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Abstract—The superior performance of object detectors is
often established under the condition that the test samples are
in the same distribution as the training data. However, in many
practical applications, out-of-distribution (OOD) instances are
inevitable and usually lead to uncertainty in the results. In
this paper, we propose a novel, intuitive, and scalable prob-
abilistic object detection method for OOD detection. Unlike
other uncertainty-modeling methods that either require huge
computational costs to infer the weight distributions or rely on
model training through synthetic outlier data, our method is
able to distinguish between in-distribution (ID) data and OOD
data via weight parameter sampling from proposed Gaussian
distributions based on pre-trained networks. We demonstrate
that our Bayesian object detector can achieve satisfactory OOD
identification performance by reducing the FPR95 score by up to
8.19% and increasing the AUROC score by up to 13.94% when
trained on BDD100k and VOC datasets as the ID datasets and
evaluated on COCO2017 dataset as the OOD dataset.

Index Terms—Out-of-distribution detection, Uncertainty esti-
mation, object detection, deep learning, image classification

I. INTRODUCTION

Out-of-distribution (OOD) detection is a machine learning

technique that aims to detect test samples drawn from a

distribution that differs from the distribution of the training

data, with the definition of distribution to be well-defined

according to the application in the target. The goal of OOD

detection is to differentiate between inputs that are likely to

be part of the distribution the model was trained on, and

inputs that are not [4]. The vast majority of modern deep

neural networks [5] are deterministic models that provide high-

confidence predictions for inputs that are not seen during

training, leading to poor generalization and unreliable results,

as shown for example in Figure 1. OOD detection is par-

ticularly important for safety-related scenarios. For instance,

an ideal uncertainty-aware deep object detector built for self-

driving cars should be able to recognize the in-distribution (ID)

target, such as people and cars, and produce a low-confidence

prediction for the OOD objects, such as an animal.

Exploring the uncertainties of the deep learning algorithms

can help perform OOD detection [4]. In general, there are

two types of uncertainties: aleatoric uncertainty, due to the

inherent and irreducible uncertainty of the input data, and

epistemic uncertainty due to various deep learning model

(a) Normal predictions on ID data 

(b) Overconfidence predictions on OOD data

(c) Ideal predictions provided by unknown-aware models

OOD OOD
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Figure 1: (a) An example prediction of PASCAL VOC dataset [1]
provided by a standard Faster-RCNN [2] model trained on the same
dataset. (b) The same Faster-RCNN model produces overconfident
predictions on MS-COCO dataset [3], which is an OOD dataset in
this case. (c) The “ideal” predictions provided by the uncertainty-
aware object detection model can recognize OOD data.

frameworks [6]. A Bayesian Neural Networks (BNNs) is a

type of neural network that incorporates Bayesian methods,

such as probability distributions over model parameters, to

represent these two types of uncertainties in the model’s pre-

dictions [7]. BNNs can be implemented for OOD detection by

comparing the uncertainties between the model’s predictions

on a given input and the model’s predictions on a set of known

ID data. If the uncertainty in the input is high, the input is

likely OOD. Also, Bayesian methods can be used to estimate

the likelihood of the data under the model. If this likelihood

is low, the input is more likely to be OOD data. However,

due to the high dimensionality and multi-modality of modern

deep neural networks with millions of weight parameters,

Bayesian approaches have largely been intractable for state-



of-the-art deep learning object detectors [8]. State-of-the-art

deterministic CNNs have achieved huge success on object

detection tasks [9]–[11]. A new inquiry is whether it is possible

to create a Bayesian object detector that can maintain its

outstanding performance on the ID dataset and have the ability

to model uncertainty when it encounters the OOD dataset

concurrently.

In order to address this problem, we propose a novel and

scalable uncertainty-aware Bayesian deep learning method for

OOD object detection. We exploit the information contained in

the deterministic deep neural network layers when the model

is trained in the ID dataset to efficiently approximate the

posterior distribution over the weights. Our Bayesian approach

focuses on performing Bayesian inference by sampling the

predictions from the proposed approximation Gaussian dis-

tributions of neural weights. Our Bayesian inference method

transforms the deterministic deep neural network layers into

probabilistic Bayesian layers with no additional training cost.

It makes it possible to maximize the uncertainty quantification

abilities of BNNs on large computer vision tasks via BNNs.

In particular, our main contributions are:

• In this work, we propose a scalable and flexible approx-

imate Bayesian inference technique for OOD detection

for deep learning object detectors. Our method offers the

ability of uncertainty estimation to distinguish the OOD

data from the ID data while preserving their outstanding

performance on the ID task for large deep learning

models. Our framework provides a flexible uncertainty

estimation approach by choosing different layers trans-

formed into Bayesian layers during the model inference

stage. Different levels of uncertainties can be chosen to

be reserved and estimated.

• Our proposed Bayesian inference technique has been

demonstrated effective on OOD detection tasks by com-

prehensively evaluated on typical OOD detection bench-

marks. We show in Section IV that compared to other

Bayesian methods, our method can reduce the FPR95

score by up to 8.19% and increase the AUROC score by

up to 13.94% on BDD and PASCAL VOC as ID datasets

and COCO2017 as the OOD dataset.

The rest of the paper is organized in the following way.

Section II provides the background of the OOD detection and

Bayesian deep learning methods. In Section III, the proposed

Bayesian inference framework is introduced in detail. IV

shows the comprehensive experimental results and analysis on

OOD benchmarks on both object detection and image classi-

fication tasks. The conclusions are presented in Section V.

II. RELATED WORK

A. Out-of-distribution Detection

The goal of out-of-distribution detection, or OOD detection,

is to identify input data coming out of a different distribution

from the training distribution. OOD detection is an important

technique used to help neural networks determine their capa-

bility boundary [12]. More specifically, given a labeled training

dataset of N data pairs as D = {xn,yn}
N
n=1, where xn is an

input data sample in the domain X , and yn its corresponding

target value in the domain Y . The goal of OOD detection is

to build a detector f that f(x1, ..., xn) = 1, ∀i, p(xi) ≥ δ

and f(x1, ..., xn) = 0, ∀i, p(xi) ≤ δ where δ is the capability

boundary.

OOD detection for classification can be broadly cate-

gorized into two main approaches: generative-based meth-

ods [13]–[16] and reconstruction-based methods [17]–[20]. A

conceptually appealing approach to OOD detection involves

fitting a generative model to a data distribution p(x; θ) and

evaluating the likelihood of unseen samples under this model.

The assumption is that OOD samples will be assigned a lower

likelihood than in-distribution samples and can be identified

using a simple threshold on this value [21]. Some of the state-

of-the-art algorithms are: ensembling [22], ODIN [23], energy

score [24], Mahalanobis distance [25], Gram matrices based

score [26], and GradNorm score [27].

OOD detection for object detection is currently underex-

plored [28]–[30]. Energy-based [24] has been proved with both

mathematical insights and empirical evidence that the energy

score is superior to both a softmax-based score and generative-

based methods for OOD detection. Based on directly predict-

ing the conditional target density of an energy-based model,

a novel framework for OOD detection by adaptively synthe-

sizing virtual outliers that can meaningfully regularize the

model’s decision boundary during training known as VOS [28]

has been proved effective on OOD detection by modeling the

aleatoric uncertainty. As a comparison, our method combines

the uncertainty estimation for the classification and localiza-

tion regression with a novel OOD scoring rule.

B. Bayesian Methods for Probabilistic Object Detection

Different from deterministic neural networks, BNNs aim

to provide a natural interpretation of uncertainty estimation

in deep learning, by inferring distributions over a network’s

weights θ ∈ W based on the training dataset D.

BNNs produce the predictive distribution p(y|x,D) by

integrating over all values of network weights:

p(y|x,D) =

∫

p(y|x, θ)p(θ|D)dθ, (1)

where p(y|x, θ) represents the predicted distribution, and

p(θ|D) represents the weight posterior distribution over the

dataset [31].

BNNs can be used for OOD detection by comparing the

uncertainty of the model’s predictions on a given input to

the uncertainty of the model’s predictions on a set of known

in-distribution data. In order to calculate the approximate

solutions of the posterior distribution, various techniques have

been proposed [32], [32], [33], [33]–[41]. However, due to the

high dimensionality and multi-modality of modern deep neural

networks with millions of weight parameters, the posterior

distribution is intractable for most of the state-of-the-art object

detectors.
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Figure 2: The framework of our proposed Bayesian inference method. The base model is first trained on the ID dataset with

the joint object detection loss (Lreg,Lcls). During the inference stage, we assume the distributions of weight parameters from

the chosen layers as class-conditional Gaussians, and sample the results from the low-likelihood region given by the OOD

data. The uncertainty estimation produced by the Bayesian layers coming out of the backbone, the classification head or

the regression head provides a high uncertainty score S for the OOD data. Combined with the OOD scoring rule with the

uncertainty modelling by the Bayesian layers, the OOD data can be separated from the ID data.

Markov Chain Monte Carlo (MCMC) methods are well-

recognised methods for inference, including those combined

with neural networks, for instance, the Hamiltonian Monte

Carlo (HMC) [32]. However, the biggest disadvantage is

that requiring full gradients makes HMC computationally

intractable for modern neural networks. Later the HMC

framework has been extended into stochastic gradient HMC

(SGHMC) [33], which allows stochastic gradients to be used

in Bayesian inference. As an alternative, stochastic gradient

Langevin dynamics (SGLD) [37] employs first-order Langevin

dynamics in the stochastic gradient process.

Monte-Carlo Dropout aims to reduce the computational

cost for approximating the true posterior distributions [42]. It

is a Bayesian inference method implemented based on the

regularization techniques with Stochastic Gradient Descent

(SGD) during the training stage, which links dropout-based

neural network training to Variational Inference (VI) in BNNs.

This method is later extended [43] by proving that the optimal

dropout rate can be found by treating the dropout probability

as a hyperparameter. During test time, samples from the

approximate posterior distribution are generated by performing

inference multiple times with dropout enabled: p(y|x,D) ≈
1
T

∑T
t=1 p(y|x, θt). However, recent researchers are question-

ing whether MC Dropout is a Bayesian method [44]. The

implementation of MC Dropout fundamentally depends on the

dropout layers being used as the regularization method during

the training stage. Since 2015, Batch Normalization (BN) [45]

has been applied to normalize the activations of a layer in

a neural network by adjusting and scaling the activations

to reduce internal covariate shifts. Due to the problem of

variance shift problem when using BN and Dropout at the

same time [46], BN has been proven as a more effective

normalization method, which leads to Dropout being barely

used in modern deep neural networks. This makes it difficult to

use MC Dropout as a Bayesian inference method in advanced

deep-learning models.

Direct Modeling Methods refer to those methods which

assume certain probability distributions over the weight pa-

rameters in the neural networks, and then directly predict

parameters for such distributions through output layers [31].

Some methods aim at modifying the network’s output layers

and the loss function to model the uncertainty through a single

forward pass. A softmax function with a Gaussian distribution

is used to replace the standard softmax function with the

cross-entropy loss [6] for classification uncertainty quantifi-

cation. For object detection tasks, some methods focused on

modeling the uncertainty coming out of the bounding box

regression [47], [48]. Furthermore, several works propose to

estimate higher-order conjugate priors in addition to directly

predicting the output probability distributions [49]. Stochastic

Gradient Descent (SGD) Based Approximations [50] use the

iterates of averaged SGD as an MCMC sampler. Stochastic

Weight Average Gaussian (SWAG) [40] for Bayesian model

averaging and uncertainty estimation proves that the posterior

distribution over neural network parameters is close to Gaus-

sian in the subspace spanned by the trajectory of SGD.

III. METHOD

Our proposed Bayesian object detection inference frame-

work is illustrated in Figure 2. One significant advantage of

our method is that we can select which layers of the model

to sample. Different levels of uncertainties can be represented



by choosing the different numbers of Bayesian layers. The

experimental results of choosing different layers to perform

OOD detection are shown in section IV.

A. Bayesian Neural Networks for Object Detection

Followed by the definition of the data in section II, the

goal of OOD detection for object detection is to provide

predictions based on the training data D = {xi,bi,yi}
N
i=1,

where x ∈ X denotes the input image, b ∈ R
4 represents the

bounding box coordinates associated with object instances in

the image, and y ∈ Y is semantic labels to its corresponding

target for K classes classification. In stead of forming the

parameters through maximum a-posterior (MAP) optimization

θ̂MAP = argmaxθp(θ|D), BNNs aim to produce the pre-

dictive classification distribution pθ(ŷ|x̂) and the bounding

box regression distribution pθ(b̂|ŷ, x̂) through a Monte Carlo

sampling procedure: p(ŷ|D, x̂) ≈ 1
T

∑T
t=1 p(ŷ|θl, x̂) , θl ∼

p(θ|D), where the ŷ denotes the output predictions of the test

input data x̂, and b̂.

While the straightforward idea is to infer the posterior

distribution p(y|x, θ) based on the training dataset D during

the training stage. Variational Inference (VI) implies fitting a

Gaussian variational posterior approximation over the weights

of neural networks, and then approximating the prior distri-

bution through Kullback–Leibler (KL) divergence [35]. VI

is later generalized through the reparameterization trick for

DNNs [34], [51]. Same as other Bayesian approximation

methods introduced in Section II, VI methods are empirically

hard to be deployed on deep neural networks with numerous

parameters.

B. Weights Sampling from the Bayesian Layers

Instead of training to approximate the posterior distribution

p(y|x, θ), our key idea is that, given a pre-trained model, we

assume the uncertainty representation of the weight parameters

of different Bayesian layers from class-conditional multivariate

Gaussian distributions:

p(θl|x,y) = N (θ;µθ,Σ) (2)

where µθ is the Gaussian mean, Σ is the related covariance

matrix, and θl is weight parameters corresponding to different

layers in the neural networks. The ability to model epistemic

uncertainty can be achieved by sampling the weights from the

proposed prior distribution.

To formulate the parameters of the proposed class-

conditional Gaussian distributions, we propose that the sample

class means µ̂θ are chosen as the values of the weight pa-

rameters θpre from the pre-trained models. The true posterior

weight distribution p(θ|D, ω), following data assimilation D,

is proportional to the product of the prior weight distribution

p(θ|ω) and the likelihood p(D|θ). Instead of approximation

methods such as MCMC [52], a particular weight prior is

chosen corresponding to the weight decay ω. Typically, weight

decay is used to regularize DNNs, corresponding to explicit L2

regularization during the SGD [53] training process without

momentum. When SGD is used with momentum, implicit

regularization still exists, producing a vague prior on the

weights of the deep neural network. This regularizer can be

given an explicit Gaussian-like form [54], corresponding to a

prior distribution on the weights.

Furthermore, we are sampling the weights θl from the ϵ-

likelihood region of the estimated class-conditional distribu-

tion:

θl ∼
1

(2π)m/2|Σ̂|1/2
e(−

1

2
(θl−µ̂θ)

⊤
Σ̂

−1(θl−µ̂θ)) < ϵ (3)

where θ̂l ∼ N (µ̂θ, Σ̂) denotes the proposed posterior distri-

bution for layer l, which are in the sub-level set based on the

likelihood. The hyperparameter ϵ is chosen to be sufficiently

small as the sampled weight parameters will not be too far

away from the original value causing the potential decrease of

the performance of the model.

C. OOD Scoring Rule

An appropriate scoring rule S(pθ(x,b)) is required to

distinguish the OOD from the ID data. Scoring rules can

be further divided into local and non-local rules [55]. As

a local scoring rule, the negative Log Likelihood (NLL)

function [56] evaluates a predictive distribution based on

its value only at the true target. NLL measure the quality

of predicted probability distributions of a test dataset by:

NLL = − 1
Ntest

∑Ntest

n=1 log p(yn|xn,D), where xn is a test

data point, and yn its corresponding ground truth label. NLL

ranges in (−∞,+∞), with a lower NLL score indicating a

better fitting predictive distribution for that specific ground

truth label. However, NLL has its limitation in learning

and evaluating bounding box predictive distributions. Energy

Score [57] is a proper and non-local scoring rule as an

alternative for learning and evaluating multivariate Gaussian

predictive distributions. Energy score uses a non-probabilistic

energy function to attribute lower values to in-distribution data

and higher values to out-of-distribution data. Energy score

has been proven efficient compared to the standard softmax

score for OOD detection on both image classification and

object detection tasks [24], [28]. For object detection tasks,

the object-level energy score function [58] can be defined as

E(x,b; θ) = −T log

K
∑

k=1

exp(fk((x,b); θ)) (4)

where the fk((x,b);θ) is the logit output for class k in the

classification head. T represents the temperature parameter of

the Gibbs distribution [24]. In this case, it is set as a constant

hyperparameter.

During inference, given a test input x̂, the object detector

produces a bounding box prediction b̂ through the Bayesian

model consists of sampled parameters θl. The OOD uncer-

tainty score for the predicted object (x∗, b∗) is given by:

S(pθ(x̂), b̂) =
exp(−ϕ(E(x̂, b̂; θl)))

1 + exp(−ϕ(E(x̂, b̂; θl)))
. (5)



ID: Berkeley DeepDrive-100k ID: PASCAL-VOC

Method FPR95↓ AUROC↑ mAP(ID) FPR95↓ AUROC↑ mAP(ID)

Faster-RCNN (Baseline) [2] 82.34 51.39 31.2 70.99 58.37 48.7
MC Dropout [42] 78.64 53.12 31.1 72.19 57.14 48.7
SWAG [40] 68.75 57.41 31.2 65.14 62.45 48.7
BayesOD [47] 72.64 55.84 32.4 60.16 64.62 48.9

Energy score [24] 60.06 77.48 31.2 56.89 83.69 48.7
VOS [28] 44.27 86.87 31.3 47.53 88.7 48.9

Faster-RCNN with Bayesian Layers 73.42±2.31 56.42±1.25 31.2 66.15±2.15 68.63±2.45 48.7
BayesOD with Bayesian Layers 64.15±1.69 59.26±0.93 32.4 58.14±2.31 72.12±1.63 48.9

Energy Score with Bayesian Layers 56.42±2.08 82.13±1.18 31.2 54.8±1.25 83.99±0.81 48.7
VOS with Bayesian Layers 43.45±2.21 87.25±1.08 31.3 46.55±1.11 88.75±0.60 48.9

Table I: Main results of the comparison between the proposed method and competitive out-of-distribution detection methods. All methods
are implemented based on Faster-RCNN with ResNet-50 as the backbone, and then evaluated on COCO2017 as the OOD dataset. ↑ indicates
larger values are better and ↓ indicates smaller values are better. All values are percentages. Bold numbers are superior results. We report
standard deviations estimated across 5 runs.

ϕ(·) can be a trainable nonlinear function that allows flexible

energy surface learning. In this case, ϕ(·) is set to be a

hyperparameter for inference only.

For OOD detection, ID and OOD objects are distinguished

through the following equation:

G(x̂, b̂) =

{

1 if S(pθ(x̂), b̂) ≥ γ,

0 if S(pθ(x̂), b̂) < γ.
(6)

where G(x̂, b̂) = 1 implies that the current object is ID,

and G(x̂, b̂) = 0 means the OOD data. The threshold γ is

typically chosen so that a high fraction of ID data (e.g., 95%)

is correctly classified.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our

proposed Bayesian inference method on a wide range of

OOD benchmarks with different base models for both object

detection and image classification tasks, respectively in Sec-

tion IV-A and in Section IV-B. The visualization results are

shown in Figure 3.

A. Evaluation on Object Detection

a) Experimental Setup: To evaluate our method, we

use PASCAL VOC1 [1] and Berkeley DeepDrive 100K

(BDD-100k2) [59] datasets as the ID training data,

MS-COCO [3] as the OOD data. PASCAL VOC 2007

and PASCAL VOC 2012 containing 21493 images for

train/validation/test data are used. BDD-100k contains

70,000/10,000/20,000 images for train/val/test with 1.8M ob-

jects. COCO2017 includes 123,287 images and 886,284 in-

stances.

The models are implemented based on the Detectron2

library [60]. Faster-RCNN with ResNet-50 backbone [61] is

used as the base framework for object detection. We choose

sample numbers of 1000 for each single test run. The Bayesian

layers Wl are chosen to be the 2D Convolutional layers

in the main results listed in Table I. Faster R-CNN model

with a ResNet-50 backbone has a total of 52 Conv2D layers

including 49 Conv2D layers from the ResNet-50 backbone

and 3 Conv2D layers from the RPN and detection head. The

impact of selecting different layers to be Bayesian is discussed

in Section IV-A0d.

b) Evaluation Metrics: Two evaluation metrics are used

to evaluate the performance of proposed models on OOD

detection, which are: (1)FPR95, the false positive rate of

OOD samples when the true positive rate of ID samples

is at 95%; (2)AUROC, computes Area Under the Receiver

Operating Characteristic Curve. In addition, mean average

precision (mAP) is reported to represent the performance on

the ID task.

c) Bayesian Layers are Effective on OOD Detection:

Table I shows that in comparison to different pre-trained base

models, algorithms with Bayesian layers can provide varying

degrees of performance enhancement. Our proposed method

is compared with several baselines introduced in Section II,

including Faster-RCNN (Baseline) [2], MC Dropout [42],

SWAG [40], BayesOD [47], Energy score [24], and VOS [28].

Several popular Bayesian deep learning methods often used

as benchmarks are included, as well as outperforming OOD

detection algorithms as comparisons to prove the efficiency

of inference with Bayesian layers on OOD detection. The

comparison precisely highlights the benefits of incorporat-

ing Bayesian layers for OOD inference. The experimental

results show that all baselines inferred by Bayesian layers

have increased OOD detection performance. Results shown in

Table III are produced based on the convolutional layers from

the backbone and the detection head chosen to be transformed

into Bayesian layers.

Compared to each base model, inference with Bayesian

layers increases the performance for both experiments with

two ID datasets. Some baselines rely on a classification

model trained primarily for the ID classification task. Due

to the existence of a classification head, these methods can

be naturally extended to the object detection model. MC

Dropout and SWAG are similar Bayesian methods to our

method which is also scalable to deep learning models and

1PASCAL-VOC consists of the following ID labels: Person, Car, Bicycle,
Boat, Bus, Motorbike, Train, Airplane, Chair, Bottle, Dining Table, Potted
Plant, TV, Sofa, Bird, Cat, Cow, Dog, Horse, Sheep.

2BDD-100k consists of ID labels: Pedestrian, Rider, Car, Truck, Bus, Train,
Motorcycle, Bicycle, Traffic light, Traffic sign.



Figure 3: The visualization results of OOD detection. Images are taken from COCO2017. The first row of visualization results is

provided by a vanilla Faster-RCNN. The bottom row of visualization results is produced when inference with Bayesian Layers.

Models are trained on PASCAL-VOC and evaluated on COCO. Detected objects with blue bounding boxes are classified as

one of the ID classes, while objects detected in green bounding boxes indicate that they are recognized as OOD objects.

Inference Layer Selection FPR95↓ / AUROC↑

Deterministic Faster-RCNN (Baseline) 82.34 / 51.39

Conv2D layers (Backbone) as Bayesian Layers 73.73 / 56.14

Linear layers (Backbone) as Bayesian Layers 75.25 / 54.73

Conv2D layers (Backbone+head) as Bayesian Layers 73.42 / 56.42

Linear layers (Backbone+head) as Bayesian Layers 75.82 / 54.12

Full layers as Bayesian Layers 74.12 / 55.73

Table II: FPR and AUROC results of different inference Bayesian
layers selections. BDD 100k is the ID training data, COCO is the
OOD data.

focus on the posterior distribution approximation during the

inference stage. Compared to MC Dropout, inference with

Bayesian Layers on Faster-RCNN improved the FPR95 scores

by 7.53% on BDD-100k and 8.19% on Pascal VOC, and

AUROC scores by 4.55% on BDD-100k and 13.94% on Pascal

VOC. Moreover, our method preserves the high accuracy on

the original in-distribution task (measured by mAP) as long

as choosing the appropriate baseline.

Most existing OOD detection methods focus on modeling

a single type of uncertainty. The epistemic uncertainty comes

from the classification branch modeling the classifier or the

regression branch modeling the bounding box regression.

Other methods, such as VOS, rely on synthesis data outliers

to measure the aleatoric uncertainty. Inference with Bayesian

layers makes it possible to quantify the uncertainties from the

classification head and the regression head at the same time

by choosing to transform Bayesian Layers from backbone and

detection heads together. This provides a theoretical expla-

nation of the performance improvement of Bayesian layers

being applied to all baselines. Inference with Bayesian layers

offers a tool to model the epistemic uncertainty coming out of

every corner of the network architecture. Combined with the

aleatoric uncertainties modeling allows further performance

improvement for OOD detection.

d) Impact of Bayesian Layers Selection: To further inves-

tigate the impact of choosing different layers to be transformed

into Bayesian layers during the Bayesian inference, we test five

different architectures on COCO as the OOD dataset when

trained on BDD-100k as ID data. Table II shows the mean

FPR95 and AUROC results of 3 runs. Specifically, we consider

two types of neural network layers: (i) Convolutional Layer:

As the primary building block of a CNN. The convolutional

layer computes the convolutional operation of the input im-

ages using kernel filters to extract fundamental features. The

model captures epistemic uncertainties when meeting the OOD

data by replacing deterministic weight parameters with the

proposed Gaussian distributions. (ii) Linear Layer: A linear

layer, also known as a fully connected layer. It is capable of

learning an average rate of correlation between the output and

the input without a bias. Linear layers are frequently modified

by Bayesian methods since they contain limited parameters

leading to less training and computational inference cost.

B. Evaluation on Image Classification

We demonstrate that Bayesian Layers are also effective

at common image classification benchmarks beyond object

detection. In this case, CIFAR-10 [62] with standard train/val

splits is used as the ID training data. WideResNet-40 [63]

is chosen to be the base neural network architecture. For

image classification, the cross-entropy loss is used as the

training objective. All models are evaluated on six OOD

datasets:Textures [64], SVHN [65], Places365 [66],

LSUN-C [67], LSUN-Resize [67], and iSUN [68]. The

comparisons are shown in Table III, with results averaged

over six test datasets. We demonstrate that inferencing with

Bayesian layers for OOD detection has different levels of per-

formance improvement compared to each benchmark, without

sacrificing the ID test classification accuracy (94.84% on pre-

trained WideResNet) and extra training requirement.



FPR95 AUROCBase model

Dtest
in

Method
↓ ↑

WideResNet (Baseline) 51.04 90.90
Bayesian Neural Networks 53.04 92.45
MC dropout 54.32 88.90
SWAG 38.25 92.91
Energy score 33.01 91.88
Vitual Outliers 24.87 94.06
Baseline + Bayesian Layers (Ours) 48.25 ± 0.91 92.27 ± 2.24

Energy Score + Bayesian Layers (Ours) 32.33 ± 0.46 93.52 ± 1.82

WideResNet

CIFAR-10

VOS + Bayesian Layers (Ours) 23.68 ± 0.52 94.36 ± 0.93

Table III: OOD detection results of the proposed Bayesian methods on image classification. All models listed are built based on the
WideResNet-40 architecture. All models are first trained on CIFAR-10 dataset and then evaluated on several OOD datasets. The mean PR95
and AUROC results are given.

V. CONCLUSION

In this work, we propose a novel and scalable Bayesian deep

learning inference framework for OOD detection. Transform-

ing the deterministic deep neural layers into Bayesian layers

by replacing the weights parameters trained by point estimates

with assumed Gaussian distributions is able to provide the

uncertainty estimation during the inference stage. We show

that inference with superficial Bayesian layers can improve

the performance of various benchmarks for OOD detection.

Unlike other Bayesian deep learning methods, our proposed

method does not require extra training, making it scalable for

modern advanced deep-learning-based object detectors. For

future work, we would like to explore the impact on different

assumed distributions for Bayesian layers and the uncertainty

quantification method for Bayesian layers. In addition, our

approach can be valuable to other machine learning tasks

than object detection or image classification. We hope future

research will increase attention toward a broader view of OOD

uncertainty estimation from a Bayesian layers perspective.

Acknowledgements We are grateful to the UK EPSRC

Council via the project EP/V026747/1 (Trustworthy Au-

tonomous Systems Node in Resilience. We are also grate-

ful to the UK EPSRC for funding this work through the

EP/T013265/1 project NSF-EPSRC: “ShiRAS. Towards Safe

and Reliable Autonomy in Sensor Driven” and the support

for ShiRAS by the National Science Foundation under Grant

USA NSF ECCS 1903466. For the purpose of open access,

the authors have applied a Creative Commons Attribution

(CC BY) licence to any Author Accepted Manuscript version

arising.

REFERENCES

[1] M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,”
International Journal of Computer Vision, vol. 88, no. 2, pp. 303–338,
2010.

[2] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-
time object detection with region proposal networks,” IEEE Transactions

Pattern Analysis and Machine Intelligence., vol. 39, no. 6, pp. 1137–
1149, 2017.

[3] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in Proceedings of Eur. Conf. Computer Vision, 2014.

[4] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution
detection: A survey,” arXiv preprint arXiv:2110.11334, 2021.

[5] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[6] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?” in Proceedings of Advances in Neural

Information Processing Systems, 2017.

[7] R. M. Neal, “Bayesian learning for neural networks,” Ph.D. dissertation,
University of Toronto, 1995.

[8] R. Li, C. Zhang, H. Zhou, C. Shi, and Y. Luo, “Out-of-distribution
identification: Let detector tell which I am not sure,” in Computer Vision

– Proceedings of ECCV 2022, S. Avidan, G. Brostow, M. Cissé, G. M.
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