

hours decision variable range is 0 and 1314 hours where the maximum bound represents

15% of the entire cycle time of the simulation model. The remaining decision variables
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Feed 1

Feed 2

Flare 1

Flare 2Tank 1
Process 1

Tank 2

Process 2

Feed 3

Feed 4

Flare 3

Flare 4Tank 3
Process 3
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FIGURE 2.3: Chemical Plant System - Parallel

include the minimum number of spares to keep on-site,tank capacities, the minimum

number of pumps to procure and the pump capacity.

Feed 1

Feed 2

Flare 1

Flare 2Tank 1
Process 1

Tank 2

Process 2

α

1 - α

FIGURE 2.4: Chemical Plant System - Feedback

The key performance indicator for CPS-B, CPS-P, and CPS-F is to maximise the overall

revenue of the system. The final product produced is the main revenue generator. The

cost of failures on the various system components (processing units and pumps) and flar-

ing product negatively impact all three systems’ revenue. The objective functions for all

three systems focus on simultaneously maximising the final product stream while min-

imising all the other variables. Table 2.6 includes all the revenues and costs for the fitness
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function values for all three systems. These are defined as:

argmax
x1

c1x1 −
n∑

i=2
ci xi , (2.1)

where n is the number of costs to include for the respective problems.

TABLE 2.6: Fitness Function Values for all the Chemical Plant Systems

(i ) Equipment/Process (xi ) Revenue/Costs (ci ) Problem Set Bounds

1 Final Product 6042/m3 All -
2 Flare 1 2848/m3 All -
3 Flare 2 3907/m3 All -
4 Per Tank 9.94×107 + 1.52×106/m3 All [500, 1000]
5 Per Pump 4.44×106 + 2.96×105/m3 All [60, 120]
6 Flare 3 2848/m3 CPS-P -
7 Flare 4 3907/m3 CPS-P -
8 Number of Man Hours 474036/hr CPS-F [0, 1314]

2.6 Pressure Swing Adsorption

2.6.1 Design Parameters

A post-combustion CO2 capture PSA process has been used in this research. The PSA sys-

tem was sourced from work completed by Yancy-Cabellero et al. (2020) [23]. The carbon

capture process plays a significant role in reducing the CO2 emissions from gas-fired and

coal power plants [23]. The PSA system forms part of the first step of the three-step carbon

capture process [23].

The PSA cycle is illustrated in Figure 2.5. The PSA cycle configuration that has been

implemented in this research is called the modified Skarstrom cycle. The system consists

of five steps within a cycle, namely: A. pressurisation, B. adsorption, C. heavy reflux, D.

counter-current depressurisation, and E. light reflux [23]. The cycle starts at low pressure

and is then pressurised (step A) by the flue gas up to the adsorption pressure. Once the

adsorption pressure is reached, the adsorption step (step B) takes place by having the top

end of the column open, allowing the feed gas to be fed through and the CO2 to be con-

centrated at the opposite end of the column. The heavy reflux step involves substituting

the flue gas flowing into the column by the heavy product collected during the light reflux

step (step E) after a set amount of time. This substitution results in a higher concentration

of CO2 at the bottom of the column due to the heavy product’s high CO2 concentration.

The bottom of the column is then closed, and the pressure in that section is dropped to

the starting pressure during the counter-current depressurisation step (step D). This step

also includes collecting emissions at the bottom of the column as the CO2 product. The

final step, the light reflux step (step E), involves feeding the light product produced in the

adsorption phase into the top of the column once the initial pressure is achieved, and the

cycle repeats [23].
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FIGURE 2.5: Pressure Swing Adsorption System - 5 step modified
Skarstrom cycle (A - Pressurisation, B - Adsorption, C - Heavy Reflux, D -

Counter-Current Depressurisation and E - Light Reflux) [23]

The PSA system’s simulation model was developed in MATLAB from a set of partial dif-

ferential equations describing the system. To optimise the PSA system, the two operating

parameters that are maximised at each cycle are CO2:

Purity = Moles of CO2 in product

Total moles in the Product
×100% (2.2)

and:

Recovery = Moles of CO2 in to product

Moles of CO2 fed into cycle
×100%. (2.3)

2.7 Conclusion

This chapter has illustrated the vast amount of available literature on the topic of surro-

gate assisted optimisation. Combining genetic algorithms with surrogate assisted opti-

misation is a common approach for multi-objective optimisation domains. The use of

surrogate assisted genetic algorithms for the optimisation of stochastic systems is a topic

that still requires further investigation. The existing literature has illustrated the signifi-

cant benefits in implementing surrogate assisted optimisation. This research will further

investigate this by implementing surrogate assisted genetic algorithms to optimise both

stochastic and multi-objective systems.
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Chapter 3

Research Methodology

3.1 Research Design

The research design that has been followed is an Empirical Experimental approach [43].

The Empirical Experimental research design methodology focuses on testing and con-

firming certain hypotheses [43]. Experimental research design uses a methodology where

certain variables are kept constant and others are actively changed and manipulated to

determine the change in outcome [44].

3.2 Methodology

The research methodology architecture is illustrated in Figure 3.1. The various research

instruments, data sets, and analyses have stemmed from this framework and are detailed

in the sections that follow.

The first research instrument that is detailed in Figure 3.1 is the simulation models.

These models represent the primary evaluation platforms for the optimisation framework.

In this research, four main systems were modelled to test the surrogate assisted evolution-

ary algorithms. The first system, Chemical Plant System - Basic (CPS-B) is outlined in Sec-

tion 2.3. The details of how the simulation model was developed and all the parameters

are included in Section 2.3.2. Chemical Plant System - Parallel (CPS-P) is detailed in sec-

tion 2.4. This system is a more complex variant of CPS-B by introducing a parallel system.

The Chemical Plant System - Feedback (CPS-F) system is detailed in Section 2.5 and is also

a more complex variant of CPS-B. The added complexity is introduced with a feedback

loop which represents the off-spec product that needs to be reworked. The final system is

the Pressure Swing Adsorption (PSA) chemical process detailed in section 2.6. This sim-

ulation model has been sourced from the paper by Yancy-Cabellero et al. (2020)[23] and

is intended to test the generalisability of the algorithm for optimising complex real-world

chemical systems.

Each of the systems described above has its own simulation model including its own

set of decision variables. The structure of the data generated from the simulation models

includes the decision variables and their respective the performance indicators for the

various models. This structure enables the algorithm to optimise each system effectively.

The CPS systems described above only have a single performance indicator which is the
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FIGURE 3.1: Research Methodology Architecture

overall system revenue. The PSA system has two objectives, namely the CO2 purity and

recovery ratios.

The simulation model data also plays a pivotal role in the performance of the surrogate

model as it is used to train the model. The algorithm that is used for the surrogate models

is the Random Forest Machine Learning algorithm. The surrogate Machine Learning al-

gorithm was chosen by evaluating various algorithms, namely the K-Nearest Neighbours,

Lasso, Ridge, Random Forest, Extra Tree Regressor,Support Vector Machine, and Gradient

Boosting Regressor for the data generated by CPS-B detailed in section 2.3. Ten-fold cross-

validation was used to compare these algorithms. The data set used for validation was cre-

ated using the simulation model of the CPS-B. The best performance was achieved by the

Random Forest algorithm yielding an out-of-sample accuracy between 0.77 and 0.93. The

high accuracy achieved was sufficient for its application in the optimisation framework.

The out-of-the-box (default) parameters were used and no further hyper-parameter tun-

ing was done. Table 3.1 includes the Random Forest hyper-parameter set. For each sys-

tem, an additional simulated data set was kept aside as a test during the optimisation of

the system. At the start and every retraining instance of the algorithm, the accuracy of

the surrogate model was monitored using the test set. When the divergence criteria was

met during optimisation, the additional data generated by the simulation model would be
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used to retrain the Random Forest model.

TABLE 3.1: Random Forest Surrogate Model Hyper Parameter Set

Number Hyper Parameter Value

1 Number of Trees 100
2 Criterion Mean Squared Error
3 Splitting Minimum Samples 2
4 Leaf Node Minimum Samples 1
5 Splitting Maximum Features 5
6 Bootstrapping True

The final component in Figure 3.1 is the evolutionary optimisation component. This

incorporates the Genetic Algorithm with the function evaluation platform which com-

prises a combination of the simulation and surrogate model to manage the divergence of

the Machine Learning model predictions.

The optimisation of the PSA system required a slightly different optimisation algo-

rithm to the one implemented for the CPS systems due to the difference in performance

metrics. For this reason, the final component is included in two separate algorithms. Each

of these algorithms is detailed in their sections, namely Sections 3.2.1 and 3.2.2.

3.2.1 Surrogate Assisted Genetic Algorithm

The algorithm that was used to optimise the CPS systems is the Surrogate Assisted Genetic

Algorithm (SA-GA) and is further detailed in the following sections.

Algorithm

The SA-GA algorithm represented in Figure 3.2 starts with an initial random population

of size 800. The best 75 candidates of the initial population are selected as a warm start

population. This warm start population is then used to intialise the surrogate machine

learning model (Random Forest).

The SA-GA continues from here following the flowsheet steps in Figure 3.2. The top

15% of the initial ranked (highest to lowest revenue) population (elite) is selected. Using

the BLX-α crossover technique, offspring are generated from the elite population set [45].

Mutation is then applied at a rate of 30% using the random substitution technique.

To manage deviations between their predictions: at each generation, the elite pop-

ulation is evaluated by both the surrogate and the simulation model. The deviation is

assessed by calculating the difference between the surrogate predictions and the simula-

tion model’s output. If the difference is greater than one sigma, the simulation model is

used as the evaluation platform, and the surrogate model is retrained with the new data

generated by the simulation.

The terminating criteria for the algorithm is fifty generations.
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FIGURE 3.2: Flow Chart for Surrogate Assisted Genetic Algorithm
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Crossover and Mutation

The BLX-α crossover technique involves combining a pair of chromosomes [45]. The

BLX-α algorithm is implemented using two steps for each gene in a chromosome:

1. The range is calculated range = max−min by finding the minimum (min) and the

maximum (max) values of the parent genes,

2. The child gene will be a random number in the interval [min− (range×α),max+
(range×α)],

where α controls how much outside the [min,max] interval you would like to consider. A

value of α = 0 gives Uniform Crossover. A value of α = 0.15 is employed for this research

previously shown to give good results [1]. At every iteration of the SA-GA algorithm, each

new child’s fitness value is compared to the fitness values of the elite population. If it

is discovered to have a better fitness value, the chromosome is substituted into the elite

population, and the cycle continues [46]. Figure 3.3 illustrates an example of the crossover

procedure for CPS-F.

600 750 80 5 8 650Chromosome 2

820 900 110 2 4 300Chromosome 1

cro
ssover

700 850 90 3 6 400
Child 1

FIGURE 3.3: An Example of the crossover operation for two of the
potential candidates used by the Genetic Algorithm

A 100 % crossover rate was used for the optimisation which means that the entire

offspring was created from the elite population. The final step was the mutation of the

offspring. The mutation was executed using the random substitution technique which

involves substituting the values in the gene with a random number within its respective

maximum and minimum bounds. Figure 3.4 is an example of the mutation procedure.

Genetic Structure

The decision variables for the CPS systems formed part of the chromosomes that made up

the genetic algorithm population. The chromosomes’ genetic structures used in the CPS

systems are summarised in Table 3.2.

3.2.2 Surrogate Assisted NSGA-2

The PSA system was optimised using the Surrogate Assisted NSGA-II (SA-NSGA) algo-

rithm. This algorithm is detailed in the sections to follow.
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FIGURE 3.4: An Example of the mutation operation for the potential
candidate used by the Genetic Algorithm

TABLE 3.2: Genetic Structure for the Chemical Plant Systems

# Description CPS Set Bounds

1 Tank 1 Size All [500,1000]
2 Tank 2 Size All [500,1000]
3 Tank 3 Size CPS-P [500,1000]
4 Tank 4 Size CPS-P [500,1000]
5 Pump 1 Size All [60,120]
6 Pump 2 Size CPS-P [60,120]
7 Minimum Spares Level All [0,20]
8 Minimum Spares to Purchase All [1,20]
9 Number of Maintenance Man Hours CPS-F [0, 1314]

Algorithm

The SA-NSGA algorithm is represented in Figure 3.5. The initial population is selected as

the best 60 candidates from the warm start random population of size 800. The surrogate

machine learning models (Random Forest) for the purity and recovery objectives are both

initially trained and parameterised using the random warm start population. To handle

the PSA system’s multi-objective nature, for the surrogate modelling component of the

optimisation, two surrogate models for each of the purity and recovery fitness values were

used [31].

The initial population is sorted and ranked according to the non-dominated sorting

technique using Pareto fronts and the crowding distance metrics (estimate of the sur-

rounding solution density for each gene [47]). The top sixty genes are selected for Tourna-

ment Selection. Intermediate crossover and Gaussian mutation are applied with the rate

of 2
6 . The offspring are either evaluated using the simulation or the surrogate model based

on the divergence criteria. The terminating criterion for the GA is sixty generations.

The deviation between the surrogate models and the simulation model is managed by

evaluating the top 15% of the ranked population using both the simulation and surrogate

models and retraining the surrogate model if the difference is greater than one sigma. The

function evaluation is done in MATLAB and the results are sent back to python using the

Python matlab.engine library to integrate the two platforms. It is important to note that

the integration of these platforms does introduce an additional computational cost.
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Selection

The SA-GA [1], [2] has been adjusted to substitute the existing sorting technique with the

NSGA-II non-dominated sorting methodology. The sorting algorithm is detailed in Algo-

rithm 1[33].

Algorithm 1 Fast non-dominated sort (P) [33]

1: for each p ∈ P do
2: Sp =;
3: np = 0
4: for each q ∈ P do
5: if p < q then
6: Sp = Sp ∪q
7: else if q < p then
8: np = np +1
9: end if

10: end for
11: if np = 0 then
12: pr ank = 1
13: F1 = F1 ∪q
14: end if
15: end for
16: i = 1
17: while Fi 6= ; do
18: Q =;
19: for each p ∈ Fi do
20: for each q ∈ Sp do
21: nq = nq −1
22: if nq = 0 then
23: qr ank = i +1
24: Q =Q ∪q
25: end if
26: end for
27: i = i +1
28: Fi =Q
29: end for
30: end while

The sorting algorithm executes by iterating over all the solutions in the population. It

uses two parameters, namely the domination count (np ), which represents the number of

solutions that dominate the current solution, and the solution set that the current solu-

tion dominates (Sp ). The first nondominated front includes solutions with a domination

count of zero. For each solution p with a zero domination count, the algorithm iterates

through its solutions q from the set Sp and reduces its domination count by one. When

the domination count of any solution q gets to zero, the solution is assigned to a separate

list Q. These solutions represent the second nondominated front [33].

Once the non-dominated sorting is applied, the sorting algorithm’s nondomination

ranking output is used in combination with each solution’s crowding distance metric to
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sort the population. The next phase of the SA-NSGA is the tournament selection process

which is executed to generate a population for the offspring generation process. The tour-

nament selection process involves the random sampling of a set number of individuals,

with replacement from the existing population with the intent of comparing their fitness

and selecting the best individual for the new population [48]. The number of individu-

als sampled at every iteration is two, and the population size is sixty, which results in 120

tournaments taking place to achieve a population size of sixty.

Crossover and Mutation

The population generated by the tournament selection process is then used for crossover

using the intermediate crossover technique. This technique creates offspring by taking a

weighted average of the parents using a ratio value to specify the weights. The offspring is

a function of two parents, parent1 and parent2. The first child is given by:

Child 1 = Parent 1+Rand×Ratio× (Parent 2 - Parent 1) (3.1)

and the second by:

Child 2 = Parent 2−Rand×Ratio× (Parent 2 - Parent 1) (3.2)

where the Ratio is a (uniform) randomly generated weight used to determine the change

in the genetic structure of the child from the parent’s. The probability of a child changing

its genetic structure from its parent is based on the Rand vector, a set of binary values,

the same length as the number of decision variables. The Rand vector is determined by

initially having a generated vector set of random numbers and checking if they are less

than the specified fraction (crossover rate) of 2
6 .

Figure 3.6 is an example of the Intermediate crossover technique applied for the PSA

optimisation. The grey blocks represent the parent elements that will be changed, and the

white blocks represent the elements that will remain from chromosome 1 in child 1.

5 20 0.2 1.8 0.9 0.15Parent 2

9 100 0.5 1.5 0.8 0.25Parent 1

cro
ssover

9 100 0.29 1.5 0.59 0.45
Child 1

Equation 4
Crossover
Example

FIGURE 3.6: An example of the Intermediate crossover operation for two
potential parent candidates and a resulting new chromosome

The Gaussian mutation technique adds a random number from the Gaussian distri-

bution, with a mean of 0 and standard deviation set by two parameters: the shrink and
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scale parameters, to each child’s entry. The mutation is applied at a rate of 2
6 . Figure 3.7 is

an example of the mutation procedure.

9 100 0.29 1.5 0.59 0.45Child 1

m
u

tatio
n

9 100 0.46 1.5 0.59 0.45Child 1 Mutated

FIGURE 3.7: An example of the Gaussian mutation operation for the
potential candidate used by the Genetic Algorithm

At the end of both of these procedures, the decision variables are checked against their

bounds. If the decision variables lie above or below their respective bounds, they are sub-

stituted with either the maximum or the minimum values, respectively.

Genetic Structure

The genetic algorithm population was made up of chromosomes that included the deci-

sion variables for the PSA system. The genetic structure of the chromosomes for the PSA

system optimisation is summarised in Table 3.3.

TABLE 3.3: Genetic Structure for Gene 1 to 6 for the Pressure Swing
Adsorption System

# Description Units Bounds

1 Adsorption Pressure Bar [1,10]
2 Time of Adsorption Seconds [10, 1000]
3 Light Product Reflux Ratio - [0.01, 0.99]
4 Feed Velocity m/s [0.1, 2]
5 Heavy Product Reflux Ratio - [0,1]
6 Purge Pressure Bar [0.1, 0.5]

Performance Metrics

The metrics used to analyse the performance of the different experiments implemented

for the PSA optimisation are the generational distance (GD), hypervolume (HV) and in-

verted generational distance (IGD). The HV indicator provides the area (two-dimensional

problem) in which the solution set dominates for a specific selected reference point [49].

The GD metric is represented by the following formula:

GD(X ) = 1

|X |

( |X |∑
i=1

d p
i

) 1
p

, (3.3)
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where X represents the solution vector achieved by the algorithm. The Euclidean distance

from xi to the nearest reference point in the Pareto front or reference set of points is rep-

resented by di . The formula determines the average distance from any point on X to the

closest point on the (ideal) Pareto front.

The IGD formula is represented as:

IGD(X ) = 1

|Z |

( |Z |∑
i=1

d̂i
p

) 1
p

, (3.4)

where Z represents the Pareto front or reference set of points. d̂i
p

represents the euclidean

distance from Z to the nearest reference point in X , which is the solution vector achieved

by the algorithm. The inverted generation distance metric provides the average distance

from Z to X ’s closest points, where the generational distance metric measures the average

distance from X to the nearest point in Z .

3.2.3 Software Details

The simulation models and the SA-GA Algorithm for the optimisation of the CPS systems

were all implemented in Python. Three different implementations were executed for the

PSA optimisation case. The first implementation is the direct implementation which was

executed in MATLAB using the source code provided by Yancy-Cabellero et al. (2020) [23].

The second is the reference implementation involving the replication of the algorithm

used in the direct implementation in python. The final is the surrogate assisted imple-

mentation, which introduced surrogate models into the reference approach as substitutes

for the simulation model. The surrogate assisted implementation is focused on the po-

tential computational efficiency improvements that can be achieved by using surrogate

models. The performance metrics detailed in Section 3.2.2 were implemented in Python

using Pymoo. Pymoo is the multi-objective optimisation library used to calculate the HV,

GD, and IGD. The hypervolume metric within the Pymoo library was implemented using

the algorithm developed by Distributed Evolutionary Algorithms in Python (DEAP). All

the implementations for the optimisation of both the primary and motivating examples

are available on Github [50].

3.3 Limitations

The limitations of the research methodology include the number of use cases for the test-

ing of the algorithm. Due to time and resource constraints, only four chemical plant sys-

tems were used to test the optimisation algorithm. These cases have proven the gener-

alisability and robustness of the algorithms but the more cases that are tested, the better

the validity of the results. This limitation provides an opportunity for further work to be

completed to test more complex and constrained chemical plant design and operation

Optimisation cases. The second limitation of the methodology includes the number of

experiments that were run. This is also a limitation due to time and resource constraints.
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The selected number of experiments have yielded representative results by firstly account-

ing for the stochasticity of the CPS simulation models and secondly accounting for the

variability in the results.

3.4 Conclusion

The research methodology has been structured such that it can enable the investigation of

the potential computational resource cost reduction in making use of surrogate assisted

evolutionary algorithms for four chemical plant systems. The robustness and general-

isability of the algorithms have also been validated by optimising four different chemical

plant systems. The primary components of the methodology include the simulation mod-

els as were used to test and validate the results of the algorithms. The limitations of the

research methodology have highlighted an opportunity for further investigation and test-

ing to be done.
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Chapter 4

Results

This chapter includes the results for the optimisation of all four chemical plant systems

detailed in Chapter 2.

For the CPS systems, the results were acquired through an average of 30 experiments,

for both the simulation-only and surrogate assisted modes. The primary performance

metric for the chemical plant systems (CPS) is the final revenue. For each CPS, the rev-

enue metric has been summarised using different techniques to highlight the compara-

tive performance of the simulation-only and surrogate assisted modes. These techniques

are detailed in the Sections below.

A set of twenty experiments were run for the direct and surrogate assisted implemen-

tations for optimisation of the Pressure Swing Adsorption (PSA) system. The reference im-

plementation was executed for five runs due to this implementation focusing on replicat-

ing the direct implementation and having significantly higher computational cost. Three

primary quantitative metrics were used to illustrate the performance of the various im-

plementations. These metrics included the generational distance (GD), the hypervolume

(HV), and the inverted generational distance (IGD). Each of these metrics was calculated

per generation for all experiments. The HV metric is an area type calculation that is in-

dependent of any ideal solution. The GD and IGD metrics are distance measures to some

reference vector. For the twenty experiments, the average of the final generation’s pop-

ulation generated from the direct implementation was used as the reference vector. The

qualitative metric that was used across all the experiment sets was the Pareto frontier for

the last generation. This metric was intended to provide visual comparisons of the perfor-

mances across the different implementations.

The remainder of this chapter has been divided into four subsections each represent-

ing the optimisation results per system.

4.1 Chemical Plant System - Basic

4.1.1 Simulation Evaluation Results

The results where the simulation model was used as the only evaluation platform is sum-

marised in figures 4.1, 4.3, and 4.2. The data summarised in Figure 4.1 represents the

average of all 30 experiments of the average revenue value per population per generation
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smoothed using a rolling mean with window size two. The results illustrate that the ge-

netic algorithm (GA) constantly improves the fitness of the CPS-B up to generation 20.

After generation 20 the GA converges.
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FIGURE 4.1: Rolling (window=2) Mean Revenue per generation

It is illustrated in Figure 4.2 that the GA can consistently improve the elite population.

This figure is the only non-smoothed figure and illustrates that GA can improve the solu-

tion of the elite population in a relatively stable manner.
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FIGURE 4.2: Mean Revenue of Elite per generation

Figure 4.3 illustrates a less smoothed increasing trend in the mean of the maximum

revenue values per population per generation. Both the average and the maximum rev-

enue for the elite population is increasing. This means that new elite parents are being
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identified as the GA progresses. The results also indicate that the GA is successful in its

search for optimal solutions.
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FIGURE 4.3: Expanding Max Revenue per generation

The optimal target value for the stochastic simulation is changing from generation to

generation and the GA is expected to acquire an optimal value. The GA’s ability to discover

an optimal parameterisation in this stochastic environment proves the robustness of the

algorithm.

4.1.2 Surrogate Assisted Results

The positive simulation only results leads to the next consideration of the potential speedup

of the overall elapsed run time that may be be attained when implementing the surrogate

model. Figures 4.4, 4.5, and 4.6 include results for the 30 consolidated experiments in

which a surrogate model was introduced. Despite the stochastic nature of the system,

the Random Forest machine learning model achieved an accuracy of 77%. In addition to

this, 1.82 times speedup of the elapsed run time was achieved using the surrogate model

(average across five runs of the experiment).

In Figure 4.6 it is evident that the surrogate assisted model is able to achieve a max

value faster in its overall elapsed run time. The results are also illustrating that the model

is able to achieve a better max revenue than the simulation-only model. The stability

introduced by the surrogate model predictions may have had an impact on these better

max values achieved because it allows the GA to optimise the target function better.

Figure 4.4 shows the average predicted values produced by the surrogate model per

population per generation alongside the average actual values produced by the simula-

tion. The upward trend in Figure 4.4 illustrates positive improvements for the predicted

average for the surrogate assisted experiment set. The values in figure 4.4 are significantly

lower than the ones in figure 4.1 but are exhibiting a general upward trend. The use of
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FIGURE 4.4: Comparison of the Surrogate Mean Revenue And Actual
Mean Revenue of the surrogate assisted model
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FIGURE 4.5: Comparison of the Actual Mean Elite revenue of the
surrogate assisted and simulation-only models

a surrogate model has achieved the speedup of the optimisation process as well as im-

proved optimal solutions.

The summary of the results as detailed above has shown that the use of a GA can fa-

cilitate the optimisation of chemical plant design despite the stochastic nature of these

systems. The accuracy of 77% in conjunction with a 1.8 times speedup (average across 5

experiments) of the overall elapsed run time when implementing the surrogate model is a

significant improvement.



Chapter 4. Results 30

0 5 10 15 20 25 30 35 40 45 50

1.3

1.4

1.5

1.6
·109

Generation Number

E
[R

ev
en

u
e

(m
.u

)
]

Actual Max, (simulation-only) Actual Max, (surrogate assisted)

FIGURE 4.6: Comparison of the Actual Max Revenue of the surrogate
assisted and simulation-only model

4.2 Chemical Plant System - Parallel

4.2.1 Simulation Evaluation Results

The results from the simulation-only mode for CPS-P showed that the GA was able to op-

timise across a more complex stochastic system with increased decision variables.

4.2.2 Surrogate Assisted Results

Figure 4.7 illustrates the SA-GA algorithm results for the optimisation of the CPS-P sys-

tem. The actual lines (solid dark red, solid gold, and dotted gold) represent the results

where the simulation model was used to evaluate the population. The surrogate line (dot-

ted gold) represents where the surrogate model was used to evaluate the population. The

solid dark red and dotted red lines represent the mean actual revenues for the elite popula-

tion in the simulation-only and surrogate assisted optimisation modes, respectively. The

solid gold and dotted gold lines represent the mean actual and surrogate revenues for the

entire population in the surrogate assisted optimisation modes. The performance of the

SA-GA algorithm is evident from Figure 4.7. Despite the added complexity and stochas-

tic nature of the system, the GA was still able to optimise across the target. The GA is also

improving the elite population across generations for both the simulation-only and surro-

gate assisted implementations. The surrogate assisted algorithm can predict the revenue

of the CPS-P with an accuracy of 90%. The algorithm also achieved a significant speedup

of 1.95 times over the simulation-only mode.
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FIGURE 4.7: Actual mean revenue, surrogate mean revenue, actual elite
mean revenue for the surrogate assisted mode and the actual elite mean
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4.3 Chemical Plant System - Feedback

4.3.1 Simulation Evaluation Results

The optimisation of CPS-F for the simulation-only implementation yielded positive re-

sults. The GA was able to achieve optimal solutions despite the added complexity and

stochastic nature of the system.

4.3.2 Surrogate Assisted Results

Figure 4.8 includes the results for three different experiments completed on the determin-

istic version of CPS-F. The dark and light red lines represent the revenues when the main-

tenance hours are fixed at the maximum and minimum bound of 1314 and 0 hours. The

dotted red lines represent the revenue of the experiments where the GA could select and

optimise the maintenance hours. These three different experiments have also been com-

pleted for the stochastic version of CPS-F and are illustrated in Figure 4.9. These results

indicate that the surrogate assisted implementation improved the revenue of CPS-F de-

spite the additional complexity added. This implementation also yielded a overall elapsed

run time speedup of 1.74 times the simulation-only mode. The surrogate model was able

to predict the revenue from the CPS-F system at an overall accuracy of 69%. The GA was

able to handle the additional complexity added by the system’s feedback component, in-

dicating its robustness towards this type of component.
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FIGURE 4.8: Mean of the max revenue of the deterministic system with
constant and variable maintenance hours
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FIGURE 4.9: Mean Revenue of the stochastic system with constant and
variable Maintenance Hours

4.4 Summary of Chemical Plant System Results

The results for all three CPS systems have illustrated the benefits of implementing a sur-

rogate machine learning model in combination with a genetic algorithm framework. The

overall elapsed time speedups achieved were 1.8, 1.74 and 1.95 times the direct (simu-

lation only) optimisation for CPS-B, CPS-P and CPS-F respectively. The accuracy of each

system’s surrogate model was 77%, 90% and 69% for CPS-B, CPS-P and CPS-F respectively.

These results have been achieved despite the complexity and stochasticity of the systems.
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4.5 Pressure Swing Adsorption

The final generation frontiers for all three implementations are represented in Figure 4.10.
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FIGURE 4.10: Frontier Comparison between the direct, surrogate assisted
and reference implementations

The reference implementation achieved a similar shape and range to the direct imple-

mentation from visual inspection of these frontiers. The frontier of the surrogate assisted

implementation also follows the same shape as the direct implementation. To further val-

idate the results illustrated by the Pareto frontiers, quantitative measures have been used.

The average performance metrics for the three different PSA optimisation implemen-

tations are summarised in Table 4.1. These metrics represent the average performances

achieved across all experiments for the final generation (60). The standard deviations have

also been included to illustrate the variation across the experiments. It is important to

note that for all the metrics in Table 4.1, the smaller the value, the better the performance.

The direct and reference implementations achieved the same HV values indicating

that the reference implementation successfully achieved its intent of replicating the direct

implementation. The surrogate assisted implementation has a larger HV than the direct

and reference implementations, illustrating that its performance is inferior but can still be

highly competitive. The GD and IGD metrics illustrate that the reference implementation

results are closer to the direct than the surrogate assisted implementation.

To further investigate each implementation’s convergence, the average of the HV per

generation is illustrated in Figure 4.11 for all implementations. We note no material differ-

ence between progressions other than additional noise in the surrogate’s solution space

in early generations. Python direct optimisation provided for reference.

Each implementation has a specific convergence rate, and to illustrate this in a com-

parative nature, the average number of evaluations (generations) to success (AES) for

99.5%, 99%, 98.5%, and 98% HV success rates has been summarised in Table 4.2. The
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TABLE 4.1: Average Performance Metrics for Final Generation

Metric Implementation Value

Hypervolume

Direct 0.007±0.001

Reference 0.007±0.000

Surrogate Assisted 0.009±0.003

Generational
Distance

Direct -

Reference 0.012±0.000

Surrogate Assisted 0.014±0.003

Inverted
Generational
Distance

Direct -

Reference 0.065±0.001

Surrogate Assisted 0.034±0.021
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FIGURE 4.11: Mean hypervolume progression at each generation across
repeated experiments

surrogate assisted implementation yields the slowest convergence rate across all the im-

plementations. It is, however, able to achieve the 99.5% HV success rate within the max-

imum number of generations (60). The Surrogate Assisted model requires significantly

more generations to achieve the same success rate as the other approaches. However,

these additional generations are evaluated using the surrogate model and as such still re-

sult in a significant speedup.
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TABLE 4.2: Average Evaluations to Success (AES) for various Success
Rates (Number of Generations)

Success Rate

Implementation 98% 98.5% 99% 99.5%

Direct 6 7 10 16

Reference 3 5 6 12

Surrogate Assisted 7 12 22 49

From the results above, we have evidence demonstrating that the reference imple-

mentation achieved similar results to the direct implementation. The surrogate assisted

technique achieved slightly inferior results to the direct optimisation cases but has sig-

nificantly reduced the computation cost of the optimisation. The surrogate assisted im-

plementation achieved a five times speedup of the overall elapsed run time compared to

the reference implementation with an accuracy of 91.8% for the purity and 99.1% for the

recovery.
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Chapter 5

Conclusion

To conclude, the aims of the research were focused on two main components. Firstly

the investigation into the potential resource cost reduction in making use of a surrogate

assisted evolutionary algorithms for the optimisation of computationally expensive sim-

ulation models. Secondly, the research aimed to determine the robustness of these algo-

rithms towards stochastic and multi-objective systems.

The optimisation of the three CPS systems achieved results demonstrating the SA-GA

algorithm’s robustness towards more complex stochastic systems. The SA-GA algorithm

was able to achieve significant computational efficiency gains of 1.8 times speedup for

the CPS-B system, 1.95 times speedup for CPS-P and 1.74 times speedup for CPS-F. The

accuracies achieved for the surrogate models were 77% for the CPS-B system, 90% for the

CPS-P system and 69% for the CPS-F system. The PSA system optimisation yielded results

supporting that the SA-NSGA algorithm is robust towards more complex multi-objective

systems, including real-world multi-objective chemical plant systems. The results illus-

trated the achievement of replicating the direct implementation and further achieving a

five times speedup with the surrogate assisted technique with an accuracy of 91.8% and

99.1% for the purity and recovery models, respectively. The research aims have been met

resulting in positive outcomes of significant speedups, accuracies and algorithm robust-

ness towards stochastic and mutli-objective systems.

The complete result set for the surrogate assisted optimisation of all four chemical

plant systems illustrated the computational improvements obtained using a GA combined

with a Machine Learning Surrogate model as a substitute for computationally expensive

simulation models. It is worth highlighting the SA-GA and SA-NSGA algorithm’s flexibil-

ity and robustness in adapting to more complex multi-objective systems. The surrogate

assisted optimisation approach used in this research has proven successful across com-

plex chemical systems and should be further verified and tested within Industry. This

approach can enable faster decision making for the optimisation of chemical plant design

and operations.

The research questions were aimed at determining three main concepts. Firstly to

investigate the impacts of stochastic systems on the optimisation algorithm. The results

from all three (stochastic) CPS systems illustrated that despite the complexity of the stochas-

ticity of the systems, the SA-GA algorithm was able to converge to optimal solutions faster.
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This was done while maintaining accuracies of between 69% - 90% for the machine learn-

ing surrogate models. The second question was aimed at understanding the impacts of

multi-objective systems on the optimisation algorithm. The optimisation of the PSA sys-

tem also achieved a significant speedup in convergence to optimal solutions while main-

taining accuracies of 91.8% and 99.1% for the purity and recovery surrogate models. The

final research question was aimed at determining the speed improvement for the optimi-

sation of the chemical systems when implementing surrogate assisted optimisation. This

question was answered through the 1.8, 1.95, 1.74 and five times overall elapsed run time

speedups achieved for the surrogate assisted optimisation of the CPS-B, CPS-P, CPS-F and

PSA respectively.

The current state of this research poses an opportunity for a wide variety of future

studies. Topics include the further investigation and testing of the existing algorithm us-

ing different complex systems and introducing more objectives. There is also an opportu-

nity to branch this research into various different industries that are challenged with high

dimensional optimisation problems to improve the generalisability of the results.
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