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Abstract—We consider the problem of collaborative bearing
estimation using a method with historic roots in set theoretic
estimation techniques. We refer to this method as the Convex
Combination Ellipsoid (CCE) method and show that it provides
a less conservative covariance estimate than the well known
Covariance Intersection (CI) method. The CCE method does not
introduce additional uncertainty that was not already present
in the prior estimates. Using our proposed approach for col-
laborative bearing estimation, the nonlinearity of the bearing
measurement is captured as an uncertainty ellipsoid thereby
avoiding the need for linearization or approximation via sampling
procedures. Simulations are undertaken to evaluate the relative
performance of the collaborative bearing estimation solution
using the proposed (CCE) and typical (CI) methods.

Index Terms—Fusion, Covariance Intersection, Uncertainty
Sets, Bearing Estimation
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I. INTRODUCTION

In this work we revisit the concept of distributed fusion
in the context of collaborative networked bearing estimation.
Consider a network of estimators each independently esti-
mating the position of a target using information from their
onboard bearing sensor and information communicated by
their peer nodes in the same network. While the first source
of information is assumed to have independent uncertainty,
the same cannot be assumed for the second source since
information communicated to a given node by a peer node in
the present can (and usually will) depend on information that
the given node communicated to the peer node in the past,
possibly indirectly via a longer communication path in the
network. This situation breaks the underlying independence
assumption that most fusion algorithms build upon. Neverthe-
less, networked estimation is appealing as sharing processed
peer information can potentially improve the estimate of
each node beyond the information available from their local
interactions with the environment. This is particularly true
in bearing estimation where persistency of excitation from
sufficiently diverse bearing directions is necessary for accurate
estimation [1].

Collaborative networked estimation algorithms have been
studied from both top down and bottom up perspectives. Top
down approaches start with formulating a joint estimation
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problem for the entire network followed by decentralisation
of the joint estimation algorithm. Often the algorithm can
be fully distributed via tightly coordinated communications
and assumptions on the network connectivity and reliability.
For examples and more details on the top down approach
see the discussions in [2]–[5]. In contrast, the bottom up
approach places less stringent requirements on the network.
Bottom up algorithms typically allow for a more opportunistic
approach to information sharing that is largely independent of
the underlying network topology. However, in order to realise
the full potential of this approach we need to address the
problem of correlated data when fusing one or more pieces of
data over a network, where cross correlations are not tracked
as in the top down approaches.

Algorithms that provide safe fusion in the face of correlated
data have been discussed in the literature since at least the
1960s, see for instance [6]–[14]. The proposed solutions are
roughly all based on the following principle. If the cross-
correlation of information pieces being fused is not known,
the fusion process should guarantee to retain the common
uncertainty of the original pieces. This way, the fusion cannot
result in overconfident estimates across the network. It is
generally accepted that optimality of such fusion will be sac-
rificed for the practicality of the loosely networked approach
when compared to the top down methods. The reader is
encouraged to consult a more recent paper [12] for a summary
of these classical results and original contributions in terms of
explaining the results and offering computationally efficient
algorithms to obtain tight and safe fusion.

Our contribution in this paper is twofold. First, we show
that the literature on Covariance Intersection (CI), see e.g. [13],
[15]–[20], including the part of this literature that mentions the
connection of CI with the set theoretic (or set membership)
results, see e.g. [21], [22], appears to have mostly overlooked
a key aspect of the results in the set theoretic estimation
literature. CI and most of the subsequent algorithms in the
fusion literature produce an ellipsoidal uncertainty set that is
guaranteed to contain the intersection of two uncertainty sets
being fused. Furthermore, they offer ways of finding such a
set that is minimal either in the determinant or trace over all
candidate sets considered by the particular method, a property
sometimes referred to as tightness. However, most such meth-
ods (including CI) produce more conservative estimates than
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the set-theoretic method [6], [12], [23] and, more importantly,
do not guarantee that the uncertainty set resulting from the
fusion does not introduce any uncertainty not contained in
either of the two original sets. We provide a comparison of
the uncertainty sets after fusion and also highlight the lack
of similar properties for CI [13] and the more recent Inverse
Covariance Intersection (ICI) method [19] with a numerical
counter example.

Our second contribution applies the set-theoretic fusion
technique to the problem of collaborative bearing estimation.
We first introduce a bearing measurement ellipse that models
the non-linearity of bearing measurements without requiring
linearization or sampling. We show how a Kalman fusion
algorithm can be applied to a sequence of such measurements
to recursively provide an estimate for the position of the
target. The proposed estimation method, while very simple,
is very robust to numerical issues and has low computational
complexity. We then show how collaborative (and hence
potentially correlated) estimates communicated by peer nodes
in a network can be incorporated using the set theoretic fusion
technique. Lastly we provide a simulation study to highlight
the findings of our analysis and to validate our collaborative
bearing estimation technique.

II. NOTATION

A positive semi-definite (definite) matrix X ∈ Rn×n is
represented as X ≥ 0 (X > 0). The weighted Euclidean norm
of a vector x ∈ Rn is denoted by ‖x‖X , X > 0.

‖x‖X ,
√
x>Xx.

We use the shorthand notation ‖x‖ := ‖x‖I for the (un-
weighted) Euclidean norm. An ellipsoid E in Rn with center
point c ∈ Rn and shape matrix P ∈ Rn×n, P > 0, is defined
as

E(c, P ) , {x ∈ Rn : ‖x− c‖2P−1 ≤ 1}.

III. REVIEW OF FUSION ALGORITHMS

In this section we provide an overview of the so-called
Kalman fusion method, the Covariance Intersection (CI)
method [13], and what we term Convex Combination Ellipsoid
(CCE) method from the set-theoretic estimation literature [6],
[12]. We will show that when we fuse correlated data, as
is commonly the case in networked estimation problems,
the Kalman fusion method can lead to overconfidence and
ultimately large estimation errors (this last point is illus-
trated in Section V). CI and the CCE method both avoid
the overconfidence problem with CCE shown to yield less
conservative covariance estimates than CI. Moreover, we will
stress a key property of CCE that seems to have largely been
overlooked in the literature, namely that the CCE ellipsoidal
estimate is contained within the union of the prior ellipsoidal
estimates, potentially explaining the superior performance in
our application (cf. Section V).

A. Kalman Fusion and the Overconfidence Problem

The Kalman fusion method can be derived from many
different approaches including Bayesian, Fisher and least
squares discrete estimation [23]. Assume that we are given
a pair of unbiased estimates (x̂i, P̂i) and (x̂j , P̂j) for an
unknown signal of interest x ∈ Rn, where x̂i, x̂j ∈ Rn
denote the point estimates and P̂i, P̂j > 0 denote the estimated
covariances for their estimation errors. Assuming that these
two estimates are independent it can be shown, via any of
the aforementioned approaches, that the following so called
Kalman fusion method provides a fused estimate (x̂+, P̂+)
that is optimal with respect to many criteria [24], including the
weighted least squares error, minimum covariance estimation
error, maximum-likelihood estimation or minimum volume
uncertainty ellipsoid.

P̂+ = (P̂−1i + P̂−1j )−1,

x̂+ = P̂+(P̂−1i x̂i + P̂−1j x̂j).
(1)

Here x̂+ denotes the updated point estimate and P̂+ denotes
the updated estimation error covariance estimate after fusion. It
can be checked that the resulting estimated covariance matrix
P̂+ is not larger than the two prior estimated covariances P̂i
and P̂j due to the parallel summation in the first equation.

Recall that it was crucially assumed that the two prior
estimates x̂i and x̂j are independent. If this is not the case, as
in many networked estimation problems where nodes freely
pass information back and forth, not only is this formula
no longer optimal but it can prematurely result in a small
estimated covariance which will hinder the fusion algorithm’s
ability to correct the point estimate upon receiving any further
information. This can be seen in the second equation where
the covariance weighted summation of the two prior point
estimates is multiplied by the fusion covariance, and hence
if one of the prior estimates is overconfident, it will dominate
the point estimate of the fusion subsequently. This is referred
to as the over-confidence problem in the fusion literature.

B. Covariance Intersection (CI)

The Covariance Intersection (CI) method [13], [16] provides
a fused estimate that avoids the over-confidence problem.
Specifically, if each prior estimate is conservative in the sense
of P̂i ≥ Pi, where Pi is the unknown actual covariance
of the estimation error x̂i − x, (and similar for j) then CI
results in an estimate that is also conservative2 in the sense of
P̂+ ≥ P+, where P+ is now the unknown actual covariance
of the estimation error x̂+ − x [13].

The authors in [13] make the observation that given any
known correlation between the two prior estimates, the optimal
fusion estimate always has its covariance ellipsoid (i.e. the
uncertainty ellipsoid around the origin with covariance as the
shape matrix) contained in the intersection of the covariance
ellipsoids of the prior estimates. Motivated by this, they pro-
pose the CI method which, by restricting itself to a family of

2This property is often referred to as consistent rather than conservative. We
avoid the consistent terminology since it can be confused with the classical
notion of consistency in stochastic estimation [25].
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convex combinations of inverse covariance matrices, provides
a fusion estimate with its covariance ellipsoid guaranteed to
contain the intersection of the two prior covariance ellipsoids
(regardless of the actual value of the unknown correlation
between the two estimates).

P̂+ = (αP̂−1i + (1− α)P̂−1j )−1,

x̂+ = P̂+(αP̂−1i x̂i + (1− α)P̂−1j x̂j).
(2)

Here, α ∈ [0, 1] is a free parameter.

C. Convex Combination Ellipsoid (CCE) Fusion

An alternative solution for the overconfidence problem is
well explained using the notion of uncertainty sets. In this
view, an estimator provides an uncertainty set that contains the
true signal with certainty or with high probability. Typically,
ellipsoids are chosen to represent these sets since they can be
simply parametrized in terms of their center and shape matrix,
are amenable to matrix calculus, and sufficiently capture
the nonlinear nature of complex sets. There are no further
assumptions made regarding the distribution of uncertainty
inside or outside the uncertainty set in this approach. If we
have two or more such uncertainty sets, a fusion uncertainty
set is regarded as consistent with these prior estimates if it
contains the intersection of the prior uncertainty sets. The
exact intersection of prior uncertainty sets (even if they are
ellipsoids) is in general difficult to parametrize. Therefore,
the tightest (e.g. in the sense of determinant of the shape
matrix) ellipsoid that contains the intersection of the prior
ellipsoids is taken as the solution. A particular family of
sub-optimal solutions to this problem has been known since
at least the 1960s [6], [7], [12], [23], namely the family
of convex combinations of the prior uncertainty sets. This
family of solutions not only guarantees tight bounding of
the intersection but most importantly also ensures that no
uncertainty is introduced that was not already present in the
prior uncertainty sets [12]. While this method is similar in
structure to CI, we will show that it has a number of key
features which make it an excellent candidate for collaborative
bearing estimation.

In this approach, node i has an estimate for the unknown
signal x parameterised as an ellipsoidal set Ei(x̂i, P̂i) = {x :
‖x − x̂i‖2P̂−1

i

≤ 1} where x̂i denotes the center and P̂i ≥ 0

denotes the shape matrix (and similar for node j). A stochastic
interpretation of this estimate is that the unknown signal x
lies in the 1-sub-level set of the function x 7→ ‖x − x̂i‖2P̂−1

i

with high probability. Apart from this assertion there is no
need to add further assumptions as to how the probability is
distributed within or outside of this set. Nevertheless, if we do
have a Gaussian interpretation of the errors we can still use
this set-theoretic notion as is.

Based on the work presented in [6], [12], [23], given
two prior ellipsoids whose intersection has nonempty interior,
any convex combination of these sets is itself an ellipsoid
Eα(x̂+, P̂+) given by the following set of equations. We refer

to this method as the Convex Combination Ellipsoid (CCE)
fusion method.

Eα(x̂+, P̂+) =

{x : α‖x− x̂i‖2P̂−1
i

+ (1− α)‖x− x̂j‖2P̂−1
j

≤ 1}. (3)

Following some algebra and completing the squares it can
be shown that the center and the shape matrix of Eα are as
follows.

P̂+ = kX, X = (αP−1i + (1− α)P−1j )−1

k = 1− d2, d2 = ‖x̂j − x̂i‖2
(
P̂i
α +

P̂j
1−α )−1

,

x̂+ = X(αP̂−1i x̂i + (1− α)P̂−1j x̂j).

(4)

Note that k is always positive if the two prior ellipsoids have
an intersection with nonempty interior and also k ≤ 1 since
clearly d2 ≥ 0.

D. Comparison between CI and CCE

Note that if we fix a value for α, both CI (2) and CCE (4)
yield the same point estimate x̂+. The resulting covariance
estimate P̂+ of the CI algorithm however is more conservative
than that of the CCE algorithm whenever k < 1, i.e. whenever
x̂i 6= x̂j .

More importantly, one can show the following properties
for CCE [12]:
• The ellipsoid Eα contains the intersection of the two prior

ellipsoids, Ei ∩ Ej ⊆ Eα.
• The intersection of the boundaries of Ei and Ej is on the

boundary of Eα.
• The ellipsoid Eα is contained in the union of the two

prior ellipsoids, Eα ⊆ Ei ∪ Ej .
As the authors in [12] point out, the first two properties

ensure tight bounding of the intersection and the third property
ensures that no additional uncertainty is introduced that was
not already present in the prior uncertainty sets. This last
property can play a key role in many applications and seems to
have been largely overlooked, even in papers where the CCE
method has been mentioned in comparison to CI, e.g. in [21],
[22].

In both the CI and CCE algorithms one can choose the
optimal solution in their respective families of solutions that
are parametrized by α, for example such that the resulting
covariance estimate is minimal in trace or determinant. The
latter criterion is proportional to the volume of the covariance
ellipsoid while the former equals the sum of squared eigenval-
ues of the covariance estimate. These optimisation problems
have been shown to be convex scalar problems [12, Lemma 2]
that can either be solved with off-the-shelf solvers, with simple
line search or various other heuristics. Optimising α for the
CCE algorithm will incur slightly more computation than for
CI, but even in the case of CCE it was shown in [12] that
one can reduce the problem to solving a polynomial equation.
More precisely, α∗ for CCE can be found as the only root
in (0, 1) of a polynomial of degree 2n − 1. The algorithm
is efficient, requires no matrix inversion and is numerically
robust.
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Fig. 1. A counterexample where (optimal) CI [13], [16] and (optimal)
ICI [19] violate some of the CCE properties discussed in Section III-D. This
in particular also shows that the covariance ellipsoid produced by ICI, while
having a smaller determinant compared to CI, does not always contain the
full intersection of the prior ellipsoids.

We provide an example in Figure 1 where it can be
seen that the second and third property are not generally
guaranteed for CI (the first property holds for CI), not even
in the optimal determinant case. For the Inverse Covariance
Intersection method [19], a more recent development in the
fusion literature, none of the three properties can be guaranteed
as the same example shows, again not even in the optimal
determinant case.

IV. PROBLEM FORMULATION AND SOLUTION APPROACH

Consider the problem of estimating a target position p ∈
Rn collaboratively using m agents located at xi ∈ Rn, i =
1, . . . ,m. In order to simplify the exposition we will consider
n = m = 2 but the results we present can easily be extended
to higher dimensional state spaces and more agents.

Let us assume agent i, using local measurements and
information from its neighbour j, calculates x̂i ∈ Rn as a
point estimate for the target position pi, and P̂i ∈ Rn×n as
the estimate of its estimation error covariance Pi ∈ Rn×n.

An outline of our proposed approach is provided in Algo-
rithm 1, and the following subsections detail the key steps.

A. Measurement Model

Each agent is equipped with a bearing sensor producing
bearing angle measurements θi in S1.

θi = arctan
p− xi
‖p− xi‖

+ δi, (5)

where δi ∈ S1 is an unknown measurement error with the
assumption that δi ∼ N (0, σ2

i ) with σi a known standard
deviation.

Equation (5) is nonlinear in p and will either need lin-
earization for the Kalman filter to be applicable or can be
treated using a nonlinear filtering approach. Here, we employ
an ellipsoidal measurement modelling approach instead.

Assume further that we know a minimum and maximum
range,

¯
ri and r̄i respectively, within which our bearing sensor

is designed to operate. Then, we can calculate a measurement
ellipse Emi (cmi, Pmi) with center cmi and covariance matrix
Pmi for the 2D case, n = 2. A similar approach can be
extended to 3D as well but for simplicity of exposition we
keep to 2D.

cmi = xi +
(
¯
ri + r̄i

2

) [cos θi
sin θi

]
Pmi = RDR>,

(6)

where

wri =
r̄i −

¯
ri

2
, hri =

(
¯
ri + r̄i

2

)
tanσi,

Ri =

[
cos θi − sin θi
sin θi cos θi

]
, D =

[
wr2i 0

0 hr2i

]
.

(7)

These equations are geometrically represented in Figure 2.
This model captures the fact that a bearing sensor provides
little depth information and hence the measurement ellipse
will be stretched longer in the direction towards the target
compared to the perpendicular direction.

Fig. 2. The measurement ellipse for the sensor of agent i located at xi
measuring a noisy bearing angle θi towards a target located at p. It is assumed
that the sensor has a measurement range in [ri, r̄i] and a bearing standard
deviation error of σi.

B. Estimation and Fusion

We seek to solve the following problem. Each node i
calculates an estimate x̂i(t) for the unknown position of the
target p(t), and P̂i(t) for the covariance matrix characterising
the uncertainty of the estimation error.

A recursive solution is sought such that at each time step
t the estimate (x̂i(t), P̂i(t)) is calculated based only on the
previously calculated estimate (x̂i(t − 1), P̂i(t − 1)) and the
new measurements or communications received at time t.
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Algorithm 1 Collaborative Bearing Estimation

Require: initial guess (x̂i, P̂i), P̂i > 0.
Require: sensor parameters

¯
ri, r̄i and σi.

while estimating target do
Broadcast (x̂i, P̂i) to other nodes on the network.
if new measurement θi is received then

Calculate an uncertainty ellipse Emi (cmi, Pmi)
(Section IV-A).

Check if this set overlaps Ei(x̂i, P̂i) (Section IV-C).
if there is overlap then

Calculate x̂+i and P̂+
i using the Kalman fusion

method (1).
else

Discount the measurement, Pmi ← dmPmi

(Section IV-C).
Calculate x̂+i and P̂+

i using the Kalman fusion
method (1).

end if
(x̂i, P̂i)← (x̂+i , P̂

+
i ).

else if communication Ej(x̂j , P̂j) is received then
Check if this set overlaps Ei(x̂i, P̂i) (Section IV-C).
if there is overlap then

Calculate x̂+i and P̂+
i using the CCE method (4).

else
Discard the communication.

end if
(x̂i, P̂i)← (x̂+i , P̂

+
i ).

end if
end while

At time t = 0, (x̂i(0), P̂i(0)) can be based on a prior
(informed) guess. We propose to interpret (x̂i(t), P̂i(t)) as the
center and the shape matrix that characterises an uncertainty
set for the target position in the sense that the target lies
within this uncertainty set with a high probability. Recall also
the local measurement model proposed in (5) which provides
another such uncertainty set with its center and shape matrix
given in (6) and (7), respectively. When agent i obtains a
measurement (i.e. when the target is within the range [

¯
ri, r̄i] of

the bearing sensor of agent i) we propose to use the Kalman
fusion algorithm (1) to update the estimate of agent i. This
is reasonable since each new sensor measurement can be
expected to be independent of the current estimate. When
another agent j shares its current estimate with agent i it
too specifies an uncertainty set for the target. In this case we
can use one of the Kalman fusion, CI, ICI or CCE methods
in order to update the current estimate of the agent. As was
discussed before, in this case one cannot assume independence
of the information that is communicated across a network, and
we propose that the CCE method is the best choice for this
problem.

C. Dealing with Non-Overlapping Sets

A potential challenge that can occur in using any of the
fusion methods of Section III is that the prior uncertainty

ellipsoids might not overlap. A heuristic method based on the
Mahalonobis distance is proposed here to deal with this issue.

First we verify whether the to be fused ellipsoid has an
overlap with the current estimated uncertainty ellipsoid. This
can be easily checked using the Mahalanobis distance, shown
here for the case of fusing a measurement ellipsoid.

dm = ‖cmi − x̂i‖(P̂i+Pmi)−1 . (8)

If dm ≤ 2 we can assert that the two ellipsoids are indeed
overlapping. In this case the Kalman fusion method (1) is
used to merge the two ellipsoids into one. If dm > 2 the
two ellipsoids are disjoint. In this case we can either proceed
with the same Kalman fusion approach or we can discard (or
discount) one of the two ellipsoids (inversely proportional to
dm). We propose to discount the measurement ellipsoid in the
case of disjointedness. Again this is on the basis that each new
measurement is independent of the current estimate and hence
it may include corrective information that should not be fully
discarded.

When information is obtained from a neighboring agent, we
can again use the Mahalanobis distance to check disjointedness
of the two estimates. We recommend discarding the communi-
cated estimate if disjointedness is detected as there is no reason
why the communicated information should be preferred to the
current estimate, and it is unclear how to compute reasonable
weights for both pieces of information in this case.

V. SIMULATION STUDY

In this section we provide a numerical evaluation of the
method proposed in Section IV.

Consider a stationary target estimation scenario where two
stationary agents collaboratively estimate the 2D position of
the target. The positioning of the agents is such that each agent
individually is unable to obtain a good target position estimate.
This setup is depicted in Figure 3. As can be seen from the
figure, Agent 1 is geometrically best positioned to estimate
the y-coordinate of the target while Agent 2 is best positioned
for estimating the x-coordinate of the target. The noisy mea-
surement ellipses of each agent are also depicted for all the
measurements made by the agents during the entire simulation.
The agents start from the same initial estimated uncertainty set
as depicted in the figure. The detailed parameters of this study
are as follows.

The target, Agent 1 and Agent 2 are located at p =
[10,−12]>, x1 = [−15,−0]> and x2 = [8, 15]>, respectively.
A Monte Carlo simulation is conducted with randomised initial
estimates, initial estimated covariances and standard deviations
of bearing measurements. Each simulation instance runs for
300 steps.

We first discuss one instance of the simulation, showing a
typical outcome. This allows us to inspect the time trajectories
for this particular instance. The initial estimates for this
instance are x̂1 = x̂2 = [2,−1]>, P̂1 = P̂2 = 36I2×2.
The measurement ellipse parameters are

¯
r1 =

¯
r2 = 2 (m),

r̄1 = r̄2 = 70 (m), σ1 = 12 (deg) and σ2 = 10 (deg).
The estimation error, ‖x̂i − p‖, and the determinant of the
estimated covariance, det P̂i, for each method and for both
agents i = 1, 2 is shown in Figures 4 and 5, respectively.
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Fig. 3. The 2-agent bearing estimation scenario where the initial estimated
uncertainty sets are identical circles centered at [2,−1]>. The noisy mea-
surement ellipses of each agent are depicted in the color corresponding to the
agent.

Figure 4 shows that that the CCE method outperforms ICI,
CI, Kalman fusion and the non-collaborative methods. It can
be seen that Kalman fusion quickly becomes over-confident,
stops accepting new measurement information and converges
to a final estimation error of 10m starting from an initial
estimation error of 14m. The non-collaborative agents can only
reduce their errors close to 6m and 9m, respectively. This is
expected since the scenario is designed such that each agent
can mainly improve on only one coordinate based on its own
measurements. The ICI method slightly outperforms the CI
method but both result in just under 6m of estimation error
while the CCE method achieves a final estimation error of 4m,
out-performing the other methods. It can be seen in Figure 5
that the estimated covariance of the Kalman fusion method
converges very quickly due to the underlying (erroneous)
independence assumption for the information obtained from
communications. The other methods are more conservative but
CCE produces tighter (more confident) results than both ICI
and CI.

In the Monte Carlo setup we use the following randomisa-
tion and run 1000 experiments. Consider two random standard
deviations as γ1, γ2 ∼ N (10, 100), and two error vectors
e1 ∼ N ([0, 0]>, [γ21 , γ

2
1 ]>) and e2 ∼ N ([0, 0]>, [γ22 , γ

2
2 ]>).

The initial estimates are x̂1 = p + e1 and x̂2 = p + e2. The
associated initial covariances are P̂1 = γ21I2×2 and P̂2 =
γ22I2×2. The measurement ellipse parameters are randomly
drawn as

¯
r1,

¯
r2 ∼ N (2, 25) (m), r̄1, r̄2 ∼ N (80, 400) (m)

and σ1, σ2 ∼ N (5, 25) (deg). Figure 6 summarises the results
of the Monte Carlo simulation in a histogram plot of the final
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Fig. 4. The time trajectory of the estimation error for the non-collaborative,
Kalman, CI, ICI, and CCE methods for each agent.
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Fig. 5. The time trajectory of the determinant of the estimated error covariance
is shown for the non-collaborative, Kalman, CI, ICI and CCE methods for
each agent. Note that the figure is zoomed to the first 50 simulation steps.

estimation error of Agent 1. The final errors for Agent 2 are
similar and have been omitted to simplify this figure. Again,
it can be seen that CCE significantly outperforms the other
methods in the majority of simulation runs.

VI. CONCLUSIONS

In this paper we propose a collaborative target estimation
problem where agents complement their local measurements
with fusion of estimates communicated by neighboring agents.
We propose a nonlinear model for bearing measurements that
can directly feed into the discrete Kalman filter without requir-
ing linearization or sampling-based approximations. The filter
remains numerically robust using this measurement model.
We propose to pair this measurement model with a lesser
known method of fusion from the set membership literature
that we call Convex Combination Ellipsoid (CCE) fusion. We
discuss how this method addresses the overconfidence problem
resulting from correlated network information. Furthermore,
we stress key properties of this method that are not shared by
the well known CI method, including improved tightness and
avoiding new uncertainty as byproduct of the fusion process.
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Fig. 6. Histogram the final estimation error of the Kalman, CI, ICI and CCE
methods at the final simulation step. The Monte Carlo experiment involves
1000 simulation runs where initial estimates, sensor ranges and bearing errors
are randomised.
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