
This is a repository copy of Holistic self-distillation with the squeeze and excitation network
for fine-grained plant pathology classification.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200331/

Version: Accepted Version

Proceedings Paper:
Su, J., Anderson, S. and Mihaylova, L. orcid.org/0000-0001-5856-2223 (2023) Holistic self-
distillation with the squeeze and excitation network for fine-grained plant pathology 
classification. In: 2023 26th International Conference on Information Fusion Proceedings. 
2023 26th International Conference on Information Fusion (FUSION 2023), 27-30 Jun 
2023, Charleston, SC, USA. Institute of Electrical and Electronics Engineers (IEEE) . ISBN
979-8-3503-1320-8 

https://doi.org/10.23919/FUSION52260.2023.10224184

© 2023 The Authors. Except as otherwise noted, this author-accepted version of a 
conference proceeding published in 2023 26th International Conference on Information 
Fusion (FUSION) is made available under the terms of the Creative Commons Attribution 
4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution and 
reproduction in any medium, provided the original work is properly cited. To view a copy of 
this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Holistic Self-Distillation with the Squeeze and

Excitation Network for Fine-grained

Plant Pathology Classification

Jingxuan Su, Sean Anderson and Lyudmila Mihaylova

Department of Automatic Control & Systems Engineering, University of Sheffield, S1 3JD, UK

Email: jsu14@sheffield.ac.uk, s.anderson@sheffield.ac.uk, l.s.mihaylova@sheffield.ac.uk

Abstract—Fine-grained plant pathology classification is an
important task for precision agriculture, but at the same time,
it is challenging due to the subtle difference in plant categories.
Variances in the lighting conditions, position, and stages of disease
symptoms usually lead to degradation of classification accuracy.
Knowledge distillation is a popular method to improve the model
performance to deal with the indistinguishable image classification
problem. It aims to have a well-optimised small student network
guided by a large teacher network. Existing knowledge distillation
methods mainly consider training a teacher network that needs
a high storage space and considerable computing resources. Self-
knowledge distillation methods have been proposed to distil
knowledge from the same network. Although self-knowledge
distillation saves time and space compared with knowledge
distillation, it only learns label knowledge. In this paper, we
propose a novel self-distillation method to recognize the fine-
grained plant category, which considers holistic knowledge based
on the Squeeze and Excitation Network. We label this new method
as holistic self-distillation because it captures knowledge through
spatial features and labels. The performance validation of the
proposed approach is performed on two public fine-grained plant
datasets: Plant Pathology 2021 and Plant Pathology 2020 with
the accuracy of 98.22% and 90.72% respectively. We also present
experiments on the state-of-the-art algorithm (ResNet-50). The
classification results demonstrate the effectiveness of the proposed
approach with respect to accuracy.

Index Terms—Knowledge distillation, Self-knowledge distil-
lation, Fine-grained plant classification, Feature fusion, Plant
pathology, Precision agriculture

I. INTRODUCTION

Precision agriculture seeks to improve the production of

plants and control environmental variations such as diseases

that impact the production and quality of plant [1], [2]. Plant

classification is an important technological challenge in preci-

sion agriculture [3] that aims to classify different subordinate

categories under coarse large categories, e.g. plant diseases [4].

Plant classification tasks can be subdivided into coarse-grained

and fine-grained [5] images. While coarse-grained image

classification is interested in representing generic categories

characterised with a large degree of dissimilarities, fine-grained

image classification is a sub-field of object recognition that

aims at representing categories with a large degree of similarity

and is concerned with the problem of distinguishing between

images of closely related entities, for instance, different species

of plants from the same class. The focus of this paper is on fine-

grained plant category classification [6] for plants. Intuitively,

Fig. 1. Sample images from the fine-grain plant pathology datasets [4] showing
the different symptoms (a) healthy leaf, (b)multiple diseases, (c) apple rust,
(d) apple scab. Images show environment variation, e.g. lighting conditions,
and capturing method.

the fine-grained plant categories look very similar and are

hard to distinguish, as shown in Fig. 1. Specifically, the inter-

class variance is much smaller than the intra-class variance.

Apparently, the fine-grained plant dataset increases the difficulty

of classification. Moreover, the classification performance could

directly affect society communities such as the farmers. The

misclassification of plant diseases can lead to improper use

of chemicals, to decreased yield, and potentially harming the



entire farm [7], [8]. Currently, manual scouting based disease

classification is time–consuming and expensive. While many

deep learning methods have achieved remarkable success in

classification [9]–[12], their application to fine-grained plant

classification is still less satisfactory. This situation is even

worse for great pathology variances due to genetic variations,

and light conditions.

As a result, the difficulty of fine-grained plant classification

comes from identifying subtle feature differences in particular

regions. Residual network [13] as a state-of-the-art algorithm

provides an effective architecture in general image classification.

Squeeze and Excitation (SE) networks [14] have been proposed

to focus on the feature details of specific regions, which won

first place at the ILSVRC 2017 classification [15]. The main

contribution of SE networks consists in the introduced Squeeze

and Excitation (SE) block that finds the interdependencies

between channels and adaptively pays attention to important

features. The SE block can be stacked with any convolutional

neural network, such as SE-ResNet-50, SE-Inception and

others [14]. The SE network trains the binary assigned data

(named hard label [16]). However, the performance of SE

network may be restricted, since hard labels cannot provide

sufficient feature information and the spatial features are lost

in the SE block.

Knowledge distillation methods [17] aim at providing a

well-optimised small student network guided by a large teacher

network. The KD guides the student to learn the probability

of each class (named soft labels [18], [19]) generated by

the teacher network. Existing KD methods mainly consider

training a teacher network that needs a high storage space

and considerable computing resources. Self-KD methods [20]

have been proposed to distil their own knowledge without a

pretrained teacher network. These approaches help the network

to enhance classification performance. However, these methods

often rely on extra networks and soft labels to capture additional

knowledge, which loses the spatial features.

To address these challenges in existing classification methods,

we propose a novel self-distillation approach, named Holistic

Self-Distillation (HSD). The proposed approach is designed

to extract spatial feature information before the SE block. We

demonstrate that HSD is superior to state-of-the-art (SOTA)

method and other SE network approaches on plant image

classification tasks. Extensive experiments on two public

datasets further show the superiority of HSD in learning

knowledge comprehensively from spatial feature information

and soft labels. The main contributions of this work are as

follows:

1) We propose Holistic Self-Distillation (HSD), a novel

method to learn holistic knowledge from the teacher

network through distilling feature maps and soft labels.

2) The proposed HSD method employs the Squeeze and

Excitation (SE) network to integrate feature information

and soft labels. It can be applied on all SE networks due

to similar constructions, e.g. SE-Residual networks.

3) Extensive experiments are conducted on fine-grained

publicly available plant pathology benchmark datasets

to evaluate the performance of the HSD method. The

efficiency of the HSD framework in providing a new

direction of self-knowledge distillation is demonstrated.

The paper is organised as follows. Section II provides a

brief overview of the knowledge distillation methods. Section

III describes the proposed holistic self-distillation method with

the Squeeze and Excitation network. The following Section IV

presents the experimental results and analysis. Section V

summarises the results and discusses future work.

II. THEORETICAL BACKGROUND KNOWLEDGE

A. Knowledge Distillation

Knowledge distillation (KD) is a powerful method for

network compression that includes a complex pre-trained

teacher network that provides a supervisory signal to train

the light student network [21], [22]. There are two main

types of KD methods, logits distillation (also known as soft-

label distillation or target distillation) and feature distillation.

The most popular and classic work on logits distillation uses

the softmax output as the soft label [17]. Specifically, the

optimization of the student network is to minimize the Kullback-

Leibler (KL) divergence between the soft and hard labels from

teacher and student networks respectively. Unlike the logits

method, feature distillation learns the feature of the middle

layer [23]. Despite its compression performance for the student

network, the training of the teacher network still requires time

and computation resources [24].

B. Self-knowledge Distillation

Instead of training extra networks, Self-knowledge Distilla-

tion (Self KD) utilizes self-knowledge to enhance effectiveness

and improve performance [18], [20]. The student network is

trained by the mixed soft and hard labels. When the network

uses hard labels only, the model actually loses the information

of the original data. It makes the model prone to overfitting and

results in a decrease in the generalization ability. Usually, soft

labels will alleviate the degeneration of model generalization

by providing extra knowledge, e.g. the similarity and difference

between two close labels [25], [26]. There are several works to

develop Self KD. A self-attention distillation method [27] uses

attention maps as soft targets to rich the learning knowledge for

lane detection. Snapshot distillation [28] effectively prevents

under-fitting problems by increasing the difference between

teacher and student. A novel Self KD was proposed that

redefines the probabilities of the soft label through the training

network [29]. These variant self-distillation methods [30]–

[32]are all around soft labels or regularization. However, the

knowledge of soft and hard labels is not enough when the

teacher network goes deeper.

This paper proposes a holistic self-distillation framework

with the Squeeze and Excitation network [14] for learning

features and soft label knowledge. The methodology details

are given in the following Section III.



Fig. 2. The architecture of the fusion features based on Squeeze and Excitation Residual network.

III. METHODOLOGY

This section introduces briefly the classification network

construction [14]. As we mentioned in Section II, the main

challenge of fine-grained image classification consists in the

difficulty to discriminate the subtle and local traits within the

same basic level category. To handle the slight difference in the

image features, many researchers developed extended strategies

of knowledge distillation [17]. The holistic self-distillation is a

new type of distillation method proposed in this paper, which

captures knowledge through spatial features and soft labels.

A. The Structure of the Classification Network

Inspired by the significant improvements of the Squeeze and

Excitation network in feature spatial encoding and classification

tasks, we apply the Squeeze and Excitation Residual network

50 (SE-ResNet-50) [14], [33], [34] on the fine-grained plant

classification to extract the holistic feature knowledge. It

consists of two main parts, Residual framework [13] and

Squeeze and Excitation block. This network captures the

interdependencies between feature channels that obtain the

importance of each feature channel through learning. The core

idea is that useful features are promoted and the other features

are suppressed. Fig. 2 shows the schematic of SE-ResNet-50

with feature maps computation. Formally, the Squeeze operation

Fsq (u) transforms the size of feature map H ×W ×C to the

size of feature map 1× 1× C, which is calculated by:

Fsq (uc) =
1

H ×W

H
∑

i=1

W
∑

j=1

u(i, j), (1)

where H denotes the height, W is the width and C is the

channel dimension of the feature map and u is the shrink

operate.

However, the classical self-knowledge distillation focuses

only on soft label knowledge distillation [17]. The student

network could ignore spatial feature information. Therefore,

we propose holistic self-distillation to learn the knowledge of

the teacher network from both soft labels and spatial features.

B. Preliminary

Consider a batch of the K-category labelled dataset D =
{(xi, yi)}

N

i=1
, where N represents the number of training

instance in the dataset, xi is the input data and yi is the

corresponding label of xi.

The hard labels are fed into the Squeeze and Excitation

network H (yi,pi). The cross-entropy loss function is defined

as follows

LCE =
1

n

n
∑

i=1

H (yi,pi) . (2)

The predictive distribution pi is computed through the

softmax layer that compares the logit fk (xi) with other logits.

It is formulated as

pi(k) =
exp (fk (xi) /τ)

∑K

j=1
exp (fj (xi) /τ)

, (3)

where fk (xi) represents the corresponding logit of the k and

the temperature constant τ is normally set to 1. Using the

Kullback-Leibler (KL) divergence, it optimizes the student



Fig. 3. The diagram of the holistic self-distillation method

network [17], which minimizes the loss between soft label pt
i

and ps
i generated by student and teacher respectively:

LKD =
1

n

n
∑

i=1

τ2 ·DKL

(

ps
i∥p

t
i

)

. (4)

The next subsection presents the components of holistic

self-distillation.

C. Holistic Self-Distillation

Feature maps often contain the context and spatial informa-

tion of images. Instead of training mixed soft and hard labels

alone, our proposed method utilizes feature map information.

We encourage the student network to learn discriminative

features between soft labels and hard labels. Motivated by the

hint loss from FitNet [23], we consider employing the squared

l2-norm for teacher feature maps
{

Ft
k (x) ∈ R

H×W×C
}K

k=1

and student feature maps
{

Fs
k (x) ∈ R

H×W×C
}K

k=1
. Then, we

train the model by minimizing the loss function (5). Meantime,

the loss function introduces feature fusion, which is defined

as:

Lfeature =

K
∑

k=1

1

HWC

∥

∥Ft
k (x)− Fs

k (x)
∥

∥

2

. (5)

Benefiting from the above equation, Lfeature would learn the

meaningful spatial feature from the different between teacher

and student network. A good student network is able to learn

holistic knowledge from feature fusion and probabilities of soft

labels. The student network is trained to optimize two stages

of loss:

Lstage1 = LCE + LKD,

Lstage2 = LCE + Lfeature.
(6)

The LCE is the cross-entropy (CE) loss between hard labels and

results. In short, the Squeeze and Excitation network distil soft

labels and feature maps. The Squeeze and Excitation network

is trained by a new training dataset with mixed soft and hard

labels. Meanwhile, the distilled feature map is involved in

the loss function. The whole training process is the holistic

distillation visualised in Fig. 3.

IV. EXPERIMENTS AND ANALYSIS

This section presents performance evaluations and analysis

of Holistic Self-Distillation (HSD) on two plant pathology

fine-grained datasets.

A. Datasets and Implementation Details

The plant pathology datasets [4] are available at the Kaggle

community and are a part of the Computer Vision and Pat-

tern Recognition (CVPR) Fine-Grained Visual Categorization

(FGVC) workshop 2020 and 2021. The Plant Pathology 2020

dataset contains 3,651 high-quality RGB images of four apple

foliar categories: healthy, scab, rust and multiple diseases. These

images are captured under different illumination, angle, surface

and noise conditions (Fig. 1). The plant pathology of FGVC

2021 increased the images to the number of 23,249 and added

two categories of disease powdery mildew and frog eye leaf

spot.

We validate the proposed method over these two datasets.

The 3,651 images of Plant Pathology 2020 are used to train the



model. The model performance is tested on the hidden dataset

of the Kaggle leaderboard. The Plant Pathology 2021 dataset

is divided into train and test data with a ratio of 6:4. The

teacher network is essentially the same as the SE-ResNet-50.

The network is used in all experiments and is pre-trained by

ImageNet [35].

In the first stage, the networks of teacher and student are

trained simultaneously through the same dataset with random

data augmentation. We randomly apply 12 types of data

augmentation, such as compose, resize, random brightness,

different blur and flip etc. The networks will generate different

feature maps for the same image. We train the student network

by minimising feature loss. Meanwhile, the teacher network

generates soft labels. In the second stage, we adopt 30% soft

label and 70% hard label to train the student network that is

pre-trained from stage one. The whole stage is named holistic

self-distillation.

B. Performance Validation Results and Analysis

This section presents testing results for the performance

evaluation of the holistic self-distillation on Plant Pathology

2020 and 2021 datasets with the SE-ResNet-50 network. All

these experiments were run under the PyTorch framework over

two NVIDIA Tesla K80 GPUs.

We have shown the performance of the method with different

datasets in Table II. The holistic self-distillation (HSD) with the

SE-ResNet-50 gives an accuracy of 98.22% in Plant Pathology

2020 and 90.72% in Plant Pathology 2021, which is a large

improvement compared with the teacher model and the SOTA

algorithm. The classic self-distillation reaches the same level of

performance as the SE-ResNet-50. It is reasonable to assume

that the improvement in results comes from the learned spatial

knowledge.

Table I shows the experimental results of the HSD method

for each category in Plant Pathology 2021. Three metrics

[36] are applied to each category, which is computed by True

Positive (TP), False Positive (TP), True Negative (TN), and

False Negative (FN) as formalised in the following equations:

Precision =
TP

TP + FP,

Recall =
TP

TP + FN,

F1 score =
2× Precision×Recall

Precision+Recall
.

(7)

The precision [37] indicates the predicted positive is the true

positive. The recall [38] represents the correct prediction in

positive samples. The F1 score finds a balance between both

precision and recall. Combining the above metrics, the macro

average computes the arithmetic mean of the metrics of each

category. The weighted average takes into account the weight

of each category [39]. Among them, the HSD achieves brilliant

performance in all the categories. We also observe that the

healthy category gets the best results within three metrics over

1,950 test images. The multiple diseases category is prone to

be misclassified.

Fig. 4. The ROC curves of the Plant Pathology 2021. The AUC (Area Under
Curve) is defined as the area under the ROC curve [40].

Fig. 5. The confusion matrix on the Plant Pathology 2021 dataset.

We further visualize the performance of the HSD method in

Fig. 4. The Receiver Operating Characteristics (ROC) curve is

usually used to measure the performance of a model by True

Positive (TP) rate and False Positive (FP) rate [41]. The ROC

curve has robustness even though the imbalanced positive and

false samples hardly change the shape of curves [40]. It is

calculated as:

FP rate =
FP

FP + TN
,

TP rate =
TP

TP + FN
.

(8)



TABLE I
A PERFORMANCE OF DIFFERENT CATEGORIES ON PLANT PATHOLOGY 2021.

Categories Precision (%) Recall (%) F1 score (%) Number of testing images

Healthy 93.34 97.69 95.46 1950

Multiple diseases 86.56 73.91 79.74 1142

Powdery mildew 90.65 89.45 90.04 455

Scab 92.73 93.34 93.03 1846

Rust 88.58 89.54 89.05 736

Frog eye leaf spot 88.30 92.44 90.32 1323

Macro avg 90.03 89.39 89.61 7452

Weighted avg 90.62 90.73 90.58 7452

TABLE II
A PERFORMANCE COMPARISON ON PLANT PATHOLOGY 2020 AND 2021 IN TERMS OF ACCURACY (%).

Method Plant Pathology 2020 Plant Pathology 2021

ResNet-50 [13] (SOTA) 97.34 89.98

SE (teacher) 97.96 90.48

SE + KD 97.97 90.51

SE + HSD 98.22 90.72

Apparently, if the ROC curve closes to the upper left corner

with a high value of TP and a low value of FP, it represents

the high performance of the classifier. As shown in curves of

Fig. 4, the HSD method can effectively classify the diseases

with robust ability. The multiple diseases ROC curve is obvious

fluctuations that match the class accuracy in Table I. We also

calculate the macro-average and micro-average ROC curves to

evaluate the overall characteristics.

Additionally, we use the confusion matrix to visualize the

performance of the proposed method. Each row of the confusion

matrix indicates the true label and each column indicates the

predicted label [42]. As seen in Fig. 5, the confusion matrix

illustrates the correlation of categories in the Plant Pathology

2021 dataset. The diagonal presents the true prediction, and

the rest of the same column is the misclassified diseases. For

instance, the rust disease has 1,723 images correctly classified,

and 73 images misclassified as multiple diseases. In addition to

the misclassified rust disease, there are also mispredictions

between powdery mildew and scab, healthy and frog eye

leaf spot etc. It is intuitive that all diseases are prone to

misidentification as multiple diseases and the HSD method

achieves good performance for all categories.

V. CONCLUSIONS

In this paper, a holistic self-distillation method based on

the squeeze and excitation network is proposed to solve the

bottleneck of the fine-grained classification in plant pathology.

An advantage of the method consists in its ability to capture

both spatial image information and label knowledge. This is due

to the joint work of a teacher and a student network working

collaboratively in the online distillation stage, generating soft

labels (probabilities) and extracting the spatial features. We

use the feature fusion in the squeeze and excitation block to

make use of the features training the student network. Such

operations can improve the student network performance and

prepare soft labels for the next stage of distillation. In the offline

distillation stage, the mixed soft and hard labels are fed into the

trained student network. Meantime, the squeeze and excitation

block explicitly models interdependencies between channels

that adaptively recalibrate channel-wise feature responses. This

structure improves the ability of the student network further.

Our proposed method focuses on learning holistic knowledge

from both spatial features and label information. The proposed

method achieves 98.22% and 90.72% on the Plant Pathology

2020 and 2021 test datasets respectively. Future work will focus

on the development of other deep learning methods for fine-

grained classification with out-of-distribution data and derive

uncertainty bounds for the proposed solution.
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