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Abstract—Consider a target being tracked by a cog-
nitive radar network. If the target can intercept noisy
radar emissions, how can it detect coordination in the
radar network? By ’coordination’ we mean that the
radar emissions satisfy Pareto optimality with respect
to multi-objective optimization over the objective func-
tions of each radar and a constraint on total network
power output. This paper provides a novel inverse
multi-objective optimization approach for statistically
detecting Pareto optimal (’coordinating’) behavior,
from a finite dataset of noisy radar emissions. Specifi-
cally, we develop necessary and sufficient conditions for
radar network emissions to be consistent with multi-
objective optimization (coordination), and we provide
a statistical detector with theoretical guarantees for
determining this consistency when radar emissions are
observed in noise. We also provide numerical simula-
tions which validate our approach. Note that while we
make use of the specific framework of a radar network
coordination problem, our results apply more generally
to the field of inverse multi-objective optimization.
Index Terms—Multi-Objective Optimization, Statis-

tical Detection, Cognitive Radar Network

I. Introduction
Cognitive radars [1], use the perception-action cycle of

cognition to sense the target, learn relevant information,
then optimally adapt their output emissions in response.
We consider the case when there is a network of cognitive
radars which coordinate to optimally track a target. In
a coordinating radar network, not only do the individ-
ual cognitive radars optimally adapt their output (with
respect to an individual objective function) subject to
resource constraints, but also the allocation of resources
between radars is subject to an optimization procedure.
The resource to be allocated is often interpreted as the
total power available to the radar network. Such an opti-
mal power allocation strategy has been studied in ( [2], [3],
[4], [5] and references therein), in which algorithmic game-
theoretic methods are employed. Specifically, [2] poses the
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problem of adaptive power allocation for radar networks as
a cooperative game, and provides an iterative cooperative
Nash bargaining algorithm which converges quickly to the
Pareto optimal equilibrium.
However, in this work we are interested in the inverse

problem; namely, how can an external observer detect if
a radar network is coordinating by observing its signals
(in noise)? Can one then use these signals to reconstruct
underlying objective functions which drive the network
output, thus allowing for prediction of future responses?
These questions, and extensions thereof, have been inves-
tigated in [6], [7], [8], [9] in the framework of a single
cognitive radar. In this work we generalize these develop-
ments to a radar network (multi-objective optimization)
framework. We define a coordinating radar network as
a system which outputs signals which are Pareto effi-
cient with respect to multi-objective optimization over
each radar’s objective and subject to a total power con-
straint; given observations of radar emissions we attempt
to determine whether the radar network is coordinating,
and subsequently reconstruct objective functions which
closely match those in the multi-objective optimization.
Thus, this problem is abstractly similar to inverse game
theory [10] in that we aim to detect the output of a
cooperative game (Pareto optimality), multi-agent inverse
reinforcement learning [11] in that we aim to reconstruct
feasible objective functions, and inverse multi-objective
optimization [12].
Previous work [13] has considered a similar problem

of detecting coordination (multi-objective optimization)
in a radar network based on deterministic radar network
signals. The key difference is that in this paper we assume
the radar emissions are observed in noise. Specifically, the
main contribution of this work is a statistical detector
for identifying coordination from noisy observed signals.
We provide theoretical guarantees on the probability of
Type-I error of this detector, and demonstrate its efficacy
via numerical simulations. The detector is based on a
linear programming formulation, the feasibility of which is
shown to be equivalent to the existence of a multi-objective
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optimization problem giving rise to the observed signals.
We emphasize that apart from radar networks, detecting

multi-objective optimization by observing a black box
applies to more general multi-agent inverse reinforcement
learning in technological and social networks.

This paper is organized as follows: In section II we
provide background on the problem of multi-objective op-
timization. In section III we introduce the cognitive radar
protocol and measurement model, and show how radar
network coordination is equivalent to the multi-objective
optimization framework presented in Section II. In sec-
tion IV we provide necessary and sufficient conditions for
the observed dataset of radar emissions to be consistent
with multi-objective optimization (Theorem 1), and we
provide a statistical detector for determining whether the
noisy observed dataset is consistent with multi-objective
optimization. Theoretical guarantees for this detector are
given in Theorem 2. In section V we provide numerical
studies that demonstrate the validity of our coordination-
testing and objective reconstruction procedures. Finally
we conclude in section VI.

II. Background. Multi-Objective Optimization
Here we introduce the linearly constrained multi-

objective optimization problem that is the basis of our
problem formulation. We will consider a cognitive radar
network which distributes its power resources in such a
way to solve this optimization, where each radar has a
distinct objective function. For discrete time t, subject
to increasing and continuous linear function αt ∈ Rn
and optimization functions f i(·) : Rn → R, i = [M ] :=
{1, . . . ,M}, the linearly constrained multi-objective opti-
mization problem is given as:

arg max
β
{f1(β), . . . , fM (β)}

s.t. β ∈ Xt
c := {β ∈ Rn : α′tβ ≤ 1}

(1)

where the linear constraint αtβ is bounded by 1 without
losing generality. In single-objective optimization, the goal
is to find the best feasible argument which maximizes the
objective. However, in multi-objective optimzation there
will seldom exist an argument β which simultaneously
maximizes all objectives, i.e. there will be tradeoffs be-
tween objectives for varying argument β. Thus, the solu-
tion concept for the multi-objective optimization problem
(1) is that of efficiency:

Definition 1. Efficiency (Pareto Optimality): For
fixed {{f i(·)}Mi=1, αt} and a vector β∗ ∈ Xt

c, let

Zt(β∗) = {β ∈ Xt
c : f i(β) ≥ f i(β∗) ∀i ∈ [M ]

Y t(β∗) = {β ∈ Xt
c : ∃k : fk(β) > fk(β∗)}

The vector β∗ is said to be efficient if

Zt(β∗) ∩ Y t(β∗) = ∅ (2)

i.e., there does not exist another vector in the feasible set
Xt
c which increases the value of some objective f i(·) without

simultaneously decreasing the value of some other objective
f j(·), i, j ∈ [M ].

We then denote the set of all efficient solutions to the
problem (1) as

XE({f i}Mi=1, αt) := {β∗ ∈ Xt
c : (2) is satisfied} (3)

and we say that β∗ solves (1) if and only if β∗ is efficient,
i.e.

β∗ ∈ {arg max
β
{f1(β), . . . , fM (β)} s.t. β ∈ Xt

c} (4)

⇐⇒ β∗ ∈ XE({f i}Mi=1, αt) (5)

Denoting f(β) = (f1(β), . . . , fM (β))T , we can use the
following problem of weighted sum (PWS) [14] to obtain
an efficient solution:

max µTf(β) s.t. β ∈ Xt
c (6)

where µ = (µ1, . . . , µM )T ∈ RM+ . The set of weights µ is
restricted to the unit simplex, denoted as WM := {µ ∈
RM+ : 1Tµ = 1}. Then we can denote the set of optimal
solutions for (6) as

S(µ) = arg max
β
{µTf(β) : β ∈ Xt

c}

Then, letting W+
M = {µ ∈ RM++ : 1Tµ = 1} denote the

unit simplex with each weight µi strictly positive, we have
[15]:

⋃
µ∈W+

M

S(µ) ⊆ XE({f i}Mi=1, αt) ⊆
⋃

w∈WM

S(µ) (7)

This relation will be useful for us in our result which
states necessary and sufficient conditions for the radar
network responses to be consistent with multi-objective
optimization (coordination). We next present the radar
network interaction model, and show how the multi-
objective optimization framework presented here arises
naturally.

III. Radar Network Interaction Model
With the above background, we are now ready to discuss

the cognitive radar network model. We consider a radar
network which optimally distributes its resources between
M radars to track a target. The notion of ’optimally’
coincides with Pareto optimality (Def. 1). Specifically, at
each time step the radar i outputs signal βit such that
the collective response {βit}Mi=1 satisfies Pareto optimality
with respect to each radar’s objective and a joint power
constraint. Abstractly, we take the point of view of the
adversary which is being tracked by the radar network.
We (the adversary) can interact with the network by
performing purposeful maneuvers, and can observe noisy
radar emissions in response to our maneuvers. Our aim
is to determine whether or not the radar network is
performing a multi-objective optimization (coordinating)
to produce the emitted signals.



A. Interaction Dynamics
Here we provide the general interaction dynamics be-

tween the cognitive radar and the adversary (us). We
consider two time scales for the interaction: the fast time
scale k = 1, 2, . . . represents the scale at which the target
state and measurement dynamics occur, and the slow time
scale t = 1, 2, . . . represents the scale at which the probes
αt and radar responses {βit}Mi=1 occur.

Definition 2 (Radar Network - Target Interaction). The
radar network - adversary interaction has the following
dynamics:

target probe : αt ∈ RN+
radar i emission : βit ∈ RN+

target state : xk ∈ Rq, xk+1 ∼ pαt
(x|xk)

radar i observation : yik ∈ Rp, yik ∼ pβi
t
(y|xk)

radar i tracker : πik = T (πik−1, y
i
k)

(8)

where T represents a general Bayesian tracker. For
a fixed t in the slow time-scale, αt abstractly repre-
sents a particular target maneuver (radial acceleration,
etc.) which parametrizes the state update kernel, and
βit abstractly represents radar i’s signal output which
parametrizes its measurement kernel. These interaction
dynamics are illustrated in Fig. 1. Taking the point of
view of the target, we aim to detect if the radars are
coordinating:

Definition 3 (Coordinating Cognitive Radar network).
Considering the interaction dynamics (8), we define a
coordinating cognitive radar network to be a network of M
radars , each with individual monotone increasing objective
functions f i : RN → R, i ∈ [M ], which produces output
signals {βit}Mi=1 on the slow time-scale in accordance with

{βit}Mi=1 ∈ arg max
{βi}M

i=1

{f1(β1), . . . , fM (βM )}

s.t. αt(
M∑
i=1

βi) ≤ 1
(9)

Note that (9) is a special case of the general problem in
(1). Thus, a coordinating cognitive radar network emits
signals which are efficient (Pareto optimal) (Def. (1)) in
order to optimally parametrize the measurement kernels
(through e.g., increasing measured signal power) subject to
each objective function, the state dynamics of the target,
and a constraint on the total power output.

Next, we specify a particular concrete example of these
interaction dynamics in which the spectra of state and
measurement noise covariance matrices act as the probe
and response. We justify how this provides a natural
interpretation of the above abstract framework.
Remark: A multi-target interaction can be incorporated
into the above framework by considering αt to be the
vector of state-noise spectral norms of each target. We
exclude this for brevity, but consider it in future work.

Figure 1: Interaction of our dynamics with the adversary’s cognitive
radar network. Each cognitive radar is comprised of a Bayesian tracker
and a radar controller. Based on the time series {βi

t}
M
i=1, t = 1, . . . , T ,

our goal is to determine if the radar network is coordinating, i.e., if Def. 3
is satisfied.

B. Constrained Spectral Optimization
Linear Gaussian dynamics for a target’s kinematics

[16] and linear Gaussian measurements at each radar are
widely assumed as a useful approximation [17]. Thus we
will consider the following linear Gaussian state dynamics
and measurements over the fast time scale k ∈ N:

xk+1 = Axk + wk, x0 ∼ πi0,
yik = Cixk + vik, i ∈ [m]

(10)

where xk, wk ∈ Rq are the target state and noise vectors,
respectively, and A ∈ Rq×q is the state update matrix.
yin ∈ Rp is the i’th radar measurement of the target, Ci ∈
Rp×q is the i’th radar measurement transformation, and
vin ∈ Rp is the measurement noise. The constraints and
subsequent radar responses will be indexed over the slow
time scale t ∈ N. Abstractly, these will parameterize the
state and noise covariance matrices:

wk ∼ N (0, Qt(αt)), vik ∼ N (0, Rt(βit)) (11)

In this spectral interpretation, αt represents the vector
of eigenvalues of state-noise covariance matrix Qt and βit
represents the vector of eigenvalues of the inverse mea-
surement noise covariance matrix R−1

t . The radar network
tracks our target using Kalman filter trackers:
Based on observations yi1, . . . , yik of the target, the tracking
functionality in the i’th radar computes the target state
posterior

πik = N (x̂ik,Σik)

where x̂ik is the conditional mean state estimate and Σik is
the covariance, computed by the classical Kalman filter:

Σik+1|k = AΣikA′ +Qt(αt)
Ki
k+1 = CiΣik+1|k(Ci)′ +Rt(βit)
x̂ik+1 = Ax̂i + Σik+1|k(Ci)′(Ki

k+1|k)−1(yik+1 − CiAx̂ik)
Σik+1 = Σik+1|k − Σik+1|k(Ci)′(Ki

k+1)−1CiΣik+1|k



Under the assumption that the model parameters in (10)
satisfy [A,Ci] is detectable and [A,

√
Qt(αt)] is stabi-

lizable, the asymptotic predicted covariance Σik+1|k as
k →∞ is the unique non-negative definite solution of the
algebraic Riccatti equation (ARE):

A(αt, βit ,Σ) :=
− Σ +A(Σ− Σ(Ci)′[CiΣ(Ci)′ +Rt(βit)]−1CiΣ)A′

+Qt(αt) = 0
Suppose each radar aims to optimize its unique objective
function f i in isolation. Let Σ∗−1

t (αt, βit) denote the solu-
tion of the ARE. Also suppose that the radar can only
expend sufficient resources to ensure that the precision
(inverse covariance) is at most some pre-specified precision
Σ̄−1. The radar would then adaptively choose the best
waveform, corresponding one-to-one with the measure-
ment noise covariance spectrum βit , to meet the objective
while satisfying this resource constraint, i.e.

βit ∈ arg max
β

f i(β) : Σ∗−1
t (αt, βit) ≤ Σ̄−1 (12)

and by Lemma 3 of [6] we can recover a linear constraint
from this formulation, i.e.

Σ∗−1
t (αt, βit) ≤ Σ̄−1 ⇒ α′tβ

i
t ≤ 1

The key idea behind this equivalence is to show the asymp-
totic precision Σ∗n(αt, ·) is monotone increasing in the
second argument βit using the information Kalman filter
formulation. Thus, we can abstract (12) to the following
optimization with linear constraint

βit ∈ arg max
β

f i(β) : α′tβ ≤ 1 (13)

C. Multi-Objective Spectral Optimization
Now we consider the case when the radar network is

jointly constrained by a total power bound. Since in-
creased power output for the i’th radar signal corresponds
directly to increased measurement i precision, we can
abstract the joint power constraint among all M radars
to α′t(

∑M
i=1 β

i
t) ≤ p∗ where p∗ is the constraint on total

network power output. In this case, the cognitive radar
network optimization problem becomes (9).

Let us make the assumption that βit > 0 ∀t ∈ [T ], i ∈
[M ], i.e., each radar always outputs a non-zero power
signal. In the Appendix we prove a technical Lemma which
allows us to make the following equivalence: (7) together
with (27) implies that there exists µ ∈ W+

M such that the
expression (9) is equivalent to

{βit}Mi=1 ∈ arg max
{βi}M

i=1

M∑
i=1

µif i(βi)

s.t. α′t(
M∑
i=1

βi) ≤ p∗
(14)

Recall that we are interested in the inverse multi-
objective optimization problem; in the following section we

provide a necessary and sufficient condition for the exis-
tence of objective functions for which the observed signals
{βit}Mi=1 satisfy constrained multi-objective optimization.

IV. Detection of Coordination

First we provide the equivalence of cognitive radar
network coordination (Def. 3) to a linear program for-
mulation, and a subsequent objective function reconstruc-
tion equation. We then utilize this in a statistical de-
tector for determining whether noisy network responses
are consistent with multi-objective optimization (coordi-
nation).Finally we provide an algorithm for implementing
this detector and objective function reconstruction. We
assume the target can observe the signals {βit , t ∈ [T ]}Mi=1
through e.g., an omni-directional receiver.

A. Equivalence to Linear Program
Suppose we have the dataset of constraints and system

responses β = {αt, {βit}Mi=1, t ∈ [T ]}. Here we provide a
necessary and sufficient condition for the dataset β to be
consistent with multi-objective optimization.

Theorem 1. Let β be a set of observations. The following
are equivalent:
1) there exist a set ofM concave and continuous objective

functions U1, . . . , Um, weights µ ∈ W+
M and constraint

p∗ such that ∀t ∈ [T ]:

{βit}Mi=1 ∈ arg max
{βi}M

i=1

M∑
i=1

µiU i(βi)

s.t. α′t(
M∑
i=1

βi) ≤ p∗
(15)

2) there exist numbers uij > 0, λij > 0 such that for all
s, t ∈ [T ], i ∈ [M ]:

uis − uit − λitα′t[βis − βit ] ≤ 0 (16)

Proof. See Theorem 1 of [13]

This allows us to simply solve the linear program fea-
sibility test (16) to test for multi-objective optimization.
Specifically, given the equivalence of (14) and (9), we
can use this linear programming formulation to test for
coordination in the cognitive radar network.

Corollary 1. Given constants uit, λ
i
t, t ∈ [T ], i ∈ [M ]

which make (16) feasible, explicit monotone and continuous
objective functions that "rationalize" the dataset {αt, βit , t ∈
[T ], i ∈ [M ]} are given by

U i(·) = min
t∈[T ]

[
uit + λitα

′
t[· − βit ]

]
(17)

i.e., (15) is satisfied.

Proof. See Lemma 1 of [13].



This Corollary provides us with a mechanism for re-
constructing objective functions which rationalize the ob-
served responses, giving us a way to predict future cogni-
tive radar network outputs.

Recall that thus far we have considered only deter-
ministic radar i responses βit . We now consider the case
when these measured responses are corrupted by noise. We
next provide a statistical detector for determining whether
these noisy responses are consistent with multi-objective
optimization, with theoretical guarantees on Type-I error.
We then provide a general scheme for reconstructing objec-
tive functions which most closely rationalize the observed
noisy responses.

B. Statistical Detector
Let β̄ denote the dataset when the radar responses are

observed in noise:

β̄ = {αt, β̃it , t ∈ [T ], i ∈ [M ]} (18)

where β̃it = βit + εit, and εit are i.i.d. and distributed
according to some distribution Λit. We propose a statis-
tical detector to optimally determine if the responses are
consistent with Pareto optimality (1). Define
H0: null hypothesis that the dataset (18) arises from the
optimization problem (9).
H1: alternative hypothesis that the dataset (18) does not
arise from the optimization problem (9).

There are two possible sources of error:
Type-I error: Reject H0 when H0 is valid.
Type-II error: Accept H0 when H0 is invalid.
We formulate the following test statistic Φ∗(β̄), as a

function of β̄, to be used in the detector:

Φ∗(β̄) = max
i

Φ̂i(β̄) (19)

where Φ̂i(β̄) is the solution to:

min Φi : ∃ uit > 0, λit > 0 :
uis − uit − λitα′t(β̄is − β̄it)− λitΦi ≤ 0

(20)

Form the random variable Ψ as
Ψ = max

i
Ψi

Ψi = max
t6=s

[α′t(εit − εis)]
(21)

Then we propose the following statistical detector (with
γ ∈ (0, 1)): ∫ ∞

Φ∗(β̄)
fΨ(ψ)dψ

{
≥ γ ⇒ H0

< γ ⇒ H1
(22)

where fΨ(·) is the probability density function of Ψ. Let
FΨ be the cdf of Ψ and F̄Ψ be the complementary cdf of
Ψ. Then we have the following guarantees:

Theorem 2. Consider the noisy dataset (18), and suppose
(20) has a feasible solution. Then

1) The following null hypothesis equivalence holds:

H0 ⇐⇒
⋂
i∈[M ]

{Φ̂i(β̄) ≤ Ψi} (23)

2) The probability of Type-I error (false alarm) is

PΦ∗(β̄)(H1|H0) := P(F̄Ψ(Φ∗(β̄)) ≤ γ |H0) ≤ γ

3) The optimizer Φ∗(β̄) yields the smallest Type-I error
bound:

PΦ̄(β̄)(H1|H0) ≥ PΦ∗(β̄)(H1|H0)
∀Φ̄(β̄) ∈ [Φ∗(β̄),Ψ]

Proof. See Appendix VII-B

The contribution of this detector is that it provides
a strict guarantee on the upper bound of probability of
Type-I error; the specific choice of threshold γ is left to any
particular problem application and may vary depending on
design criteria.

C. Statistical Detector Implementation and objective Re-
construction
Here we present an implementable algorithm for detect-

ing coordination in the radar network and reconstructing
objective functions which most closely rationalize the ob-
served noisy responses.
In practice we would likely not have access to the

density function fΨ(·). However, we would likely have
some assumptions on the noise statistics captured by the
distributions Λit, such as additive Gaussian noise. Thus,
we propose to compute an approximation F̂Ψ(·) of the
cumulative distribution function FΨ(·) using assumptions
on the noise statistics, then implement the statistical
detector through this. Algorithm 1 provides a practically
feasible implementation of the statistical detector (22).
Recall that Corollary 1 gives us the ability to reconstruct

objective functions for which the observed deterministic
responses {βit}Mi=1 are consistent with multi-objective opti-
mization. If the statistical detector suggests that the radar
network is coordinating, i.e. H0 holds, it would be in our
interest to obtain these objective functions. We can do
so by utilizing the parameters {uit, λit, t ∈ [T ], i ∈ [M ]}
which solve (20). Note that due to the additive noise in the
measured signals {β̂it}Mi=1, Corollary 1 does not guarantee
that the signals can exactly be rationalized by these recon-
structed functions. However, using the parameters which
solve (20) is a useful heuristic, and we demonstrate this
validity of this reconstruction in a numerical example.

V. Numerical Studies
For our numerical examples we consider the case with

M = 3 radars, outputting signals βit ∈ R2, with objective
functions given by

f1(β) = det(R−1(β)) = β(1)× β(2),
f2(β) = Tr(R−1(β)) = β(1) + β(2),
f3(β) =

√
β(1)β(2)

(25)



Algorithm 1 Detecting Multi-Objective Optimization
1: for l=1:L do
2: for i=1:M do
3: simulate εil = [εi1, . . . , εiN ](l), εit ∼ Λit
4: end for
5: Compute Ψl := maxi{maxt 6=s[αt(εit − εis)]}
6: end for
7: Compute F̂Ψ(·) from {Ψl}Ll=1
8: Record radar network response β̄ to the probe αt
9: Solve (19) for Φ∗(β̄)

10: Save P := {ûit, λ̂it, t ∈ [T ], i ∈ [M ]} such that

ûis − ûit − λ̂itα′t(β̄is − β̄it)− λ̂itΦ̂i(β̄) ≤ 0 ∀i ∈ [M ]

11: Implement detector (22) as

1− F̂Ψ(Φ∗(β̄))
{
> γ ⇒ H0

≤ γ ⇒ H1
(24)

12: if H0 then
13: Reconstruct objective functions from (26)
14: end if

Figure 2: Statistic 1− F̂Ψ(Φ∗(β̄)) as a function of variance of
the noise distribution Λt. Higher 1− F̂Ψ(Φ∗(β̄)) corresponds to
higher likelihood of radar network coordination in the statisti-
cal detector (22).

A. Statistical Detector Performance
Here we investigate the empirical behavior of the statis-

tic 1−F̂Ψ(Φ∗(β̄)) under both H0 and H1. We generate the
statistic from the procedure outlined in Algorithm 1, with
L = 500, M = 3, T = 10. The probe signal αt ∈ R2 is
generated randomly as αt ∼ U [0.1, 1.1]2, i.e. each element
of αt is generated as an independent uniform random
variable on the interval [0.1,1.1]. To simulate a cognitive
radar network, the responses {βit}Mi=1 are taken as solutions
to the multi-objective optimization (3) with objective
functions given by (25), and µ1 = µ2 = 0.4, µ3 = 0.3. Then
noisy responses {β̄it}Mi=1 are obtained by adding i.i.d. Gaus-

sian noise εit ∼ Λt = N (0, σ2). The blue line in Figure 2
displays the resultant empirical statistic 1−F̂Ψ(Φ∗(β̄)) as a
function of noise variance. To simulate a non-coordinating
radar network, we generate each response βit ∼ U [0, 1]2
independently, and similarly add Gaussian measurement
noise εit ∼ Λt = N (0, σ2). The red line in Figure 2 is
the empirical statistic 1− F̂Ψ(Φ∗(β̄)) under these circum-
stances, when no coordination is present.

Let us interpret the simulation results displayed in
Figure 2. Observe that the statistic 1 − F̂Ψ(Φ∗(β̄)) is
consistenly larger when the radar network coordinates.
This validates our choice that the null hypothesis H0 (co-
ordination) should be chosen once the statistic surpasses
a threshold. Under H0 (coordination), the statistic begins
to decrease as the noise variance increases. This intuitively
should hold, since as the noise increases the signal struc-
ture imposed by the multi-objective optimization begins to
degenerate. Also observe that the statistic goes to zero as
the noise variance goes to zero. This is somewhat counter-
intutitive, as one might think that in the deterministic
limit (no noise) the detector should always be able to
identify coordination. However, notice that as the noise
variance goes to zero the cumulative distribution function
FΨ(·) will resemble a unit step function, and, by the
simulation, seems to do so faster than the statistic Φ∗(β̄)
converges to zero. It would be interesting to investigate
this phenomenon further.

B. Reconstructing objective Functions
Figure 3 displays the three optimized objective functions

given in (25) in the left column, and the three recon-
structed objective functions U1(·), U2(·), U3(·) given by

U i(·) = min
t∈[T ]

[
ûit + λ̂itα

′
t[· − βit ]

]
(26)

where {ûit, λ̂it, t ∈ [T ], i ∈ [M ]} is taken from P in Algo-
rithm 1. We note again that these reconstructed objective
functions may not exactly rationalize the responses due
to the additive noise, but as can be seen in Fig. 3, the
heuristic (26) succeeds in approximating the true objective
functions. An interesting future line of work is to theo-
retically analyze how well these reconstructed objective
functions approximate the true objective functions, taking
into account the noise statistics.

VI. Conclusion
In this work we present a methodology for detecting

coordination in a cognitive radar network by observing
noisy radar signals. We first present the equivalence be-
tween radar network multi-objective optimization (coor-
dination) and a linear program formulation. This allows
us to develop a statistical detector, with theoretical per-
formance guarantees, for identifying coordination in the
radar network from noisy signals. We present a practi-
cal algorithm for implementing the statistical detector
and reconstructing functions which approximate the true



(a) f1(β) = det(R−1(β)) (b) U1(β)

(c) f2(β) = Tr(R−1(β)) (d) U2(β)

(e) f3(β) =
√
β(1)β(2) (f) U3(β)

Figure 3: f i(β) is the true objective function of the i’th radar,
inducing the responses {β̂i

n}10
n=1. U i(β) is the reconstructed

objective function for radar i, computed using the noisy dataset
β̄ and (26).

objective functions in the multi-objective optimization.
We present numerical simulations which demonstrate the
efficacy of both the statistical detector and the function
reconstruction procedure. We note that while we focus
on the concrete example of a cognitive radar network,
the methodology applies more generally to inverse multi-
objective optimization.
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VII. Appendix
A. Lemma 1
Consider the optimization problem (14). Then

βjt > 0⇒ µj > 0 (27)

Proof. Suppose µj = 0 and let {βit}Mi=1 satisfy

α′t(
M∑
i=1

βit) ≤ p∗

with βjt > 0. Then

α′t(
M∑
i=1

βit) = αt(
∑
i 6=j

βit) + αt(βjt ) ≤ p∗

and
M∑
i=1

µif i(βit) =
M∑

i=1,i6=j
µif i(βit)



and since αt > 0, βjt > 0, ∃ δ > 0 such that

α′t(
M∑

i=1,i6=j
βit) ≤ p∗ − δ

Let

Xj(αt, p∗) := {{βit}i 6=j : αt(
M∑

i=1,i6=j
βit) ≤ p∗}

, and fix some βkt , k 6= j. we have that

βkt ≤ fk
−1

 1
µk

(p∗ − δ −
∑
i6=k

µif i(βit))


Now take

β̄t
k = fk

−1

 1
µk

(p∗ −
∑
i 6=k

µif i(βit))


Then, since fk is monotone increasing, we have

β̄t
k
> βkt , so

M∑
i=1

µif i(βit) <
M∑

i=1,i6=k
µif i(βit) + µkfk(β̄t

k)

and
{βit}Mi=1,i6=k ∪ {β̄t

k} ∈ Xj(αt, p∗)

so

{βit}Mi=1 /∈ arg max
{γi}M

i=1

M∑
i=1

µif i(γi) s.t. α′t(
M∑
i=1

γi ≤ p∗)

and thus by contradiction we have that for any µj , βjt in
(14), we have µj = 0 ⇒ βjt = 0. Note that this directly
implies (27).

B. Proof of Theorem 2
Proof: 1. Suppose H0 holds. By Theorem 1, H0 is equiv-
alent to (16) having a feasible solution. Let (ūit, λ̄it, t ∈
[T ])Mi=1 denote a feasible solution to (16). Then substitut-
ing β̃it = βit − εit, it is apparent that (ūit, λ̄it,Φ = Ψi) is
feasible. So, clearly the minimizing solution of (20) satisfies
Φ̂i(β̄) ≤ Ψi ∀i ∈ [M ].
Now suppose Φ̂i(β̄) ≤ Ψi ∀i ∈ [M ], and let (ūit, λ̄it)

denote a feasible solution to (20). Similarly, this implies
that (16) has a feasible solution, i.e. H0 holds.

Proof: 2. From (23), the probability of Type-I error is

PΦ∗(β̄)(H1|H0) = P(F̄Ψ(Φ∗(β̄)) ≤ γ |
⋂
i

{Φ̂i(β̄) ≤ Ψi})

(28)
First note that⋂

i

{Φ̂i(β̄) ≤ Ψi} ⊆ {Φ∗(β̄) ≤ Ψ}

and thus (28) is equivalent to

PΦ∗(β̄)(H1|H0) =

P(F̄Ψ(Φ∗(β̄)) ≤ γ | {Φ∗(β̄) ≤ Ψ}
⋂{⋂

i

{Φ̂i(β̄) ≤ Ψi}
}

)

Now if Φ∗(β̄) = Ψ, then since F̄Ψ(Ψ) is uniform in [0,1]
we have PΦ∗(β̄)(H1|H0) = γ. If Φ∗(β̄) < Ψ then

F̄Ψ(Φ∗(β̄)) ≥ F̄Ψ(Ψ)
⇒ P(F̄Ψ(Φ∗(β̄)) ≤ γ) ≤ P(F̄Ψ(Ψ) ≤ γ) ≤ γ
⇒ PΦ∗(β̄)(H1|H0) ≤ γ

Proof: 3. Suppose Φ̄i(β̄) > Φ̂i(β̄) ∀i ∈ [M ] ⇒ Φ̄∗(β̄) :=
maxi Φ̄i(β̄) > Φ∗(β̄). Then we have

P(F̄Ψ(Φ̄∗(β̄)) ≤ γ|
⋂
i

{Φ̄i(β̄) ≤ Ψi})

≥ P (F̄Ψ(Φ∗(β̄)) ≤ γ|
⋂
i

{Φ̂i(β̄) ≤ Ψi}

⇒ PΦ̄(β̄)(H1|H0) ≥ PΦ∗(β̄)(H1|H0) ∀Φ̄ ∈ [Φ∗(β̄),Ψ]
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