
ar
X

iv
:1

70
2.

05
21

4v
1 

 [
cs

.I
T

] 
 1

7 
Fe

b 
20

17

Set-Membership Information Fusion for Multisensor Nonlinear

Dynamic Systems

Zhiguo Wang, Xiaojing Shen, and Yunmin Zhu ∗

July 25, 2021

Abstract

The set-membership information fusion problem is investigated for general multisensor nonlinear

dynamic systems. Compared with linear dynamic systems and point estimation fusion in mean squared

error sense, it is a more challenging nonconvex optimization problem. Usually, to solve this problem,

people try to find an efficient or heuristic fusion algorithm. It is no doubt that an analytical fusion formula

should be much significant for rasing accuracy and reducing computational burden. However, since it is

a more complicated than the convex quadratic optimization problem for linear point estimation fusion,

it is not easy to get the analytical fusion formula. In order to overcome the difficulty of this problem,

two popular fusion architectures are considered: centralized and distributed set-membership information

fusion. Firstly, both of them can be converted into a semidefinite programming problem which can

be efficiently computed, respectively. Secondly, their analytical solutions can be derived surprisingly

by using decoupling technique. It is very interesting that they are quite similar in form to the classic

information filter. In the two analytical fusion formulae, the information of each sensor can be clearly

characterized, and the knowledge of the correlation among measurement noises across sensors are not

required. Finally, multi-algorithm fusion is used to minimize the size of the state bounding ellipsoid by

complementary advantages of multiple parallel algorithms. A typical numerical example in target tracking

demonstrates the effectiveness of the centralized, distributed, and multi-algorithm set-membership fusion

algorithms. In particular, it shows that multi-algorithm fusion performs better than the centralized and

distributed fusion.

keywords: Nonlinear dynamic systems, multisensor fusion, target tracking, unknown but bounded noise,

set-membership filter
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1 Introduction

In recent years, the multisensor estimation fusion or data fusion has received significant attention for target

tracking, artificial intelligence, sensor networks and big data (see [1, 2, 3, 4]), since many practical problems

involve information or data from multiple sources. The problem of multisensor estimation fusion is that how

to optimally fuse sensor data from multiple sensors to provide more useful and accurate information for the

purpose of estimating an unknown process state [5]. Currently, the estimation fusion technology has rapidly

evolved from a loosely related techniques to an emerging real engineering discipline with standardized ter-

minology [6].

Generally speaking, there are two traditional architectures for estimation fusion, namely, centralized

fusion structure and distributed fusion structure. The centralized architecture is sending the raw data of each

sensor to the fusion center, theoretically, which is nothing but an estimation problem with distributed data.

Moreover, the centralized fusion approach can usually reach optimal linear estimation in mean squared error

(MSE) sense [6]1. However, the distributed architecture is propagating the estimation of each sensor to the

fusion center, which decreases computational burden in the fusion center, but it may not get the optimal linear

estimation in MSE sensse. Due to its important practical significance, distributed estimation fusion has been

studied extensively, see [5], [7], [8], [9], [10].

For multisensor point estimation fusion in probabilistic setting, many results have been obtained (see,

e.g., books [11], [12], [13]). [5] provides the optimal linear estimation fusion method for a unified linear

model. [14] proves that the distributed fusion algorithm is equivalent to the optimal centralized Kalman

filtering in the case of cross-uncorrelated sensor noises, and the one for the case of cross-correlated sensor

noises is proposed in [15]. When there exists the limitation of communication bandwidth between a fusion

center and sensors, [16] achieves a constrained optimal estimation at the fusion center. In addition, [17]

proposes lossless linear transformation of the raw measurements of each sensor for distributed estimation

fusion. Most existing information fusion algorithms are based on the sequential estimation techniques such

as Kalman filter, information filter and the weighted least-squares methods [18], which need to know the

accurate statistical knowledge of the process and measurement noises.

Since the limitation of human and material resources in real life, we cannot obtain the exact statistical

characteristics of noise, which may lead to poor performance for the state estimation (see [19], [20]). Es-

pecially for the nonlinear target tracking systems, it is more sensitive to the precise distribution information

of noise. In many engineering applications, it is easier to obtain the upper bound and lower bound of a un-

known noise [21]. In the unknown but bounded setting, the earliest work about the set-membership filter is

proposed by [22] at the end of 1960s, and it is later developed by [23] and [24]. These robust filters are de-

rived through set-membership estimate, usually a bounding ellipsoid of containing the true state. Moreover,

the set-membership filter for nonlinear dynamic system has also been investigated by [25], [26], [27] and

references therein.

1For nonlinear estimation, the centralized fusion cannot guarantee in general to reach the optimal estimation.
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For multisensor set-membership fusion in bounded setting, [28] proposes a relaxed Chebyshev center

covariance intersection (CI) algorithm to fuse the local estimates, geometrically, which is the center of the

minimum radius ball enclosing the intersection of estimated ellipsoids of each sensor. In order to account for

the inconsistency problem of the local estimates, [29] proposes a covariance union method (CU) and it is more

conservative than CI fusion. However, the judgment and calculation about correlation may be difficult. Since

the set-membership filter only needs to know the bound of the noises, rather than the statistical properties of

noises, it does not require to judge the correlation between each sensor, which inspires us to consider set-

membership information fusion. When the dynamic system is linear dynamic systems, [30] proposes some

algorithms of multisensor set-membership information fusion to minimize Euclidean estimation error of the

state vector. However, for nonlinear dynamic systems, the multisensor set-membership information fusion

has not received enough research attention. These facts motivate us to further research the more challenging

set-membership fusion problem for nonlinear dynamic systems.

In this paper, two popular fusion architectures are considered: centralized and distributed set-membership

information fusion. Firstly, both of them can be converted into a semidefinite programming (SDP) problem

which can be efficiently computed, respectively. Secondly, their analytical solutions can be derived surpris-

ingly by using decoupling technique. It is very interesting that they are quite similar in form to the classic

information filter in MSE sense [18]. In the two analytical fusion formulae, the information of each sensor

can be clearly characterized, and the knowledge of the correlation among measurement noises across sensors

are not required. Finally, multi-algorithm fusion is used to minimize the size of the state bounding ellipsoid

by complementary advantages of multiple parallel algorithms. A typical numerical example in target track-

ing demonstrates the effectiveness of the centralized, distributed, and multi-algorithm set-membership fusion

algorithms. In particular, it shows that multi-algorithm fusion performs better than both the centralized and

distributed fusion.

The rest of the paper is organized as follows. Section 2 introduces the problem formulation for the

centralized fusion and the distributed fusion. In Section 3, the centralized set-membership information fusion

algorithm is derived by S-procedure, Schur complement and decoupling technique. Section 4 provides the

distributed set-membership information fusion algorithm. A typical example in target tracking is presented

in Section 5, while conclusion is drawn in Section 6.

2 Preliminaries

2.1 Problem Formulation for Centralized Fusion

Consider the L-sensor centralized nonlinear dynamic system with unknown but bounded noises as follows:

xk+1 = fk(xk) +wk, (1)

yi
k = hik(xk) + vi

k, i = 1, . . . , L, (2)
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where xk ∈ Rn is the state of system at time k, yi
k ∈ Rm is the measurement at the ith sensor, i = 1, . . . , L,

fk(xk) is the nonlinear function of the state xk, hik(xk) is nonlinear measurement function of xk at the ith

sensor, wk ∈ Rn is the uncertain process noise and vi
k ∈ Rm is the uncertain measurement noise. Assume

that wk and vi
k are confined to specified ellipsoidal sets

Wk = {wk : wT
kQ

−1
k wk ≤ 1}

Vi
k = {vi

k : vi
k

T
(Ri

k)
−1vi

k ≤ 1}

where Qk and Ri
k are the shape matrix of the ellipsoids Wk and Vi

k, i = 1, . . . , L, respectively. Both of

them are known symmetric positive-definite matrices.

Suppose that when the nonlinear functions are linearized, the remainder terms can be bounded by an

ellipsoid, respectively. Specifically, by Taylor’s Theorem, fk and hik can be linearized to

fk(x̂k +Efkuk) = fk(x̂k) + JfkEfkuk +∆fk(uk), (3)

hik(x̂k +Ehi
k
uk) = hik(x̂k) + Jhi

k
Ehi

k
uk +∆hik(uk) (4)

where Jfk = ∂fk(xk)
∂xk

|x̂k
, Jhi

k
=

∂hi
k
(xk)

∂xk
|x̂k

, are Jacobian matrices. ∆fk(uk) and ∆hik(uk) are high-order

remainders, which can be bounded in an ellipsoid for ‖ uk ‖≤ 1, i = 1, . . . , L, respectively, i.e.,

∆fk(uk) ∈ Efk = {x ∈ Rn : (x− efk)
T (Pfk)

−1(x− efk) ≤ 1}, (5)

= {x ∈ Rn : x = efk +Bfk∆fk ,Pfk = BfkB
T
fk
, ‖ ∆fk ‖≤ 1}, (6)

∆hik(uk) ∈ Ehi
k

= {x ∈ Rm : (x− ehi
k
)T (Phi

k
)−1(x− ehi

k
) ≤ 1}, (7)

= {x ∈ Rm : x = ehi
k
+Bhi

k
∆hi

k
,Phi

k
= Bhi

k
BT

hi
k

, ‖ ∆hi
k
‖≤ 1}, (8)

where efk and ehi
k

are the centers of the ellipsoids Efk and Ehi
k
, respectively; Pfk and Phi

k
are the shape

matrices of the ellipsoids Efk and Ehi
k
, respectively. Note that [27] proposes the Monte Carlo methods for the

bounding ellipsoids of the remainders, which can effectively take advantage of the character of the nonlinear

functions, and it can obtain the tighter bounding ellipsoids Efk and Ehi
k

to cover the remainders on line.

The corresponding centralized set-membership information fusion problem can be formulated as follows.

Assume that the initial state x0 belongs to a given bounding ellipsoid:

Ec
0 = {x ∈ Rn : (x− x̂c

0)
T (Pc

0)
−1(x− x̂c

0) ≤ 1}, (9)

where x̂c
0 is the center of ellipsoid Ec

0 , and Pc
0 is the shape matrix of the ellipsoid Ec

0 which is a known

symmetric positive-definite matrix. At time k, given that xk belongs to a current bounding ellipsoid:

Ec
k = {x ∈ Rn : (x− x̂c

k)
T (Pc

k)
−1(x− x̂c

k) ≤ 1} (10)

= {x ∈ Rn : x = x̂c
k +Ec

kuk,P
c
k = Ec

kE
c
k
T , ‖ uk ‖≤ 1}, (11)

where x̂c
k is the center of ellipsoid Ec

k, and Pc
k is a known symmetric positive-definite matrix. At next time

k + 1, the fusion center can obtain the measurements yi
k+1 from the ith sensor, i = 1, . . . , L. For the
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centralized fusion system, the goal of the fusion center is to determine a prediction ellipsoid Ec
k+1|k and an

estimation ellipsoid Ec
k+1 at time k + 1. Firstly, in prediction step, we look for x̂c

k+1|k and Pc
k+1|k such that

the state xk+1 belongs to

Ec
k+1|k = {x ∈ Rn : (x− x̂c

k+1|k)
T (Pc

k+1|k)
−1(x− x̂c

k+1|k) ≤ 1} (12)

whenever I) xk is in Ec
k, II) the process noise wk ∈ Wk, and III) the remainder ∆fk(uk) ∈ Efk . Secondly,

in the fusion update step, we look for x̂c
k+1 and Pc

k+1 such that the state xk+1 belongs to

Ec
k+1 = {x ∈ Rn : (x− x̂c

k+1)
T (Pc

k+1)
−1(x− x̂c

k+1) ≤ 1} (13)

whenever I) xk+1|k is in Ec
k+1|k, II) measurement noises vi

k+1 ∈ Vi
k+1, i = 1, . . . , L, and III) the remainders

∆hik+1(uk+1) ∈ Ehi
k+1

, i = 1, . . . , L.

Moreover, we provide a state bounding ellipsoid by minimizing its “size” at each time which is a function

of the shape matrix P denoted by f(P). If we choose trace function, i.e., f(P) = tr(P), which means the

sum of squares of semiaxes lengths of the ellipsoid E , the other common “size” of the ellipsoid is logdet(P),

which corresponds to the volume of the ellipsoid E . In order to emphasize the importance of the interested

state vector entry, [31] proposes an objective of the ellipsoid E as follows

f(P) = ω1P11 + ω2P22 + . . .+ ωnPnn (14)

where ωi is the weight coefficient with ωi > 0,
∑n

i=1 ωi = 1, and Pii denotes the element in the ith row and

the ith column of the matrix P, i = 1, . . . , L. If the bound of the ith entry of the interested state vector is

very important, we can give a larger weight to ωi. When ωi =
1
n

, i = 1, . . . , L, which means that each entry

of the state vector is treated equally, and it is also equivalent to the trace function.

Therefore, we can use multi-algorithm fusion to obtain multiple bounding estimated ellipsoids, which

squashed along each entry of the state vector as much as possible based on different weighted objective (14),

then the intersection of these bounding ellipsoids can derive a final state bounding ellipsoid with a smaller

size.

2.2 Problem Formulation for Distributed Fusion

In this paper, we also consider L-sensor distributed estimation fusion for the nonlinear dynamic system (1)

and (2). The problem is formulated as follows.

At time k + 1, the ith local sensor can use the measurements Yi
k+1 , {yi

1,y
i
2, . . . ,y

i
k+1} to obtain the

bounding ellipsoid E i
k+1 by the single sensor recursive method [27]. Then, the local estimated ellipsoids

E i
k+1 are sent to the fusion center without communication delay for i = 1, . . . , L. Suppose that the initial

state x0 belongs to a given bounding ellipsoid:

Ed
0 = {x ∈ Rn : (x− x̂d

0)
T (Pd

0)
−1(x− x̂d

0) ≤ 1}, (15)
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where x̂d
0 is the center of ellipsoid Ed

0 , and Pd
0 is the shape matrix of the ellipsoid Ed

0 which is a known

symmetric positive-definite matrix. At time k, given that xk belongs to a current bounding ellipsoid:

Ed
k = {x ∈ Rn : (x− x̂d

k)
T (Pd

k)
−1(x− x̂d

k) ≤ 1} (16)

= {x ∈ Rn : x = x̂d
k +Ed

kuk,P
d
k = Ed

kE
d
k

T
, ‖ uk ‖≤ 1}, (17)

where x̂d
k is the center of ellipsoid Ed

k , and Pd
k is a known symmetric positive-definite matrix. At next time

k + 1, the fusion center can receive the state bounding ellipsoid of the ith sensor

E i
k+1 = {x ∈ Rn : (x− x̂i

k+1)
T (Pi

k+1)
−1(x− x̂i

k+1) ≤ 1}. (18)

Firstly, in prediction step, the goal of the fusion center is to determine a state bounding ellipsoid Ed
k+1|k, i.e.,

look for x̂d
k+1|k and Pd

k+1|k such that the state xk+1 belongs to

Ed
k+1|k = {x ∈ Rn : (x− x̂d

k+1|k)
T (Pd

k+1|k)
−1(x− x̂d

k+1|k) ≤ 1} (19)

whenever I) xk is in Ed
k , II) the process noise wk ∈ Wk, and III) the remainder ∆fk(uk) ∈ Efk . Secondly,

in the fusion update step, we look for x̂d
k+1 and Pd

k+1 such that the state xk+1 belongs to

Ed
k+1 = {x ∈ Rn : (x− x̂d

k+1)
T (Pd

k+1)
−1(x− x̂d

k+1) ≤ 1} (20)

whenever I) xk+1 is in Ed
k+1|k, II) xk+1 is in E i

k+1, i = 1, . . . , L. Moreover, we provide a state bounding

ellipsoid by minimizing its “size” in prediction and update step, respectively.

3 Centralized Fusion

In this section, we discuss the centralized set-membership estimation fusion, which includes the prediction

step and the fusion update step. By taking full advantage of the character of the nonlinear dynamic system and

the recent optimization method proposed in [24] for linear dynamic system, the centralized set-membership

estimation fusion can be achieved by solving an SDP problem, which can be efficiently computed by interior

point methods [32] and related softwares [33, 34]. Furthermore, the centralized set-membership information

filter is derived based on the decoupling technique, which can make further to improve the computation

complexity of SDP. The analytical formulae of the state prediction and estimation bounding ellipsoid at time

k + 1 are proposed, respectively.

3.1 Prediction Step

In the prediction step, the state prediction bounding ellipsoid at time k + 1 can be derived as follows.

Lemma 3.1. At time k + 1, based on the state bounding ellipsoid Ec
k, the remainder bounding ellipsoid

Efk and the noise bounding ellipsoid Wk, the state prediction bounding ellipsoid Ec
k+1|k = {x : (x −

6



x̂c
k+1|k)

T (Pc
k+1|k)

−1(x− x̂c
k+1|k) ≤ 1} can be obtained by solving the optimization problem in the variables

Pc
k+1|k, x̂c

k+1|k, nonnegative scalars τu ≥ 0, τw ≥ 0, τ f ≥ 0,

min f(Pc
k+1|k) (21)

subject to − τu ≤ 0, − τw ≤ 0, − τ f ≤ 0, (22)

Pc
k+1|k ≻ 0, (23)





Pc
k+1|k Φk+1|k(x̂

c
k+1|k)

(Φk+1|k(x̂
c
k+1|k))

T Ξ



 � 0, (24)

where

Φk+1|k(x̂
c
k+1|k) = [fk(x̂

c
k) + efk − x̂c

k+1|k, JfkE
c
k, I, Bfk ], (25)

Ξ = diag(1− τu − τw − τ f , τuI, τwQ−1
k , τ f I), (26)

Ec
k is the Cholesky factorization of Pc

k, i.e, Pc
k = Ec

k(E
c
k)

T , efk and Bfk are denoted by (6), and Jfk =
∂fk(xk)
∂xk

|x̂k
is Jacobian matrix.

Proof: See Appendix.

Remark 3.2. The objective function (21) is aimed at minimizing the shape matrix of the predicted ellipsoid,

and the constraints (22)-(24) ensure that the true state is contained in the the bounding ellipsoid Ek+1|k.

Interestingly, if the objective function is the trace of the shape matrix of the bounding ellipsoid, then the

analytically optimal solution of the optimization problem (21)-(24) can be achieved for the sate prediction

step.

Theorem 3.3. If the objective function f(Pc
k+1|k) = tr(Pc

k+1|k), then the analytically optimal solution for

the state prediction is as follows:

Pc
k+1|k =

JfkP
c
kJ

T
fk

τuopt
+

Pfk

τ
f
opt

+
Qk

τwopt
, (27)

x̂c
k+1|k = fk(x̂

c
k) + efk , (28)
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where

τuopt =

√

tr(JfkP
c
kJ

T
fk
)

√

tr(JfkP
c
kJ

T
fk
) +

√

tr(Qk) +
√

tr(Pfk)
, (29)

τ
f
opt =

√
tr(Pfk)

√

tr(JfkP
c
kJ

T
fk
) +

√

tr(Qk) +
√

tr(Pfk)
, (30)

τwopt =

√

tr(Qk)
√

tr(JfkP
c
kJ

T
fk
) +

√

tr(Qk) +
√

tr(Pfk)
, (31)

Jfk = ∂fk(xk)
∂xk

|x̂k
is the Jacobian matrix of the nonlinear state function fk denoted by (3), efk and Pfk are

the center and shape matrix of the bounding ellipsoid of the remainder denoted by (6), respectively, and τuopt,

τwopt, τ
f
opt are the optimal solution of the decision variables τu, τw, τ f , respectively.

Proof: See Appendix.

Remark 3.4. When the state equation is linear, there is no the remainder constraint of the nonlinear state

equation, i.e., Pfk = 0, it is easy to observe that the optimum ellipsoid derived by Theorem 3.3 coincides

with the classical Schweppe bounding ellipsoid [22].

3.2 Fusion update step

In the fusion update step, the state bounding ellipsoid at time k + 1 can be derived as follows.

Lemma 3.5. At time k+1, based on the measurements yi
k+1, i = 1, . . . , L, the predicted bounding ellipsoid

Ec
k+1|k and the remainder bounding ellipsoids Ehi

k+1
, i = 1, . . . , L, and the noise bounding ellipsoids Vi

k,

i = 1, . . . , L, the centralized state bounding ellipsoid Ec
k+1 = {x : (x− x̂c

k+1)
T (Pc

k+1)
−1(x− x̂c

k+1) ≤ 1}

can be obtained by solving the optimization problem in the variables Pc
k+1, x̂c

k+1, nonnegative scalars τu ≥

0, τvi ≥ 0, τhi ≥ 0, i = 1, . . . , L,

min f(Pc
k+1) (32)

subject to − τu ≤ 0, − τvi ≤ 0, − τhi ≤ 0, (33)

−Pc
k+1 ≺ 0, (34)





−Pc
k+1 Φc

k+1(x̂
c
k+1)(Ψ

c
k+1)⊥

(Φc
k+1(x̂

c
k+1)(Ψ

c
k+1)⊥)

T − (Ψc
k+1)

T
⊥Ξ(Ψ

c
k+1)⊥



 � 0, (35)
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where

Φc
k+1(x̂

c
k+1) = [x̂c

k+1|k − x̂c
k+1,E

c
k+1|k,

... 0, . . . , 0
︸ ︷︷ ︸

L blocks

,
... 0, . . . , 0
︸ ︷︷ ︸

L blocks

], 0 ∈ Rn,m, (36)

Ψc
k+1(y

i
k+1) = [hik+1(x̂

c
k+1|k) + ehi

k+1
− yi

k+1,Jhi
k+1|k

Ec
k+1|k, (37)

... 0, . . . , I, . . . 0
︸ ︷︷ ︸

the i−th block is I

,
... 0, . . . ,Bhi

k+1
, . . . , 0

︸ ︷︷ ︸

the i−th block is B
hi
k+1

],

Ψc
k+1 = [(Ψc

k+1(y
1
k+1))

T , . . . , (Ψc
k+1(y

L
k+1))

T ]T , (38)

Ξ = diag(1− τu −

L∑

i=1

τvi −

L∑

i=1

τhi , τ
uI, τv1R

1−1

k+1, . . . , τ
v
LR

L−1

k+1
︸ ︷︷ ︸

L blocks

, τh1 I, . . . , τ
h
LI

︸ ︷︷ ︸

L blocks

). (39)

Ec
k+1|k is the Cholesky factorization of Pc

k+1|k, i.e, Pc
k+1|k = Ec

k+1|k(E
c
k+1|k)

T , x̂c
k+1|k is the center of

the predicted bounding ellipsoid Ec
k+1|k, ehk+1

and Bhk+1
are denoted by (8) at the time step k + 1, and

Jhi
k+1|k

=
∂hi

k+1(xk+1)

∂xk+1
|x̂c

k+1|k
, i = 1, . . . , L, are Jacobian matrices.

Proof: See Appendix.

Moreover, in order to reduce computation complexity, we can derive an explicit expression of Ec
k+1. In

Lemma 3.5, note that a suitable form of the orthogonal complement of Ψc
k+1 can be chosen as follows

(Ψc
k+1)⊥ =

[

−1 0

Ψ21 Ψ22

]

,

where

Ψ21 = [0, (h1k+1(x̂
c
k+1|k)− y1

k+1)
T , . . . , (hLk+1(x̂

c
k+1|k)− yL

k+1)
T , (40)

(B−1
h1
k+1

eh1
k+1

)T , . . . , (B−1
hL
k+1

ehL
k+1

)T ]T ,

Ψ22 =




























(Ec
k+1|k)

−1 0 0 · · · 0

−Jh1
k+1|k

I 0
... 0

−Jh2
k+1|k

0 I
... 0

...
...

...
...

...

−JhL
k+1|k

0 0
... I

0 −B−1
h1
k+1

0
... 0

0 0 −B−1
h2
k+1

... 0

...
...

...
...

...

0 0 0 · · · −B−1
hL
k+1




























. (41)

9



If we denote

Ξ = diag(Ξ11,Ξ22),

Ξ11 = 1− τu −

L∑

i=1

τvi −

L∑

i=1

τhi , (42)

Ξ22 = diag(τuI, τv1R
1−1

k+1, . . . , τ
v
LR

L−1

k+1
︸ ︷︷ ︸

L blocks

, τh1 I, . . . , τ
h
LI

︸ ︷︷ ︸

L blocks

), (43)

then Equation (35) is equivalent to the following form by reordering of the blocks






Pc
k+1 x̂c

k+1 − x̂c
k+1|k B

(x̂c
k+1 − x̂c

k+1|k)
T Ξ11 +ΨT

21Ξ22Ψ21 ΨT
21Ξ22Ψ22

BT ΨT
22Ξ22Ψ21 ΨT

22Ξ22Ψ22




 � 0, (44)

B = [I 0, . . . , 0
︸ ︷︷ ︸

L blocks

], (45)

where I and 0 have compatible dimensions. Moreover, the decoupled fusion update step is given in the

following theorem.

Theorem 3.6. Consider the optimization problem in the variables τu, τvi , τ
h
i , i = 1, . . . , L

min f(B(ΨT
22Ξ22Ψ22)

−1BT ) (46)

subject to − τu ≤ 0, − τvi ≤ 0, − τhi ≤ 0, (47)

[

Ξ11 +ΨT
21Ξ22Ψ21 ΨT

21Ξ22Ψ22

ΨT
22Ξ22Ψ21 ΨT

22Ξ22Ψ22

]

� 0, (48)

where Ψ21, Ψ22, Ξ11, Ξ22, B are denoted by (40), (41), (42), (43), (45), respectively. If the above problem

is feasible, then there exists an optimal ellipsoid. The shape matrix and center of the optimal fusion update

ellipsoid Ec
k+1 are given by

Pc−1

k+1 = τuoptP
c−1

k+1|k +

L∑

i=1

JT
hi
k+1|k

(

Ri
k+1

τvopti
+

Phi
k+1

τhopti

)−1

Jhi
k+1|k

(49)

x̂c
k+1 = x̂c

k+1|k +
L∑

i=1

τvoptiK
i
k+1(y

i
k+1 − hik+1(x̂

c
k+1|k))−Ck+1, (50)

where

Ki
k+1 = Pc

k+1J
T
hi
k+1|k

Ri−1

k+1 −M1M2J
T
hi
k+1|k

Ri−1

k+1(τ
v
opti

Ri−1

k+1 + τhoptiP
−1
hi
k+1

)−1τvoptiR
i−1

k+1 (51)

Ck+1 = M1M2

(
L∑

i=1

τvoptiJ
T
hi
k+1|k

Ri−1

k+1(τ
v
opti

Ri−1

k+1 + τhoptiP
−1
hi
k+1

)−1τhoptiP
−1
hi
k+1

ehi
k+1

)

10



M1 =

(

τuoptP
c−1

k+1|k +

L∑

i=1

τvoptiJ
T
hi
k+1|k

Ri−1

k+1Jhi
k+1|k

)−1

M2 = I+
L∑

i=1

τvoptiJ
T
hi
k+1|k

Ri−1

k+1(τ
v
opti

Ri−1

k+1 + τhoptiP
−1
hi
k+1

)−1τvoptiR
i−1

k+1Jhi
k+1|k

Pc
k+1,

Jhi
k+1|k

=
∂hi

k+1(xk+1)

∂xk+1
|x̂c

k+1|k
i = 1, . . . , L are the Jacobian matrices of the nonlinear measurement function

hik+1 denoted by (4), ehi
k+1

and Phi
k+1

are the center and shape matrix of the bounding ellipsoid of the

remainder denoted by (8), respectively, and τvopti , τ
h
opti

are the optimal solutions of the decision variables

τvi , τ
h
i , i = 1, . . . , L, in the optimization problem (46)–(48).

Proof: See Appendix.

Remark 3.7. Here, we call the equations (49)–(50) centralized set-membership information filter, which has

following characters:

• Similar to the information filter [18], JT
hi
k+1|k

(
Ri

k+1

τvopti
+

P
hi
k+1

τhopti

)−1

Jhi
k+1|k

and Ki
k+1 in (49)–(50) can

be taken as the update information matrix and the gain matrix provided by the i-th sensor for the

estimator, respectively. τvopti , i = 1, . . . , L are the fusion weights.

• Ck+1 is the nonlinear correction term of the state update estimation, which relies on the nonlinear

measurement functions hik+1, i = 1, . . . , L.

• When the measurement equations are linear, there are no the remainder constraints, i.e., Phi
k+1

= 0, it

is easy to observe that the optimum ellipsoid derived by the Theorem 3.6 also similar to the classical

Schweppe bounding ellipsoid [22].

Remark 3.8. If f(P) = tr(P) and Ψc
k+1 is full-rank, then the optimization problem (32)-(35) in Lemma

3.5 is an SDP problem, the dimension of the constraint matrix (35) is M = n + (n + 2mL + 1 − mL) =

mL + 2n + 1 and the number of decision variables is N = n(n+1)
2 + n + 2L + 1, where n,m and L are

the dimensions of the state, the measurement and the number of sensors, respectively. Moreover, if we use

a general-purpose primal-dual interior-point algorithm to solve it, then the computation complexity of the

problem is O(M2N2), see [32]. Therefore, in our case, the computation complexity is O(n6) if n > mL,

otherwise, it is O(m2L4).

As described in [35], we can use a path-following interior-point method to solve (46)-(48) in Theorem

3.6. A tedious but straightforward computation shows the practical complexity can be assumed to be O(n3L+

m3L4), which implies an O(n3) dependence on the size of the state x, and O(m3L4) dependence on the

number of the sensor. Therefore, for the fixed number of sensors, the complexity of the decoupled problem

(46) improves upon that of the coupled one (32) by a factor of O(n3).

The centralized set membership information fusion algorithm can be summarized as follows.

11



Algorithm 3.9 (Centralized set membership information fusion algorithm).

• Step 1: (Initialization step) Set k = 0 and initial values (x̂0,P0) such that x0 ∈ E0.

• Step 2: (Bounding step) Take samples u1
k, . . . ,u

N
k from the sphere ||uk|| ≤ 1, and then determine two

bounding ellipsoids to cover the remainders ∆fk by (5)-(6).

• Step 3: (Prediction step [27]) Optimize the center and shape matrix of the state prediction ellipsoid

(x̂c
k+1|k,P

c
k+1|k) such that xc

k+1|k ∈ Ec
k+1|k by (21)-(24) or (27)-(28).

• Step 4: (Bounding step [27]) Take samples u1
k+1|k, . . . ,u

N
k+1|k from the sphere ||uk+1|k|| ≤ 1, and

then determine one bounding ellipsoid to cover the remainder ∆hi
k+1|k, i = 1, . . . , L, by (7)-(8).

• Step 5: (Fusion update step) Optimize the center and shape matrix of the state estimation ellipsoid

(x̂c
k+1,P

c
k+1) such that xc

k+1 ∈ Ec
k+1 by solving the optimization problem (32)-(35) or (46)-(48).

• Step 6: Set k = k + 1 and go to step 2.

4 Distributed Fusion

In this section, in order to reduce the computation burden of the fusion center and improve the reliability, ro-

bustness, and survivability of the fusion system [5], the distributed set-membership estimation fusion method

is derived by fusing the state bounding ellipsoids, which are sent from the local sensors and using the char-

acter of the nonlinear state function. Since the state prediction step of the distributed fusion is completely

same as that of the centralized fusion, we only discuss the fusion update step of the distributed fusion. In

addition, the distributed set-membership information fusion formula can also be achieved by the decoupling

technique. The main results are summarized to Lemma 4.1 and Theorem 4.3. The proofs are also given in

Appendix.

Lemma 4.1. At time k+1, based on the prediction bounding ellipsoids Ed
k+1|k and the estimation bounding

ellipsoids of single sensors E i
k+1, i = 1, . . . , L, the distributed state bounding ellipsoid Ed

k+1 = {x : (x −

x̂d
k+1)

T (Pd
k+1)

−1(x − x̂d
k+1) ≤ 1} can be obtained by solving the optimization problem in the variables

12



Pd
k+1, x̂d

k+1, nonnegative scalars τu ≥ 0, τyi ≥ 0, i = 1, . . . , L,

min f(Pd
k+1) (52)

subject to − τu ≤ 0, − τ
y
i ≤ 0 (53)

−Pd
k+1 ≺ 0, (54)





−Pd
k+1 Φd

k+1

(Φd
k+1)

T − Ξ−Π



 � 0, (55)

where

Φd
k+1 = [x̂d

k+1|k − x̂d
k+1,E

d
k+1|k], (56)

Φi
k+1 = [x̂d

k+1|k − x̂i
k+1,E

d
k+1|k], (57)

Π =

L∑

i=1

τ
y
i (Φ

i
k+1)

T (Pi
k+1)

−1Φi
k+1, (58)

Ξ = diag(1− τu −

L∑

i=1

τ
y
i , τ

uI), (59)

Ed
k+1|k is the Cholesky factorization of Pd

k+1, i.e, Pd
k+1 = Ed

k+1|k(E
d
k+1|k)

T .

Proof: See Appendix.

Remark 4.2. Compared with the centralized fusion in Lemma 3.5, it can be seen that the dimension of

the constraint matrix (55) is M = 2n + 1 independent of the number of the sensors and the number of

decision variables is N = n(n+1)
2 + n + L + 1. However, the dimension of the constraint matrix (35) is

M = mL+ 2n + 1, and the number of the decision variables is N = n(n+1)
2 + n + 2L+ 1. Therefore, the

distributed fusion can decrease much more computation burden of the fusion center.

Note that (55) can be rewritten to









Pd
k+1 x̂d

k+1|k − x̂d
k+1 Ed

k+1|k

(x̂d
k+1|k − x̂d

k+1)
T Υ11 Υ12

(Ed
k+1|k)

T ΥT
12 Υ22









� 0, (60)
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where

Υ11 = 1− τu −

L∑

i=1

τ
y
i +

L∑

i=1

τ
y
i (x̂

d
k+1|k − x̂i

k+1)
TPi−1

k+1(x̂
d
k+1|k − x̂i

k+1), (61)

Υ12 =

L∑

i=1

τ
y
i (x̂

d
k+1|k − x̂i

k+1)
TPi−1

k+1E
d
k+1|k, (62)

Υ22 = τuI +
L∑

i=1

τ
y
i E

dT

k+1|kP
i−1

k+1E
d
k+1|k. (63)

Moreover, we can derive an analytical formula for the shape matrix and the center of the bounding

ellipsoid Ed
k+1|k as follows.

Theorem 4.3. Consider the convex optimization problem in the variables τu, τ
y
i , i = 1, . . . , L,

min f(Ed
k+1|kΥ

−1
22 E

dT

k+1|k) (64)

subject to − τu ≤ 0, − τ
y
i ≤ 0 (65)

[

Υ11 Υ12

ΥT
12 Υ22

]

� 0, (66)

where Ed
k+1|k is the Cholesky factorization of Pd

k+1, i.e, Pd
k+1 = Ed

k+1|k(E
d
k+1|k)

T , and Υ11,Υ12, Υ22 are

denoted by (61)-(63), respectively. If the above problem is feasible, then there exists an optimal bounding

ellipsoid, and the shape matrix and center of the optimal bounding ellipsoid Ed
k+1|k are given by

(Pd
k+1)

−1 = τuopt(P
d
k+1|k)

−1 +
L∑

i=1

τ
y
opti

(Pi
k+1)

−1 (67)

x̂d
k+1 = x̂d

k+1|k +

L∑

i=1

τ
y
opti

Pd
k+1(P

i
k+1)

−1(x̂i
k+1 − x̂d

k+1|k), (68)

where τ
y
opti

is the optimal solution of the decision variable τ
y
i , i = 1, . . . , L, respectively.

Proof. The proof is similar to Theorem 3.6.

Remark 4.4. We call the equations (67)–(68) distributed set-membership information filter. In (67)–(68),

τ
y
opti

(Pi
k+1)

−1 and Pd
k+1(P

i
k+1)

−1 can be taken as the update information matrix and the gain matrix pro-

vided by the i-th sensor for the estimator, respectively, and τ
y
opti

, i = 1, . . . , L are the fusion weights.

The distributed set membership information fusion algorithm can be summarized as follows.
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Table 1: Set-Membership Information Fusion Formulae
Fusion method Centralized set membership information fusion algorithm Distributed set membership information fusion algorithm

Nonlinear xk+1 = fk(xk) + wk xk+1 = fk(xk) + wk

model yi
k = hi

k(xk) + vi
k, i = 1, . . . , L x̂i

k+1
= xk+1 − x̂d

k+1|k − Ed
k+1|kuk+1|k + x̂i

k+1

Noise bounds Wk = {wk : wT
k Q

−1

k
wk ≤ 1} Wk = {wk : wT

k Q
−1

k
wk ≤ 1}

Vi
k = {vi

k : vi
k
T
(Ri

k)
−1vi

k ≤ 1} E = {uk+1|k :‖ uk+1|k ‖≤ 1}

Remainder bounds Methods in [25] or [27] Methods in [25] or [27]

Data received y1
k, . . . , y

L
k x̂1

k, . . . , x̂L
k

Optimum weights SDP (46)-(48) SDP (64)-(66)

Pc−1

k+1 = τu
optP

c−1

k+1|k (49)

Information +
∑L

i=1 JT

hi
k+1|k





R
i
k+1

τv
opti

+

P
hi
k+1

τh
opti





−1

J
hi
k+1|k

(Pd
k+1

)−1 = τu
opt(P

d
k+1|k)

−1 +
∑L

i=1 τ
y
opti

(Pi
k+1

)−1 (67)

filter fuser x̂c
k+1

= x̂c
k+1|k (50) x̂d

k+1
= x̂d

k+1|k (68)

+
∑L

i=1 τv
opti

Ki
k+1

(yi
k+1

− hi
k+1

(x̂c
k+1|k)) − Ck+1 +

∑L
i=1 τ

y
opti

Pd
k+1

(Pi
k+1

)−1(x̂i
k+1

− x̂d
k+1|k)

Algorithm 4.5 (Distributed set membership information fusion algorithm).

• Step 1: (Initialization step) Set k = 0 and initial values (x̂0,P0) such that x0 ∈ E0.

• Step 2: (Bounding step [27]) Take samples u1
k, . . . ,u

N
k from the sphere ||uk|| ≤ 1, and then determine

a bounding ellipsoid to cover the remainders ∆fk by (5)-(6).

• Step 3: (Prediction step) Optimize the center and shape matrix of the state prediction ellipsoid (x̂d
k+1|k,

Pd
k+1|k) such that x̂d

k+1|k ∈ Ed
k+1|k by solving the optimization problem (21)-(24) or (27)-(28).

• Step 4: (Fusion update step) Optimize the center and shape matrix of the state estimation ellipsoid

(x̂d
k+1,P

d
k+1) such that xd

k+1 ∈ Ed
k+1 by solving the optimization problem (52)-(55) or (64)-(66) based

on the state prediction bounding ellipsoids Ed
k+1|k and bounding ellipsoids of single sensors E i

k+1,

i = 1, . . . , L.

• Step 5: Set k = k + 1 and go to step 2.

Remark 4.6. In target tracking, whether it is the distributed fusion or the centralized fusion, if the measure-

ment only contain range and angle, the boundary sampling method [27] can be used to drive the bounding

ellipsoid of the remainders with less computation complexity. Therefore, the bounding steps of Algorithm

3.9 and Algorithm 4.5 can be computed efficiently. Finally, the set-membership information fusion formulae

are summarized in Table 1.

Remark 4.7. As far as multi-algorithm fusion for nonlinear dynamic systems is concerned, the multiple

bounding ellipsoids can be constructed to minimize the size of the state bounding ellipsoid by complementary

advantages of multiple parallel algorithms. Specifically, one can use multiple parallel Algorithm 3.9 or 4.5

with differently weighted objectives in (14), where the larger ωj emphasizes the jth entry of the estimated

state vector, then the intersection of these bounding ellipsoids can achieve a tighter bounding ellipsoid that

containing the true state in fusion center.
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5 Numerical examples

In this section, we provide an example to compare the performance of the centralized fusion with that of the

distributed fusion. Moreover, we also use the multi-algorithm fusion to further reduce the estimation error

bound based on the different weighted objective (14).

Consider a common tracking system with bounding noise and there are two sensors track a same target

in different position. The state contain position and velocity of x and y directions. Here, the dynamic system

equations is as follows [18]:

xk+1 =









1 0 T 0

0 1 0 T

0 0 1 1

0 0 0 1









xk +wk, (69)

yi
k =






√

(xk(1) − zik(1))
2 + (xk(2)− zik(2))

2

arctan
(
xk(2)−zi

k
(2)

xk(1)−zi
k
(1)

)




+ vi

k, (70)

for i = 1, 2.

where T is the time sampling interval with T = 1. zik = [zik(1) z
i
k(2)]

T is the position of the ith sensor,

where z1k = [525 525]T and z2k = [524 524]T . Moreover, the process noise wk and measurement noise vk

are taking value in specified ellipsoidal sets

Wk = {wk : wT
kQ

−1
k wk ≤ 1}

Vi
k = {vi

k : vT
k R

i
k

−1
vk ≤ 1}.

where

Qk = σ2









T 3

3 0 T 2

2 0

0 T 3

3 0 T 2

2
T 2

2 0 T 0

0 T 2

2 0 T









Ri
k =

[

0.01 0

0 25

]

.

The target acceleration is σ2 = 1. In the example, the target starts at the point (120, 120) with a velocity of

(6, 6).
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The center and the shape matrix of the initial bounding ellipsoid are x̂0 =
[

120 120 6 6
]T

,

P0 =









100 0 0 0

0 100 0 0

0 0 30 0

0 0 0 30









,

respectively.

In order to simulate the performance of the center fusion and distributed fusion, we assume the process

noise measurement noise are truncated Gaussian with zeros mean and covariance Qk

9 and
Ri

k

9 on the ellip-

soidal sets, respectively. From the description of the above, we can use sensor 1 (SMF1), sensor 2 (SMF2),

the centralized fusion (CSMF) and distributed fusion (DSMF) to calculate the error bound with w = [14
1
4

1
4

1
4 ]

in (14), respectively, moreover, we also use the multi-algorithm fusion (MSMF) to produce the error bound

based on the different weight coefficient with w1 = [1925
2
25

2
25

2
25 ], w2 = [ 2

25
19
25

2
25

2
25 ], w3 = [ 2

25
2
25

19
25

2
25 ],

w4 = [ 2
25

2
25

2
25

19
25 ], where the error bound of the ith entry of the state xk+1 can be calculated by projecting

the ellipsoid along the ith output direction.

The following simulation results are under Matlab R2012a with YALMIP.

Figs. 1-4 present a comparison of the error bounds along position and velocity direction for sensors 1,

2 using Algorithm 3.9 (L=1) and for the fusion center using the centralized fusion Algorithm 3.9 (L=2) and

the distributed fusion Algorithm 4.5 (L=2) and the multi-algorithm fusion, respectively.

From Figs. 1-4, we can observe the following phenomenon:

• The performance of the centralized fusion and the distributed fusion is better than that of sensors.

• The performance of the centralized fusion is better than that of the distributed fusion along x and y po-

sition direction in Figs. 1-2, but the distributed fusion performs slightly better than centralized fusion

along x and y velocity direction in Figs. 3-4. The reasons may be that the optimal bounding ellipsoid

cannot be obtained for the nonlinear dynamic system, and the error bound of the state vector is calcu-

lated by minimizing trace of the shape matrix of the bounding state ellipsoid rather than minimizing

the error bounds along position and velocity directions, respectively.

• The performance of the multi-algorithm fusion is significantly better than that of the other methods

along position and velocity direction. Since it extract the useful information of each entry of the

state vector by the differently weighted objectives. Then the intersection fusion of these estimation

ellipsoids can sufficiently take advantage of the information of each sensor, which yields a tighter state

bounding ellipsoidal.
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Figure 1: Comparison of the error bounds of position along x direction based on 100 Monte Carlo runs.
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Figure 2: Comparison of the error bounds of position along y direction based on 100 Monte Carlo runs.

6 Conclusion

This paper has derived the centralized and distributed set-membership information fusion algorithms for

multisensor nonlinear dynamic system via minimizing state bounding ellipsoid. Firstly, both of them can be

converted into an SDP problem which can be efficiently computed, respectively. Secondly, their analytical

solutions can be derived surprisingly by using decoupling technique. It is very interesting that they are quite

similar in form to the classic information filter in MSE sense. In the two analytical fusion formulae, the

information of each sensor can be clearly characterized, and the knowledge of the correlation among mea-

surement noises across sensors are not required. Finally, multi-algorithm fusion has been used to minimize

the size of the state bounding ellipsoid by complementary advantages of multiple parallel algorithms. A

typical example in target tracking has showed that multi-algorithm fusion performs better than both the cen-
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Figure 3: Comparison of the error bounds of velocity along x direction based on 100 Monte Carlo runs.
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Figure 4: Comparison of the error bounds of velocity along y direction based on 100 Monte Carlo runs.

tralized and distributed fusion. Future work will include, in multisensor nonlinear dynamic system setting,

multiple target tracking, sensor management and heterogeneous sensor fusion.

7 Appendix

Lemma 7.1. [36] Let F0(η),F1(η), . . . ,Fp(η), be quadratic functions in variable η ∈ Rn

Fi(η) = ηTTiη, i = 0, . . . , p (71)

with Ti = TT
i . Then the implication

F1(η) ≤ 0, . . . ,Fp(η) ≤ 0 ⇒ F0(η) ≤ 0 (72)
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holds if there exist τ1, . . . , τp ≥ 0 such that

T0 −

p
∑

i=1

τiTi � 0. (73)

Lemma 7.2. Schur Complements [36]: Given constant matrices A, B, C, where C = CT and A = AT <

0, then

C−BTA−1B � 0 (74)

if and only if

[

A B

BT C

]

� 0 (75)

or equivalently

[

C BT

B A

]

� 0 (76)

Lemma 7.3. Decoupling [24]: Let Xij , 1 ≤ i ≤ j ≤ 2 be matrices of appropriate size, with Xii square and

symmetric. The problem (in variable X,Z)

min
X,Z

f(X) subject to






X Z B

ZT X11 X12

BT XT
12 X22




 � 0 (77)

is feasible if and only if

[

X11 X12

XT
12 X22

]

� 0. (78)

In this case, problem (77)is equivalent to the problem (in variable X only)

min
X

f(X) subject to

[

X B

BT X22

]

� 0. (79)

Moreover, If the problem (79) is feasible, which means that

X � BX+
22B

T , (I−X+
22X22)B

T = 0.

Suppose the objective function is either the trace function or log-det function, then f(X1) ≥ f(X2) whenever

X1 � X2. Thus, (77) admits a unique optimal variable given by X = BX+
22B

T ,Z = BX+
22X

T
12, where

X+
22 is the pseudo-inverse of X22.
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Proof. [Proof of Lemma 3.1]: Note that xc
k ∈ Ec

k is equivalent to xk = x̂c
k +Ec

kuk, ‖ uk ‖≤ 1, where Ec
k is

a Cholesky factorization of Pc
k. By the nonlinear state equations (1) and (3),

xk+1 − x̂c
k+1|k = fk(xk) +wk − x̂c

k+1|k

= fk(x̂
c
k +Ec

kuk) +wk − x̂c
k+1|k

= fk(x̂
c
k) + JfkEkuk + efk +Bfk∆fk +wk − x̂c

k+1|k. (80)

If we denote by

ξ = [1, uT
k , w

T
k , ∆

T
fk
]T , (81)

then (80) can be rewritten as

xk+1 − x̂c
k+1|k = Φc

k+1|k(x̂
c
k+1|k)ξ (82)

where Φc
k+1|k(x̂

c
k+1|k) is denoted by (25).

Moreover, the condition that xk+1 ∈ Ec
k+1|k, whenever, I) xc

k ∈ Ec
k, II) the process noise wk ∈ Wk, III)

the high-order remainders of state function ∆fk(uk) ∈ Efk , which are equivalent to

ξTΦk+1|k(x̂
c
k+1|k)

T (Pc
k+1|k)

−1Φk+1|k(x̂
c
k+1|k)ξ ≤ 1, (83)

whenever

‖ uk ‖ ≤ 1, (84)

wT
kQ

−1
k wk ≤ 1, (85)

‖ ∆fk ‖ ≤ 1. (86)

The equations (84)–(86) are equivalent to

ξT diag(−1, I, 0, 0)ξ ≤ 0, (87)

ξT diag(−1, 0,Q−1
k , 0)ξ ≤ 0, (88)

ξT diag(−1, 0, 0, I)ξ ≤ 0. (89)

where I and 0 are matrices with compatible dimensions.

From Lemma 7.1, a sufficient condition such that the inequalities (87)-(89) imply (83) to hold is that

there exist nonnegative scalars τu ≥ 0, τw ≥ 0, τ f ≥ 0, such that

Φk+1|k(x̂
c
k+1|k)

T (Pc
k+1|k)

−1Φk+1|k(x̂
c
k+1|k)

− diag(1, 0, 0, 0)

−τu diag(−1, I, 0, 0)

−τw diag(−1, 0,Q−1
k , 0)

−τ f diag(−1, 0, 0, I) � 0 (90)
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Furthermore, (90) is written in the following compact form:

Φk+1|k(x̂
c
k+1|k)

T (Pc
k+1|k)

−1Φk+1|k(x̂
c
k+1|k)− Ξ � 0 (91)

where Ξ is denoted by (26). Applying Lemma 7.2, (91) is equivalent to

[

Pc
k+1|k Φk+1|k(x̂

c
k+1|k)

(Φk+1|k(x̂
c
k+1|k))

T Ξ

]

� 0 (92)

Pc
k+1|k ≻ 0. (93)

Therefore, if x̂c
k+1|k, Pc

k+1|k satisfy (92), then the state xk+1 belongs to Ec
k+1|k, whenever, I) xc

k is in Ec
k, II)

the process noise wk ∈ Wk, III) the high-order remainders of state function ∆fk(uk) ∈ Efk .

Summarizing the above results, the computation of the predicted bounding ellipsoid by minimizing a size

measure f(Pc
k+1|k) (21) is Lemma 3.1.

Proof. [Proof of Theorem 3.3]: If we partition the left side of (24) by appropriate block, then it can be

rewritten as






Pc
k+1|k Z B

ZT X11 X12

BT XT
12 X22




 � 0, (94)

where

Z = fk(x̂
c
k) + efk − x̂k+1|k,

B = [JfkE
c
k, I, Bfk ],

X11 = 1− τu − τw − τ f ,

X22 = diag(τuI, τwQ−1
k , τ fI),

X12 = 0.

Based on the decoupling technique in Lemma 7.3, the above matrix inequality is feasible if and only if

[

X11 X12

XT
12 X22

]

� 0.

From the expression of X11,X12,X22, it is also equivalent to

τu + τw + τ f ≤ 1, − τu ≤ 0, − τw ≤ 0, − τ f ≤ 0.

Thus, the optimization problem of Lemma 3.1

min
τu,τw,τf

min
Pc

k+1|k
,x̂c

k+1|k

tr(Pc
k+1|k) subject to (22)− (23) and (94),
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which, by Lemma 7.3, is equivalent to

min tr(BX+
22B

T ) (95)

subject to − τu ≤ 0, − τw ≤ 0, − τ f ≤ 0, τu + τw + τ f ≤ 1

(I−X+
22X22)B

T = 0. (96)

It is easy to see that X22 is nonsingular according to (96), then, the above optimization problem is equivalent

to

min tr(
JfkP

c
kJ

T
fk

τu
+

Qk

τw
+

Pfk

τ f
)

subject to − τu < 0, − τw < 0, − τ f < 0, τu + τw + τ f ≤ 1

where Pfk = BfkB
T
fk

. Therefore, based on Lagrange dual function, the analytically optimal solution can be

obtained in (27)-(31).

Proof. [Proof of Lemma 3.5]: Note that we have get xk+1 ∈ Ec
k+1|k in prediction step, which is equivalent to

xk+1 = x̂c
k+1|k +Ec

k+1|kuk+1|k, ‖ uk+1|k ‖≤ 1, where Ec
k+1|k is a Cholesky factorization of Pc

k+1|k, then,

xk+1 − x̂c
k+1 = x̂c

k+1|k +Ec
k+1|kuk+1|k − x̂c

k+1 (97)

and by the nonlinear measurement equations (2) and (4)

yi
k+1 = hik+1(xk+1) + vi

k+1

= hik+1(x̂
c
k+1|k) + Jhi

k+1
Ek+1|kuk+1|k + ehi

k+1
+Bhi

k+1
∆hi

k+1
+ vi

k+1 (98)

If we denote by

ξ = [1, uT
k+1|k, v1T

k+1, . . . , v
LT

k+1
︸ ︷︷ ︸

L blocks

, ∆T
h1
k+1

, . . . , ∆T
hL
k+1

︸ ︷︷ ︸

L blocks

]T , (99)

then (97) and (98) can be rewritten as

xk+1 − x̂c
k+1 = Φc

k+1(x̂
c
k+1)ξ (100)

0 = Ψc
k+1(y

i
k+1)ξ, (101)

where Φc
k+1(x̂

c
k+1) and Ψc

k+1(y
i
k+1) are denoted by (36) and (37), respectively.

Moreover, the condition that xk+1 ∈ Ec
k+1 whenever I) xk+1 is in Ec

k+1|k II) measurement noises vi
k+1

are bounded in ellipsoidal sets, i.e., vi
k+1 ∈ Vi

k+1, III) the high-order remainders of measurement function

∆hi
k+1

∈ Ehi
k+1

, , i = 1, . . . , L, which are equivalent to

ξTΦc
k+1(x̂

c
k+1)

T (Pc
k+1)

−1Φc
k+1(x̂

c
k+1)ξ ≤ 1, (102)
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whenever

‖ uk+1|k ‖ ≤ 1, (103)

viT

k+1R
i−1

k+1v
i
k+1 ≤ 1, (104)

‖ ∆hi
k+1

‖ ≤ 1, i = 1, . . . , L. (105)

The equations (103)–(105) are equivalent to

ξT diag(−1, I, 0, . . . , 0
︸ ︷︷ ︸

L blocks

, 0, . . . , 0
︸ ︷︷ ︸

L blocks

)ξ ≤ 0, (106)

ξT diag(−1, 0,
... 0, . . . ,Ri−1

k+1, . . . , 0
︸ ︷︷ ︸

the i−th block is Ri−1
k+1

..., 0, . . . , 0
︸ ︷︷ ︸

L blocks

)ξ ≤ 0, (107)

ξT diag(−1, 0, 0, . . . , 0
︸ ︷︷ ︸

L blocks

,
... 0, . . . , I, . . . , 0
︸ ︷︷ ︸

the i−th block is I

...)ξ ≤ 0, (108)

where I and 0 are matrices with compatible dimensions.

By S-procedure Lemma 7.1 and (101), a sufficient condition such that the inequalities (106)-(108) imply

(102) to hold is that there exist scalars τ
y
i and nonnegative scalars τu ≥ 0, τvi ≥ 0, τhi ≥ 0, such that

Φc
k+1(x̂

c
k+1)

T (Pc
k+1)

−1Φc
k+1(x̂

c
k+1)

− diag(1, 0,
...0, . . . , 0,

...0, . . . , 0,
...0, . . . , 0)

−τu diag(−1, I,
...0, . . . , 0,

...0, . . . , 0,
...0, . . . , 0)

−

L∑

i=1

τvi diag(−1, 0,
... 0, . . . ,Ri−1

k+1, . . . , 0,
︸ ︷︷ ︸

the i−th block is Ri−1
k+1

...0, . . . , 0,
...0, . . . , 0)

−

L∑

i=1

τhi diag(−1, 0,
...0, . . . , 0,

...0, . . . , 0,
... 0, . . . , I, . . . , 0
︸ ︷︷ ︸

the i−th block is I

)

−

L∑

i=1

τ
y
i Ψ

c
k+1(y

i
k+1)

TΨc
k+1(y

i
k+1) � 0 (109)

Furthermore, (109) is written in the following compact form:

Φc
k+1(x̂

c
k+1)

T (Pc
k+1)

−1Φc
k+1(x̂

c
k+1)− Ξ− (Ψc

k+1)
T diag(τy1 , . . . , τ

y
L)Ψ

c
k+1 � 0 (110)

where Ξ and Ψc
k+1 are denoted by (39) and (38), respectively.

If we denote (Ψc
k+1)⊥ is the orthogonal complement of Ψc

k+1, then (110) is equivalent to

((Ψc
k+1)⊥)

TΦc
k+1(x̂

c
k+1)

T (Pc
k+1)

−1Φc
k+1(x̂

c
k+1)(Ψ

c
k+1)⊥

−((Ψc
k+1)⊥)

TΞ(Ψc
k+1)⊥ � 0 (111)
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Using Schur complements Lemma 7.2, (111) is equivalent to
[

−Pc
k+1 Φc

k+1(x̂
c
k+1)(Ψ

c
k+1)⊥

(Φc
k+1(x̂

c
k+1)(Ψ

c
k+1)⊥)

T − (Ψc
k+1)

T
⊥Ξ(Ψ

c
k+1)⊥

]

� 0. (112)

−Pc
k+1 ≺ 0. (113)

Therefore, if x̂ck+1, Pc
k+1 satisfy (112)-(113), then the state xk+1 belongs to Ec

k+1, whenever I) xk+1 is

in Ec
k+1|k II) measurement noises vi

k+1 are bounded in ellipsoidal sets, i.e., vi
k+1 ∈ Vi

k+1, III) the high-order

remainders of measurement function ∆hi
k+1

∈ Ehi
k+1

, , i = 1, . . . , L.

Summarizing the above results, the computation of the measurement update bounding ellipsoid by mini-

mizing a size measure f(Pc
k+1) (32) is Lemma 3.5.

Proof. [Proof of Theorem 3.6]: In view of the optimization problem in Lemma 3.5, we can apply Lemma 7.3

to the linear matrix inequalities (44), with Z = x̂c
k+1− x̂c

k+1|k, and the rest of matrices defined appropriately.

Thus, the problem

min
τu,τvi ,τ

h
i

min
Pc

k+1,x̂
c
k+1

f(Pc
k+1) subject to (33), (34) and (44),

which is equivalent to

min
τu,τvi ,τ

h
i

f(X̄(τu, τvi , τ
h
i )) subject to (47), (48), (I − (ΨT

22Ξ22Ψ22)
+ΨT

22Ξ22Ψ22)B
T = 0,

where X̄(τu, τvi , τ
h
i ) = B(ΨT

22Ξ22Ψ22)
+BT , i = 1, . . . , L.

If one of τu, τvi , τ
h
i , i = 1, . . . , L, is zero, then the feasible sets of Pc

k+1 and x̂c
k+1 become smaller from

(110), and the objective value becomes larger. Thus, the optimal τu, τvi , τ
h
i , i = 1, . . . , L should be greater

than zero, and ΨT
22Ξ22optΨ22 be nonsingular. If B(ΨT

22Ξ22optΨ22)
−1BT is the optimal value of the above

optimization problem, then, by using Lemma 7.3 again, the optimal ellipsoid Ec
k+1 is given by

Pc
k+1 = B(ΨT

22Ξ22optΨ22)
−1BT , (114)

Z = B(ΨT
22Ξ22optΨ22)

−1ΨT
22Ξ22optΨ21. (115)

Based on (115) and Z = x̂c
k+1 − x̂c

k+1|k, we retrieve the center of the ellipsoid as

x̂c
k+1 = x̂c

k+1|k +B(ΨT
22Ξ22optΨ22)

−1(ΨT
22Ξ22optΨ21). (116)

By the definition of Ψ22 and Ξ22 in (41) and (43),

ΨT
22Ξ22Ψ22 =










τuPc−1

k+1|k +
∑L

i=1 τ
v
i J

T
hi
k+1|k

Ri−1

k+1Jhi
k+1|k

−τv1J
T
h1
k+1|k

R1−1

k+1 . . . −τvLJ
T
hL
k+1|k

RL−1

k+1

−τv1 (J
T
h1
k+1|k

R1−1

k+1)
T τv1R

1−1

k+1 + τh1 P
−1
h1
k+1

. . . 0

...
...

. . .
...

−τvL(J
T
hL
k+1|k

RL−1

k+1)
T 0 . . . τvLR

L−1

k+1 + τhLP
−1
hL
k+1
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then

B(ΨT
22Ξ22Ψ22)

−1BT = [I 0, . . . , 0
︸ ︷︷ ︸

L blocks

](ΨT
22Ξ22Ψ22)

−1[I 0, . . . , 0
︸ ︷︷ ︸

L blocks

]T

=

(

τuPc−1

k+1|k +

L∑

i=1

JT
hi
k+1|k

(
Ri

k+1

τvi
+

Phi
k+1

τhi
)−1Jhi

k+1|k

)−1

.

Thus, (49) can be obtained by (114). Moreover, substituting (40), (41) and (43) into (116), then (50) can be

achieved.

Proof. [Proof of Lemma 4.1]: Note that xk+1 ∈ Ed
k+1|k is equivalent to xk+1 = x̂d

k+1|k + Ed
k+1|kuk+1|k,

‖ uk+1|k ‖≤ 1, where Ed
k+1|k is a Cholesky factorization of Pd

k+1, then

xk+1 − x̂d
k+1 = x̂d

k+1|k +Ed
k+1|kuk+1|k − x̂d

k+1. (117)

If we denote by

ξ = [1, uT
k+1|k]

T , (118)

then (117) can be rewritten as

xk+1 − x̂d
k+1 = Φd

k+1ξ (119)

where Φd
k+1 is denoted by (56). Similarly, we have

xk+1 − x̂i
k+1 = Φi

k+1ξ (120)

where Φi
k+1 is denoted by (57).

Moreover, the condition that xk+1 ∈ Ed
k+1, whenever, I) xk+1 is in Ed

k+1|k, II)xk+1 ∈ E i
k+1, for i =

1, . . . , L, is equivalent to

ξT (Φd
k+1)

T (Pd
k+1)

−1Φd
k+1ξ ≤ 1, (121)

whenever, for i = 1, . . . , L,

‖ uk+1|k ‖ ≤ 1, (122)

ξT (Φi
k+1)

T (Pi
k+1)

−1Φi
k+1ξ ≤ 1, (123)

The equations (122)–(123) are equivalent to

ξT diag(−1, I)ξ ≤ 0, (124)

ξT [(Φi
k+1)

T (Pi
k+1)

−1Φi
k+1 + diag(−1, 0)]ξ ≤ 0, (125)
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where I and 0 are matrices with compatible dimensions.

By S-procedure Lemma 7.1, a sufficient condition such that the inequalities (124)-(125) imply (121) to

hold is that there exist nonnegative scalars τu ≥ 0, τyi ≥ 0, i = 1, . . . , L, such that

(Φd
k+1)

T (Pd
k+1)

−1Φd
k+1 − diag(1, 0) − τu diag(−1, I)

−
L∑

i=1

τ
y
i [(Φ

i
k+1)

T (Pi
k+1)

−1Φi
k+1 + diag(−1, 0)] � 0 (126)

Furthermore, (126) is written in the following compact form:

(Φd
k+1)

T (Pd
k+1)

−1Φd
k+1 − Ξ−Π � 0 (127)

where Ξ and Π are denoted by (58) and (59), respectively.

Using Schur complements Lemma 7.2, (127) is equivalent to

[

−Pd
k+1 Φd

k+1

(Φd
k+1)

T − Ξ−Π

]

� 0 (128)

−Pd
k+1 ≺ 0. (129)

Therefore, if x̂d
k+1|k, Pd

k+1 satisfy (128)-(129), then the state xk+1 belongs to Ed
k+1, whenever, I) xk+1 is

in Ed
k+1|k, II) xk+1 belongs to E i

k+1, for i = 1, . . . , L.

Summarizing the above results, the computation of the bounding ellipsoid for distributed fusion by min-

imizing a size measure f(Pd
k+1) (52) is Lemma 4.1.
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