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Abstract—Input uncertainty in experimental implementation
deteriorates data quality for parameter estimation. This work
aims to examine the influence of input uncertainty, in particular
the inaccurate setting of initial states, to parameter estimation
and explore methods to mitigate the effects. First, a Monte-Carlo
method is employed to generate input-output data. The input
uncertainty is assumed to follow Gaussian distribution. Samples
are taken from the uncertainty region and used to produce
output through the dynamic system. Statistical characteristics are
utilised to quantify uncertainty in outputs. Then a robust experi-
mental design (RED) is proposed, in which the states that are less
affected by input uncertainty are selected as measurement state
variables. In addition, two different residual functions are used
in parameter estimation to compare the estimation robustness
against data uncertainty. Simulation studies are conducted using
a benchmark enzyme reaction system. Compared to the non-
designed experimental settings, improved parameter estimation
is achieved via robust design.

Index Terms—robust experimental design (RED), input uncer-
tainty, optimal experimental design (OED), parameter estimation,
residual function

I. INTRODUCTION

Building a reliable model for complex systems requires data
that adequately describe system dynamics. Optimal experi-
mental design (OED) can be used to find experimental settings
that will produce the most informative data for modelling
purposes such as model discrimination and parameter estima-
tion. In a typical OED for parameter estimation, the Fisher
information matrix (FIM) is used to evaluate the information
content of data based on the Cramer-Rao inequality. The
optimisation design problem is formulated based on selected
metrics of FIM.

OED is a design methodology based on local (parameter)
sensitivities, therefore applies mostly to systems with small
model uncertainties. Robust experimental design (RED) is
required for systems with large uncertainties. Typical RED
methods include the pseudo-Bayesian method [1] and the
maximin method [2], which can be implemented in one
experimental design cycle. Other design strategies such as
iterative design [3], [4] or online experimental redesign [5],
[6] can also be used but would cost more time and resources.

This work is sponsored by the China Scholarship Council (CSC) and H2020
ELEMENT project (815180).

Apart from model uncertainties, another uncertainty comes
from the malfunction in experimental implementation, es-
pecially on the input settings. This issue is addressed in
some recent studies, aiming to find the input for experiments
so that the produced outputs can be constrained by certain
thresholds. One example is from manufacturing industry where
it is difficult to accurately control the input conditions during
machine operation. The input uncertainty range relevant to
machine operation performance is identified through a level
set estimation method [7]. In a batch production process
in chemical engineering, the impact of input uncertainty is
assessed by formulating the input variations with polynomial
chaos expansions, and the output of every batch is controlled
within a given range to avoid possible substrate inhibition
effect [8]. These works reveal input uncertainties in different
applications. The influence of input uncertainty on OED and
parameter estimation are yet to be investigated.

In this work, we aim to understand the impact of input
uncertainty on experimental design and explore how to reduce
this influence to parameter estimation through RED. When
input uncertainty exists in an experiment, the measurement
data will deviate from the expected values under OED. This
will inevitably affect parameter estimation since the inverse
problem is likely to be ill-conditioned [9]. In most cases,
explicit forms of input uncertainty projected to outputs and
further to parameter estimations are hardly obtainable. The
Monte-Carlo method can be used instead. Samples collected
from the input uncertainty range can be used to generate
the pseudo experimental data. Then, each set of pseudo data
are used to solve the inverse problem to obtain a set of
parameter estimates, from which the statistical quality of pa-
rameter estimation can be determined. To reduce the influence
of input uncertainty on parameter estimation, we propose a
measurement set selection design which selects measurable
state variables that are less affected by the input uncertainty. To
further reduce the influence of input uncertainty to parameter
estimation, we propose to replace the typical L-2 norm in the
inverse problem with L-1 norm since the latter is less sensitive
to outliers [9].

The remaining paper includes the following. Section II gives
preliminaries on experimental design. The main methodology
is presented in Section III including OED of input design,



mapping of input uncertainty to output and RED of mea-
surement set selection. Numerical studies are undertaken on
a benchmark enzyme reaction system and results of different
methods are compared in Section IV. Conclusions are given
in Section V.

II. PRELIMINARIES
A. Optimal Experimental Design (OED)

A dynamic nonlinear system can be represented by the
following state-space model:

X(t) :f(X(t)ve)vx(tO):XO
Y (1) =h (X (1) + £ (1)

where f (-) are a series of dynamics functions which are con-
tinuous and first-order derivable; X = [z, 72,...,7Nn,]T €
RVx is the vector of state variables. X, is the initial state
vector, among which the N; nonzero entries are grouped in
Xy € RN, @ € RMr is the parameter vector. The output
Y = [y1,%2,---,yny|T € RYY is the vector of measurable
state variables, which is chosen from the Nx state variables;
h (+) is a selection function for measurement; £ is the vector
of measurement errors, which is assumed to be independent
at different time ¢ and have Gaussian distribution.

For a system in (1), the local parametric sensitivity matrix is
defined by S = %—?, in which only the state variables selected
by h (-) are included in the matrix so that § € RV *N», The
time derivative of S is
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Sensitivity analysis quantifies the effect of parameter variations

on state variables, which is useful for OED in at least two

ways. One is to select the most sensitive parameters for

parameter estimation, keeping those less influential ones at

their nominal values, the dimension of OED is thus reduced.

Another use of the local sensitivity matrix is to form FIM,
based on which the OED objective function is established.

In model-based OED, the FIM is used as an indicator
of information content of the data because the inverse of
FIM provides a lower bound for parameter estimation error
covariance, following the Cramer-Rao inequality. The FIM for
(1) can be written as

FIM(v,0) = ST (1, 0) - 3" - S(3.0) 3)

(D

where 1 is the experimental design vector, which can be
dynamic stimuli, initial state, sampling time, measurement
selection weightings and so on; ¥y is the measurement
error covariance matrix which is a diagonal matrix 3y =
diag[o?,03,... 0%, ] € RV >N The OED is formulated
as an optimisation problem, i.e.

w* = argmin g ((FIM (,0)) ') @
YPeET
where ¢(-) is a scaler function to extract selected characteris-
tics of FIM. The most commonly used scalarisation criteria are
the determinant (D-optimal), L2 norm (E-optimal), and trace
(A-optimal).

B. Parameter Estimation

Parameter estimation can be obtained by minimising the
residual between the measured output Y and the estimated
output Y (0).

6 = argmin [|[Y — Y(9)| %)
0cO

The L-2 norm is often used in (5). When weighted by the
inverse of the measurement error covariance matrix, it makes
the well-known least square estimation (LSE). LSE gives the
maximum likelihood estimation under independent Gaussian
measurement noise. However, the Gaussian assumption does
not always apply, especially when there exists input uncer-
tainty. An alternative criterion, the L-1 norm, can be used to
make the estimation more tolerant to outliers [9].

C. Monte-Carlo Method and Latin Hypercube Sampling

The Monte-Carlo method is widely used in sampling, op-
timisation and uncertainty propagation. The main idea is to
repeat the experiment (or simulation) many times to obtain
sufficient data of interested objectives [10]. According to the
law of large numbers, the statistical characteristics can be
approximated by those data. The Monte-Carlo method is often
used for problems where analytic forms are not available.

By repeating the experiment or model simulation of (1) N,
times, a set of data pairs [X*), Y(¥)] are obtained, where

k=1,2,...,Ng. The probability, mean and variance of the
ith output y; can be obtained as follows [11]:
Nep
probly; <Y) =W > by (57 (©)
k=1
Nep
E(y) ~w Y g (7)
k=1
Nsp
Vi) =W 5" - By ()
k=1

where 5y(g]§k)) equals to 1 if gjgk) <Y and O otherwise; W
is usually 1/N,, or 1/(Ng, — 1) according to the sampling
method.

Various sampling strategies have been proposed for the
Monte-Carlo method, among them the Latin hypercube sam-
pling (LHS) is most commonly used since it requires less
sampling size and is easy to implement [11]. In LHS, the
range of each variable is divided into N, intervals of equal
probability, and one sample is chosen randomly from every
interval. Therefore, every element in X will have Ny, sam-
plings. Those samplings are grouped in a random manner to
form the set of initial states [X(1), ... X(Nep)],

III. METHODOLOGY

Input uncertainty occurs in experiments when the setting of
initial state deviates from the designed values. This uncertainty
propagates to outputs through nonlinear system dynamics,
will affect the data quality for parameter estimation. In this
section, the OED for input design is firstly presented. Then



the input uncertainty is characterised by stochastic distribution
and projected to output by LHS. Finally a robust measurement
set selection design is proposed to reduce impact of input
uncertainty to parameter estimation.

A. Optimal Input Design

The task of input design is to determine the values for the
nonzero initial states X so as to generate the most informative
input-output data for parameter estimation. The OED on initial
states can be formulated as

X} = argmin ¢ ((FIM (Xo, 0))71)
st. X (1) =f(X(t),0) ©
XL <X(t) <Xy

where X and Xy are the lower and upper bounds for the
nonzero initial states.

The optimisation problem in (9) is non-convex in general
for nonlinear systems. To obtain the global solution, multiple
starting points of X will be implemented. The initial states in
X, are assumed to be independent and uniformly distributed
within [X,Xy]. The LHS method will be used as the
sampling strategy to construct the initial data for X,.

B. Mapping of Uncertainty from Input to Output

A Gaussian distribution is assumed for the input uncertainty,
that is, Xo ~ N(p,X), where p is the mean that can be
taken as the designed initial states from OED, i.e., X§. X is
an N; x Ny diagonal variance matrix.

The Monte-Carlo method is used to map the un-
certainty from the inputs to the outputs. N,, samples
[Xél), Xéz), e XéN‘“” )] are drawn from the Gaussian distri-
bution using LHS. By solving the dynamic system model in
(1), Ny, pseudo-data Y can be produced. Due to the nonlinear
dynamics, the uncertainty in outputs won’t follow Gaussian
distribution. At time ¢;, each output variable y; is a random
variable y;(t;) with statistics calculated by (6) for cumulative
probability, (7) for mean and (8) for variance.

C. Robust Measurement Selection Design

To select the measurement variables that are less affected
by the input uncertainty, a criterion is prosposed to keep
the squared deviation between the sampled pseudo data Y
and Y (Xé) as small as possible. Assume Ngy measurable
variables are to be selected from the Ny outputs. A weighting
factor w; is assigned to each output, w; = 1 means y; is
selected and 0 otherwise. Denote w = [wy, -+ ,wn, |7, the
OED can be formed as an linear integer programming problem.

argminw’ D
w

st. 1Tw = Ngy (10)

where D = [Dy,Ds,...,Dyn,]7 € RY is a vector of
squared deviation between Y and Y (Xj) in which D; =

_ 2
Z;.V:l ZkN:’l (g(k) (t;) — yi( 3,t]—)) , N is the total number

3
of sampling points in time.

Since this optimisation problem is linear in both objective
function and constraint, it can be solved by ranking the outputs
according to deviation D;. Here the minimum number for
Ngy is set to be one. It should be noted that this robust
design is focused on reducing the impact to outputs from
input uncertainty, it is not the typical RED on measurement
set selection based on FIM. The latter is meant to include
more information in measurement variables for parameter
estimation.

IV. CASE STUDY AND RESULTS

In this section, a benchmark model — enzyme reaction
model, is used for simulation study. This model represents
typical kinetically controlled synthesis. The system has 10
state variables, only five of them can be measured. The model
is represented by 10 ODEs established following the mass
action principles (see appendix). The model details can be
found in [12].

The time duration of model response is set to be 6000s to
allow output responses reach steady-state under all simulation
conditions. For each measurable state, 21 samples are take
uniformly in the time horizon, the sampling time points are [0 :
300 : 6000]s. Three most sensitive parameters, [ka, k_3, ks W]
(with nominal value of [100,200,5000]) [12], need to be
precisely estimated and included in the experimental design.

A. Optimal Input Design

The nonzero initial state vector is the experimental factor
to be designed to maximise the information content in exper-
imental data. In this enzyme reaction system, there are three
nonzero initial states: the donor substrate S, the nucleophile NV
and the enzyme E. The upper and lower bounds for the three
states and their assumed initial values are listed in TABLE 1.

TABLE I B
DESIGN SPACE AND INITIAL ASSUMPTION OF Xg

States (mol/L) | Lower | Upper | Inital Assumption
So 0 1 0.8
No 0 1 0.9
Ey 1.5e-6 | 1.5e-4 1.5e-5

The input design is formed as a constrained optimisation
problem in (9). Here the E-optimal criterion is chosen as the
scaler function 1) in OED. The local solution can be obtained
using the active-set sequential programming available in the
MATLAB optimisation toolbox. Multiple starting points are
implemented to get a set of local optimum solutions, from
which the global one is taken. The design results for the initial
states are listed in TABLE IL

TABLE II ~
DESIGN RESULTS OF INITIAL STATES X§

[Eg, Sq, Ng] (mol/L)
[1.5¢-05, 0.8, 0.9]
[3.18e-06, 0.57, 0.49]
[4.27e-06, 0.94, 0.07]

Non-design
Local E-optimal
Global E-optimal




Using the three sets of initial states in TABLE 11, the infor-
mation contents for parameter estimation can be evaluated by
the estimation error covariance matrix, which is approximately
the inverse of FIM. The confidence interval (CI) ellipsoids of
parameter pairs (k2, k_3) and (ke, k5W) are plotted in Fig. 1.
It can be observed from Fig. 1 that, through OED of the
initial states, the parameter estimation accuracy is improved.
OED provides smaller CI for parameter estimation uncertainty
compared to the non-designed settings. The global OED shows
better performance than the local OED. The CIs for each
parameter and the percentage uncertainty (ratio of CI range
over the nominal value) under different design are compared
in TABLE III.
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Fig. 1. Confidence interval of parameters with different initial state designs

TABLE III
CIS AND PERCENTAGE UNCERTAINTY UNDER DIFFERENT INPUT DESIGN

Parameter Confidence Interval and Uncertainty
k2(100) k_3(200) ks W (5000)
No-design [92.02 107.98]  [176.57 223.43]  [4409.6 5590.4]
15.96% 23.43% 23.62%
Local OED | [95.60 104.40] [177.49 222.51]  [4579.5 5420.5]
8.8% 22.51% 16.82%
Global OED | [96.09 103.91] [179.96 220.04]  [4637.6 5362.4]
7.82% 20.04% 14.4%

B. Assessment of Input Uncertainty Impact

Once X} is designed, it is expected that the initial states
can be accurately set in experiments following the designed
values. This is hard to achieve in real operations, the deviation
is taken as input uncertainty. As presented in Section III-B,
this input uncertainty is assumed to be independent zero-mean
Gaussian distribution. The standard deviation for the nonzero
initial states is set to be 3 = diag[le — 7,0.01,0.01], which
ensures around 95% of CI within [-1.960,1.960] for input
uncertainty.

The Monte-Carlo method is used to get a numerical descrip-
tion of the impact of uncertainty on outputs and further on
parameter estimation. Using the LHS method, 1000 samples
are drawn from the input uncertainty space, and the outputs
can be obtained by solving the system dynamic model using
those initial state samples.

The time responses of states R and /N are shown in Fig. 2.
Box charts are used for the outputs with mapped uncertainty,
which shows the median (the line in the blue box), the lower
and upper quartiles (the limits of the blue box), outliers
(circles), and the minimum and maximum values that are not

outliers (the limits of whiskers). The projection of uncertainty
from input to output state variables can be clearly seen in
Fig. 2, and the uncertainty propagation is different from one
state to another. As expected, the median of the outputs with
input uncertainty is close to the output considering no input
uncertainty.

[_Iwith input uncertainty
——without input uncertainty

1 2 3 4 5 6 T 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Sampling time points (1:300:6000s)

[_Jwith input uncertainty
°© — without input uncertainty

State N (moliL)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Sampling time points (0:300:6000s)

Fig. 2. Time response of states R and N with and without input uncertainty

Using the simulated pseudo-measurement data, 1000 esti-
mated parameter sets are obtained by solving the optimisation
problem in (5). Two norms, the L-1 norm and the L-2 norm,
are used in the objective function, and the results are shown in
Fig. 3. The three figures in the left column show CI ellipsoids
approximated by scatter plots from the 1000 sets of estimated
parameters and the CIs without input uncertainty. The three
figures in the right column are the box charts illustrating the
uncertainty in parameter estimation (median, quartiles, outliers
and limits of non-outliers).

Fig. 3 shows that the uncertainty in parameter estimation
becomes larger than that when no input uncertainty is intro-
duced. k_3 is the most affected parameter with more outliers
and wider range of non-outliers. Besides, the use of L-1 norm
seems to be more robust than the L-2 norm for parameter
estimation of k; and kW, for it produces fewer outliers.
However, this is not the case for k_3, for which the L-2 norm
result has less outliers.

C. Robust Measurement Set Selection Design

As discussed above, input uncertainty (even a small one) af-
fects parameter estimation quality, leading to more outliers and
larger CIs. To improve experiments against input uncertainty,
a robust measurement set selection design is proposed in (10).
This optimisation problem can be easily solved by ranking
the squared deviation between outputs with and without input
uncertainty. This deviation D is presented in Fig. 4 in time
response profiles and the integration bar chart.
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Fig. 3. Parameter estimation sets using L-1 & L-2 norm
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Fig. 4. The squared deviation (D) of outputs

Following the results in Fig. 4, () and N are selected as
outputs since they are less affected by the input uncertainty
among the five measurable states. Using the pseudo-data of ()
and N, parameter estimation is simulated with L-1 and L-2
norms in (5). The parameter estimation results with L-2 norm
are shown in Fig. 5, from which we it can be seen that when
selecting () and N only, the estimation error range for k_3
is smaller than using five states (no RED), but the estimation
error ranges for ko and ksW are larger compared to using
all five states. The improved estimation in k_3 (the parameter
mostly influenced by input uncertainty) shows that the robust
measurement selection design has mitigated the effect of input
uncertainty. The increased estimation errors in ko and ksW
may be caused by the loss of information content since three
measurement (S, P, R) are excluded from the data.

The parameter estimation results with L-1 norm are shown
in Fig. 6. Using the two measurement states selected by RED,
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Fig. 5. Parameter estimation sets (L-2 norm) using pseudo-measurements
with robust measurement selection design and no RED
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Fig. 6. Parameter estimation sets (L-1 norm) using pseudo-measurements
with robust measurement selection design and no RED

the estimation quality for all three parameters are improved
compared to using the five states without RED.

The parameter estimation ’confidence intervals’ and per-
centage uncertainty values are listed in TABLE IV. Four
scenarios are compared: RED with L-1 and L-2 norm in
parameter estimation, five states (no RED) with L-1 and L-
2 norm in estimation. Here the most extreme 5% parameter
samples are discarded, the range of the rest 95% samples is
defined as ’confidence interval’ for each parameter.

Comparing TABLE III and TABLE IV, it can be observed
that for a nonlinear dynamic system, even with a small input
uncertainty (standard deviation being about 1% of nominal
value), the impacts on outputs and parameter estimation can
be large when no RED is applied. For parameters that are
heavily impacted by the input uncertainty (k_s in the case
study), the parameter estimation credibility can be quite low.



TABLE IV
’CONFIDENCE INTERVAL’ AND PERCENTAGE UNCERTAINTY OF
MONTE-CARLO PARAMETER SAMPLES

k2 (100) k_3(200) k5 W (5000)
o design (2) | 0 e T e e
rep ) | e e
o design (1) | 00 6 e oo
RED (L-1) [90.1388.81530.26] [11 1;3%%33.12] [4862;3(57331.0]

With robust measurement set selection design and L-1 norm
in parameter estimation, the impact of input uncertainty to pa-
rameter estimation can be reduced, although the improvement
may not be ideal for parameters that are heavily impacted by
input uncertainty.

V. CONCLUSIONS

Inaccurate setting of initial states is a source of input
uncertainty in experiments that propagates to output through
the dynamic system, and as a consequence, deteriorates data
quality for parameter estimation. In this work, the impact of
input uncertainty on parameter estimation is discussed. To
reduce such impact, solutions of RED and use of more robust
objective function in parameter estimation are suggested.

To examine how the input uncertainty impacts outputs and
parameter estimation, the Monte-Carlo method is employed.
Samples are drawn from input uncertainty space, which is
assumed to obey Gaussian distribution with the mean being
the designed input from OED and the variance being ap-
proximately 1% of the designed input. By simulation of the
system dynamic model, output samples are obtained, and the
population statistical characteristics of samples are utilised to
approximate the output uncertainty. From the case study of
an enzyme reaction system, it can be clearly seen that the
outputs are influenced by input uncertainty. With those output
samples, parameter estimations are implemented using the L-2
norm and the L-1 norm in the residual function. Results show
that the uncertainty of parameter estimates is heavily impacted
by input uncertainty. The L-1 norm seems to be more robust
to data uncertainties compared to the L-2 norm.

In order to reduce the impact of input uncertainty on
parameter estimation, we propose a new RED method to
select measurement state variables, in which those states with
the smallest deviation from the nominal states (no input
uncertainty introduced) are selected as measurement states
in output. With the combined use of RED on measurement
selection and the L-1 norm residual function in parameter
estimation, the quality of parameter estimation has been im-
proved. However, for parameters significantly influenced by
input uncertainty, like k_3, the improvement is still limited.
Further experimental design strategies need to be explored to
’decouple’ the influence from input uncertainty to parameter
estimation.

REFERENCES

[1] E. Walter and L. Pronzato, “Optimal experiment design for nonlin-
ear models subject to large prior uncertainties,” American Journal
of Physiology-Regulatory, Integrative and Comparative Physiology,
vol. 253, no. 3, pp. R530-R534, 1987.

[2] S. Asprey and S. Macchietto, “Designing robust optimal dynamic
experiments,” Journal of Process Control, vol. 12, no. 4, pp. 545-556,
2002.

[3] G. Franceschini and S. Macchietto, “Model-based design of experiments
for parameter precision: State of the art,” Chemical Engineering Science,
vol. 63, no. 19, pp. 48464872, 2008.

[4] F. Galvanin, S. Macchietto, and F. Bezzo, “Model-based design of
parallel experiments,” Industrial & engineering chemistry research,
vol. 46, no. 3, pp. 871-882, 2007.

[5] J. Stigter, D. Vries, and K. Keesman, “On adaptive optimal input design:
a bioreactor case study,” AIChE journal, vol. 52, no. 9, pp. 3290-3296,
2006.

[6] F. Galvanin, M. Barolo, and F. Bezzo, “Online model-based redesign of
experiments for parameter estimation in dynamic systems,” Industrial &
Engineering Chemistry Research, vol. 48, no. 9, pp. 4415-4427, 2009.

[71 S.Iwazaki, Y. Inatsu, and I. Takeuchi, “Bayesian experimental design for
finding reliable level set under input uncertainty,” IEEE Access, vol. 8,
pp. 203982-203993, 2020.

[8] R. Hille, J. Mandur, and H. M. Budman, “Robust batch-to-batch opti-
mization in the presence of model-plant mismatch and input uncertainty,”
AIChE Journal, vol. 63, no. 7, pp. 2660-2670, 2017.

[9] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter estimation and
inverse problems. Elsevier, 2018.

[10] D. P. Kroese, T. Brereton, T. Taimre, and Z. 1. Botev, “Why the monte
carlo method is so important today,” Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 6, no. 6, pp. 386-392, 2014.

[11] J. C. Helton and F. J. Davis, “Latin hypercube sampling and the
propagation of uncertainty in analyses of complex systems,” Reliability
Engineering & System Safety, vol. 81, no. 1, pp. 23-69, 2003.

[12] H. Yue, P. Halling, and H. Yu, “Model development and optimal
experimental design of a kinetically controlled synthesis system,” I/FAC
Proceedings Volumes, vol. 46, no. 31, pp. 327-332, 2013.

APPENDIX

The ODEs of enzyme reaction system are:

E
%:—klE-S+k571E5+k4EQ—]€,4E-Q+k‘6ER
E
% =k1E-S—k_1ES —kyES+k_oE*-P
dE* N .
W:kgES—k_gE P—k3E N+k_3EQ
—ksW - E* + k_sER

E
%:k3E*-N—k_gEQ—k4EQ+k_4E~Q
%:k5W~E*fk_5ERfk6ER

ds
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