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Generalized optimal sub-pattern assignment metric
Abu Sajana Rahmathullah, Ángel F. García-Fernández, Lennart Svensson

Abstract—This paper presents the generalized optimal sub-
pattern assignment (GOSPA) metric on the space of finite sets of
targets. Compared to the well-established optimal sub-pattern
assignment (OSPA) metric, GOSPA is not normalised by the
cardinality of the largest set and it penalizes cardinality errors
differently, which enables us to express it as an optimisation over
assignments instead of permutations. An important consequence
of this is that GOSPA allows us to penalize localization errors
for detected targets and the errors due to missed and false
targets, as indicated by traditional multiple target tracking
(MTT) performance measures, in a sound manner. In addition,
we extend the GOSPA metric to the space of random finite sets,
which is important to evaluate MTT algorithms via simulations
in a rigorous way.

Index Terms—Multiple target tracking, metric, random finite
sets, optimal sub-pattern assignment metric.

I. Introduction

Multiple target tracking (MTT) algorithms sequentially esti-
mate a set of targets, which appear, move and disappear from
a scene, given noisy sensor observations [1]. In order to assess
and compare the performance of MTT algorithms, one needs
to compute the similarity between the ground truth and the
estimated set. Traditionally, MTT performance assessment has
been based on intuitive concepts such as localization error for
properly detected targets and costs for missed targets and false
targets [2, Sec. 13.6], [3]–[6]. These concepts are appealing
and practical for radar operators but the way they have been
quantified to measure error has been ad-hoc.

With the advent of the random finite set (RFS) framework
for MTT [1], it has been possible to design and define
the errors in a mathematically sound way, without ad-hoc
mechanisms. In this framework, at any given time, the ground
truth is a set that contains the true target states and the estimate
is a set that contains the estimated target states. The error is
then the distance between these two sets according to a metric,
which satisfies the properties of non-negativity, definiteness,
symmetry and triangle inequality [7, Sec. 1], [8, Sec. 6.2.1].

The Hausdorff metric [9] and the Wasserstein metric [9]
(also referred to as optimal mass transfer metric in [10]) were
the first metrics on the space of finite sets of targets for MTT.
However, the former has been shown to be insensitive to car-
dinality mismatches and the latter lacks a consistent physical
interpretation when the states have different cardinalities [10].
In [10], the optimal sub-pattern assignment (OSPA) metric
was proposed to address these issues. OSPA optimally assigns
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all targets in the smallest set to targets in the other set and
computes a localization cost based on this assignment. The
rest of the targets are accounted for by a cardinality mismatch
penalty. The OSPA metric has also been adapted to handle
sets of labelled targets [11].

We argue that it is more desirable to have a metric that ac-
counts for the costs mentioned in traditional MTT performance
assessment methods (localization error for properly detected
targets and false and missed targets) rather than localization
error for the targets in the smallest set and cardinality mis-
match, which is a mathematical concept that is more related
to the RFS formulation of MTT problem than the original
MTT problem itself. For example, OSPA does not encourage
trackers to have as few false and missed targets as possible.

In this paper, we propose such a metric: the generalized
OSPA (GOSPA) metric, which is able to penalize localization
errors for properly detected targets, missed targets and false
targets. In order to obtain this metric, we first generalize the
unnormalized OSPA by including an additional parameter that
enables us to select the cardinality mismatch cost from a range
of values. Then, we show that for a specific selection of this
parameter, the GOSPA metric is a sum of localization errors
for the properly detected targets and a penalty for missed and
false targets, as in traditional MTT performance assessment
algorithms. Importantly, this implies that we now have a metric
that satisfies the fundamental properties of metrics and the
intuitive, classical notions of how MTT algorithms should be
evaluated [2, 13.6]. After we derived the GOSPA metric, it has
been used in a separate performance evaluation [21], which
illustrates the usefulness of GOSPA for analysing how the
number of missed and false targets contribute to the total loss.

We also extend the metric to random sets of targets. This
extension has received less attention in the MTT literature
despite its significance for performance evaluation. All the
above-mentioned metrics assume that the ground truth and
the estimates are known. However, in the RFS framework, the
ground truth is not known but is modelled as a random finite
set [1]. Also, algorithm evaluation is usually performed by
averaging the error of the estimates for different measurements
obtained by Monte Carlo simulation. This implies that the
estimates are also RFSs, so it is important to have a metric that
considers RFSs rather than finite sets. In the literature, there
is no formal treatment of this problem to our knowledge. In
this paper, we fill this gap by showing that the mean GOSPA
and root mean square GOSPA are metrics for RFSs of targets.

The outline of the rest of the paper is as follows. In
Section II, we present the GOSPA and its most appropriate
form for MTT. In Section III, we extend it to RFS of targets.
In Section IV, we illustrate that the proposed choice of GOSPA
provides expected results compared to OSPA and unnormal-
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ized OSPA. Finally, conclusions are drawn in Section V.

II. Generalized OSPA metric

In this section, we present the generalized OSPA (GOSPA)
metric to measure the distance between finite sets of targets.

Definition 1. Let c > 0, 0 < α ≤ 2 and 1 ≤ p < ∞. Let
d(x, y) denote a metric for any x, y ∈ R

N and let d(c)(x, y) =
min(d(x, y), c) be its cut-off metric [8, Sec. 6.2.1]. Let Πn

be the set of all permutations of {1, . . . , n} for any n ∈ N

and any element π ∈ Πn be a sequence (π(1), . . . , π(n)). Let
X = {x1, . . . , x|X|} and Y = {y1, . . . , y|Y |} be finite subsets
of RN . For |X | ≤ |Y |, the GOSPA metric is defined as

d(c,α)p (X,Y )

,



 min
π∈Π|Y |

|X|
∑

i=1

d(c)(xi, yπ(i))
p +

cp

α
(|Y | − |X |)





1

p

. (1)

If |X | > |Y |, d(c,α)p (X,Y ) , d
(c,α)
p (Y,X). �

It can be seen from the definition that the non-negativity,
symmetry and definiteness properties of a metric hold for
GOSPA. The proof of the triangle inequality is provided in
Appendix A.

We briefly discuss the roles of the parameters p, c and
α. The role of the exponent p in GOSPA is similar to that
in OSPA [10]. The larger the value of p is, the more the
outliers are penalized. The parameter c in GOSPA determines
the maximum allowable localization error and, along with α,
it also determines the error due to cardinality mismatch. By
setting the parameter α = 1, we get the OSPA metric without
normalization, which divides the metric by max

(

|X |, |Y |
)

.
In Section II-A, we first discuss why the normalization in
OSPA should be removed. In Section II-B, we indicate the
most suitable choice of α for evaluating MTT algorithms..

A. On the removal of normalization

In this section, we illustrate that the normalization in OSPA
provides counterinutitive results using the below example.

Example 1. Let us say the ground truth is X = ⊘ and we have
estimates Yj = {y1, , . . . , yj} indexed with j ∈ N. Intuitively,
for increasing values of j, there is a higher number of false
targets, so the distance from X to Yj should also increase.
However, the OSPA metric is c for any j ≥ 1. That is,
according to the OSPA metric, all these estimates are equally
accurate, which is not the desired evaluation in MTT. �

This undesirable property of the OSPA metric is due to the
normalization. If we remove this normalization from OSPA,
the distance is j

1

p c, which increases with j. This example is
a clear motivation as to why the normalization should be re-
moved from the OSPA metric to evaluate MTT algorithms. We
refer to the OSPA metric without normalization, i.e., GOSPA
with α = 1, as ‘unnormalized OSPA’. The OSPA metric
without the normalization has been used in [12, Sec. IV]
to obtain minimum mean OSPA estimate. Even though [12]
makes use of the unnormalized OSPA as a cost function, it
has not been previously proved that it is a metric.

B. Motivation for setting α = 2 in MTT

In this section, we argue that the choice of α = 2 in GOSPA
is the most appropriate one for MTT algorithm evaluations. We
show that with this choice, the distance metric can be broken
down into localization errors for properly detected targets,
which are assigned to target estimates, and the error due to
missed and false targets, which are left unassigned as there
is no correspondence in the other set. This is in accordance
with classical performance evaluation methods for MTT [2,
Sec. 13.6], [3]–[6].

For the sake of this discussion, we assume that X is the set
of true targets and Y is the estimate, though the metric is of
course symmetric. Let us consider x ∈ X and y ∈ Y , such
that all the points in Y are far from x and all the points in
X are far from y. In this case, the target x has been missed
and the estimator has presented a false target y. Following
[6], we refer to these two targets as unassigned targets, even
though they may or may not be associated to another target
in the permutation in (1). If one of these unassigned targets
is not associated to another target in the permutation in (1),
it contributes with a cost cp/α. On the other hand, if two
unassigned targets x and y are associated to each other in
the permutation in (1), the cost contribution of the pair is
d(c)(x, y) = cp.

The basic idea behind selecting α = 2 is that the cost
for a single unassigned (missed or false) target should be
the same whether or not it is associated to another target
in the permutation in (1). Therefore, given that a pair of
unassigned targets costs cp and an unassigned target costs
cp/α, we argue that α = 2 is the most appropriate choice.
Due to the importance of choosing α = 2, from this point on,
whenever we write GOSPA, we refer to GOSPA with α = 2,
unless stated otherwise.

In GOSPA, any unassigned (missed or false) target always
costs cp/2, and, as we will see next, GOSPA contains local-
ization errors for properly detected targets and a cost cp/2
for unassigned targets. In fact, GOSPA can be written in
an alternative form, which further highlights the difference
with OSPA and clarifies the resemblance with classical MTT
evaluation methods.

To show this, we make the assignment/unassignment of
targets explicit by reformulating the GOSPA metric in terms
of 2D assignment functions [2, Sec. 6.5] [13, Chap. 17]
instead of permutations. An assignment set γ between the sets
{1, . . . , |X |} and {1, . . . , |Y |} is a set that has the following
properties: γ ⊆ {1, . . . , |X |} × {1, . . . , |Y |}, (i, j), (i, j′) ∈ γ
=⇒ j = j′ and (i, j), (i′, j) ∈ γ =⇒ i = i′, where the
last two properties ensure that every i and j gets at most one
assignment. Let Γ denote the set of all possible assignment
sets γ. Then, we can formulate the following proposition.

Proposition 1. The GOSPA metric, for α = 2, can be

expressed as an optimisation over assignment sets

d(c,2)p (X,Y )

=

[

min
γ∈Γ

(

∑

(i,j)∈γ

d(xi, yj)
p +

cp

2

(

|X |+ |Y | − 2|γ|
)

)]
1

p

.
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d(c) = ∆

d(c) = c

(a) Ya = {y1, y2}.

×
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d(c) = ∆

(b) Yb = {y1}.

Figure 1: ×‘s are the points in set X and •‘s are the points in Y . The
permutation associations are shown using the dashed lines and the cut-off
distances are shown on top of them. In this illustration, ∆ < c.

Proof. See Appendix B. �

This proposition confirms that GOSPA penalizes unassigned
targets and localization errors for properly detected targets.
The properly detected targets and their estimates are assigned
according to the set γ so the first term represents their
localization errors. Missed and false targets are left unassigned,
as done in [6], and each of them is penalized by cp/2. To
understand this, we first note that |γ| is the number of properly
detected targets. Hence, |X | − |γ| and |Y | − |γ| represent the
number of missed and false targets, respectively, and the term
cp(|X |+|Y |−2|γ|)/2 therefore implies that any missed or false
target yields a cost cp/2. It should also be noted that the notion
of cut-off metric d(c)(·, ·) is not needed in this representation
and there is not a cardinality mismatch term. Also, we remark
that this representation cannot be used for OSPA or GOSPA
with α 6= 2. We illustrate the choice of α = 2 in GOSPA and
compare it with OSPA in the following example.

Example 2. Consider the case where the ground truth is X =
{x1, x2} and there are two estimates Ya = {y1, y2} and Yb =
{y1}, as illustrated in Figures 1(a) and 1(b). Targets x2 and y2
are very far away so that it is obvious that y2 is not an estimate
of x2. Clearly, besides the localization error between x1 and
y1, the estimate Ya has missed target x2 and reported a false
target y2, whereas Yb has only missed target x2. OSPA and
unnormalized OSPA provide the same distance to the ground
truth for both estimates, ∆+c

2 and ∆ + c, respectively. As a
result, according to these metrics, both estimates are equally
accurate, which does not agree with intuition and classical
MTT evaluation methods. On the contrary, the GOSPA metric
shows a desirable trend since d(c,2)1 (X,Ya) = ∆ + c is larger
than d(c,2)1 (X,Yb) = ∆ + c

2 . �

III. Performance evaluation of MTT algorithms

In the previous section, we studied metrics between fi-
nite sets of targets. It was then implicitly assumed that the
ground truth and the estimates are deterministic. However,
MTT is often formulated as a Bayesian filtering problem
where the ground truth is an RFS and the estimates are
sets, which depend deterministically on the observed data [1].
For performance evaluation, in many cases, we average over
several realizations of the data, so estimates are RFSs as well.

Therefore, evaluating the performance of several algorithms
is in fact a comparison between the RFS of the ground truth
and the RFSs of the estimates. As in the case of deterministic
sets [8, pp. 142], it is highly desirable to establish metrics for
RFSs for performance evaluation, which is the objective of
this section. We begin with a discussion on the metrics for
vectors and random vectors case, and then show how we use
these concepts to extend the GOSPA metric to RFSs.

There are several metrics in the literature for random vectors
x, y ∈ R

N . If we have a metric in R
N , we have a metric

on random vectors in R
N by taking the expected value [14,

Sec. 2.2]. Then, a natural choice is to compute the average
Euclidean distance, E[‖x− y‖2] ,

´ ´

‖x− y‖2f(x, y)dxdy,
as a metric on random vectors, where ‖x−y‖2 is the Euclidean
distance and f(x, y) is the joint density of x and y. Another
popular metric for random vectors is the root mean square error
(RMSE) metric,

√

E[‖x− y‖22] [14, Sec. 2.2]. An advantage
with the RMSE, compared to the average Euclidean error, is
that it is easier to use it to construct optimal estimators, since
it is equivalent to minimizing the mean square error (MSE);
note that the MSE, E[‖x − y‖22], and the squared Euclidean
distance ‖x− y‖22 are not metrics.

Similar to the Euclidean metric for vectors, one can use the
GOSPA metric defined over finite sets to define metrics over
RFSs. Following the approaches in the random vector case,
root mean square GOSPA and mean GOSPA seem like natural
extensions to RFSs. Below, we establish a more general metric
for RFS based on GOSPA for arbitrary α.

Proposition 2. For 1 ≤ p, p′ < ∞, c > 0 and 0 < α ≤ 2,

p′

√

E

[

d
(c,α)
p (X,Y )p′

]

is a metric for RFSs X and Y .

Proof. See Appendix C. �

For the GOSPA analogue of RMSE, one can set p′ = p = 2
and use Euclidean distance for d(·, ·). Similar to the minimum
MSE estimators in random vectors, one can equivalently

use the mean square GOSPA E

[

d
(c,2)
2 (X,Y )2

]

for obtaining

sound RFS estimators based on metrics.
In the RFS case, there are estimators that are obtained by

minimizing the mean square OSPA [15]–[18] with p = 2 (or
equivalently root mean square OSPA) and Euclidean distance
as base metric. One can extend the proof of the proposition to
show that the root mean square OSPA is also a metric, which
has not been previously established in the literature.

IV. Illustrations

In this section, we show how GOSPA with α = 2 presents
values that agree with the intuition and the guidelines of
classical MTT performance evaluation algorithms [4], while
OSPA and unnormalized OSPA metrics do not. We illustrate
these results for several examples with varying number of
missed and false targets in the estimates.

As mentioned in Section III, in a Bayesian setting, both
the ground truth and estimates are RFSs and we want to
determine which estimate is closest to the ground truth. Rather
than providing a full MTT simulation, we assume that the
ground truth and estimates are specific RFSs, which are easy
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Table I: Table capturing the trends shown by mean metric and root mean square metric for varying number of missed and false targets.

p′ = p = 1 p′ = p = 2

# misses →
# false ↓ 0 1 2 0 1 2

G
O

S
PA

α
=

2

0 4.55 6.05 8 3.60 6.10 8
1 8.62 10.04 12 6.72 8.32 9.79
3 16.52 18.07 20 10.42 11.54 12.64
10 44.49 46.05 48 18.23 18.90 19.59

O
S
PA

0 2.27 5.02 8 2.55 5.88 8
1 4.20 5.02 8 5.07 5.88 8
3 5.70 6.51 8 6.39 7.02 8
10 7.04 7.45 8 7.37 7.65 8

U
nn

or
m

al
i-

-z
ed

O
S
PA 0 4.55 10.04 16 3.60 8.32 11.31

1 12.62 10.04 16 8.79 8.32 11.31
3 28.52 26.07 24 14.30 14.04 13.85
10 84.49 82.05 80 25.54 25.40 25.29
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Figure 2: The samples of the ground truth X and estimate Y are
illustrated in Figure 2(a) and 2(b). The estimate Y has 10 false targets
with indexes from 3 to 12 and 2 properly detected targets with indexes
1 and 2 corresponding to the two true targets in Figure 2(a).

to visualize and are useful to illustrate the major aspects of
the proposed metrics.

We consider a ground truth X (see Figure 2(a)) which
is a multi-Bernoulli RFS [8, Sec. 4.3.4] composed of two
independent Bernoulli RFSs, each with existence probability 1.
The probability densities of the individual RFSs are Gaussian
densities N ([−6, −6]t, I) and N ([0, 3]t, I) where I denotes
the identity matrix and the notation vt denotes the transpose

of the vector v. Therefore, there are always two targets present,
which are distributed independently with their corresponding
densities.

We consider scenarios with different estimates Y for this
ground truth. By varying Y , the number of missed and
false targets in each scenario is chosen from {0, 1, 2} and
{0, 1, 3, 10}, respectively. In all the cases, the estimate Y is
also a multi-Bernoulli RFS, that contains the Bernoulli sets
depicted in Figure 2(b). The components with indexes 1 and 2
are Gaussian components with densities N ([−6.7, −5.1]t, I)
and N ([−1.8, 2.9]t, I) and correspond to estimates of the
targets in the ground truth in Figure 2(a). The remaining com-
ponents, with indexes 3 to 12, are false targets. In scenarios
where there is one missed target, we consider that component 1
has existence probability 1 but component 2 has 0 probability.
In scenarios where there are not any missed targets, we
consider that both components have existence probability 1.
In the scenarios where the estimate reports n false targets, the
existence probability takes the value 1 for the components 3 to
n+2 and the value 0 for the remaining false target components.

We compute the GOSPA and OSPA metrics for RFSs in
Proposition 2 for the above scenarios and average the metric
values over 1000 Monte Carlo points. We set c = 8 and the
value of p′ = p is chosen from {1, 2}. The Euclidean metric is
used as the base distance d(·, ·). The estimation errors of these
scenarios are tabulated in Table I. The table has estimates with
increasing number of missed targets when traversed across
columns and increasing number of false targets when traversed
across rows.

Let us first analyze the behavior of the different metrics
for varying number of missed targets. Intuitively, as one
traverses across columns, the distance between the RFSs
should increase with increasing number of missed targets. This
trend is observed with GOSPA and the OSPA metric for both
p′ = p = 1 and p′ = p = 2, but the unnormalized OSPA
metric shows undesired behaviors when there are false targets
in the scenarios (the entries with red text in Table I). To explain
this, we look at the expression for the unnormalized OSPA in
these scenarios. If n and m are the number of false and missed
targets, and d1 < c and d2 < c are the cut-off distances for the
properly detected targets, then the unnormalized OSPA when
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n ≥ 2 is

d(c,1)p =











(ncp)
1

p m = 2

(dp1 + ncp)
1

p m = 1

(dp1 + dp2 + ncp)
1

p m = 0

. (2)

For n = 1, d(c,1)p takes the values c, (dp1 + cp)
1

p and
(dp1 + dp2 + cp)

1

p respectively. Clearly, for fixed n ≥ 2, d(c,1)p

decreases with increasing number of missed targets m, which
is not desirable.

Let us now analyze the behavior of the metrics for varying
number of false targets. As the number of false targets in-
creases, the metric should increase [6]. This trend is displayed
by GOSPA for α = 2 again. On the other hand, the unnor-
malized OSPA shows a non-decreasing behavior (the entries
with blue text in Table I), which is not desirable. The OSPA
metric also shows counter intuitive behavior as we discussed
in Example 1 in Section II-A. When both targets are missed,
the OSPA metric is constant for varying number of false
targets. Also, for the case with one missed target, OSPA and
unnormalized OSPA have the same metric values when there
are no false targets and when there is one false target. This
trend is similar to the behavior we observed in Example 2.

V. Conclusions

In this paper, we have presented the GOSPA metric. It is
a metric for sets of targets that penalizes localization errors
for properly detected targets and missed and false targets, in
accordance with the classical MTT performance evaluation
methods. In difference to the OSPA metric, the GOSPA metric
therefore encourages trackers to have as few false and missed
targets as possible.

In addition, we have extended the GOSPA metric to the
space of random finite sets of targets. This is important for
performance evaluation of MTT algorithms.

Appendix A

Proof of the triangle inequality of GOSPA

In the proof, an extension of Minkowski’s inequality [19, pp.
165] to sequences of different lengths by appending zeros to
the shorter sequence is used. Let us say we have two sequences
(ai)

m
i=1 and (bi)

n
i=1 such that m ≤ n. We extend the sequence

(ai) such that ai = 0 for i = m + 1, . . . , n. Then, using
Minkowski’s inequality on this extended sequence we get that

(

m
∑

i=1

|ai + bi|
p +

n
∑

i=m+1

|bi|
p

)
1

p

≤

(

m
∑

i=1

|ai|
p

)
1

p

+

(

n
∑

i=1

|bi|
p

)
1

p

(3)

for 1 ≤ p <∞. We use this result several times in our proof.
We would like to prove the triangle inequality:

d(c,α)p (X,Y ) ≤ d(c,α)p (X,Z) + d(c,α)p (Y, Z) (4)

for any three RFSs X , Y and Z . The proof is dealt in three
cases based on the values of |X |, |Y | and |Z|. Without loss of
generality, we assume |Y | ≥ |X | in all the three cases, since
GOSPA is symmetric in X and Y .

Case 1: |X | ≤ |Y | ≤ |Z|

For any π ∈ Π|Y |,

d(c,α)p (X,Y ) ≤





|X|
∑

i=1

d(c)(xi, yπ(i))
p +

cp

α
(|Y | − |X |)





1

p

.

(5)

Using the triangle inequality on the cut-off metric d(c)(·, ·),
we get that for any π ∈ Π|Y | and for any σ ∈ Π|Z|,

d(c,α)p (X,Y ) ≤





|X|
∑

i=1

[

d(c)(xi, zσ(i)) + d(c)(zσ(i), yπ(i))
]p

+
cp

α
(|Y | − |X |)

)
1

p

(6)

≤





|X|
∑

i=1

[

d(c)(xi, zσ(i)) + d(c)(zσ(i), yπ(i))
]p

+
cp

α
(|Y | − |X |) + 2

cp

α
(|Z| − |Y |)

+

|Y |
∑

i=|X|+1

d(c)(zσ(i), yπ(i))
p





1

p

(7)

=





|X|
∑

i=1

[

d(c)(xi, zσ(i)) + d(c)(zσ(i), yπ(i))
]p

+
cp

α
(|Z| − |X |) +

|Y |
∑

i=|X|+1

d(c)(zσ(i), yπ(i))
p

+
cp

α
(|Z| − |Y |)

)
1

p

(8)

≤





|X|
∑

i=1

d(c)(xi, zσ(i))
p +

cp

α
(|Z| − |X |)





1

p

+





|Y |
∑

i=1

d(c)(zσ(i), yπ(i))
p +

cp

α
(|Z| − |Y |)





1

p

. (9)

To arrive at the last inequality, Minkowski’s inequality in (3)
is used. Since π is a bijection, we can invert π to arrive at

d(c,α)p (X,Y ) ≤





|X|
∑

i=1

d(c)(xi, zσ(i))
p +

cp

α
(|Z| − |X |)





1

p

+





|Y |
∑

i=1

d(c)(zπ−1(σ(i)), yi)
p +

cp

α
(|Z| − |Y |)





1

p

. (10)

The composition π−1 ◦ σ will be a permutation on
{1, . . . , |Z|}. Lets denote this as τ . So, for any τ, σ ∈ Π|Z|,

d(c,α)p (X,Y ) ≤





|X|
∑

i=1

d(c)(xi, zσ(i))
p +

cp

α
(|Z| − |X |)





1

p
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+





|Y |
∑

i=1

d(c)(zτ(i), yi)
p +

cp

α
(|Z| − |Y |)





1

p

, (11)

which also holds for the σ and τ that minimizes the first and
the second term in the right hand side. This proves the triangle
inequality for this case.

Case 2: |X | ≤ |Z| ≤ |Y |

As before, for any π ∈ Π|Y | and σ ∈ Π|Z|,

d(c,α)p (X,Y ) ≤





|X|
∑

i=1

[

d(c)(xi, zσ(i)) + d(c)(zσ(i), yπ(i))
]p

+
cp

α
(|Y | − |X |)

)
1

p

(12)

≤





|X|
∑

i=1

[

d(c)(xi, zσ(i)) + d(c)(zσ(i), yπ(i))
]p

+

|Z|
∑

i=|X|+1

d(c)(zσ(i), yπ(i))
p +

cp

α
(|Z| − |X |)

+
cp

α
(|Y | − |Z|)

)
1

p

(13)

≤





|X|
∑

i=1

d(c)(xi, zσ(i))
p +

cp

α
(|Z| − |X |)





1

p

+





|Z|
∑

i=1

d(c)(zσ(i), yπ(i))
p +

cp

α
(|Y | − |Z|)





1

p

. (14)

From here, we can argue similar to the Case 1 and show that
the triangle inequality holds.

Case 3: |Z| ≤ |X | ≤ |Y |

d(c,α)p (X,Y ) ≤





|X|
∑

i=1

d(c)(xi, yπ(i))
p +

cp

α
(|Y | − |X |)





1

p

≤

(

|Z|
∑

i=1

d(c)(xi, yπ(i))
p +

2cp

α
(|X | − |Z|)

+
cp

α
(|Y | − |X |)

)
1

p

. (15)

To get the above inequality, for i = |Z|+1, . . . , |X |, we used
the fact that d(c)(xi, yπ(i))

p ≤ cp ≤ 2 cp

α when 0 ≤ α ≤ 2.

d(c,α)p (X,Y ) ≤





|Z|
∑

i=1

[

d(c)(xi, zσ(i)) + d(c)(zσ(i), yπ(i))
]p

+
cp

α
(|Y | − |Z|) +

cp

α
(|Y | − |X |)

)
1

p

. (16)

From here, the arguments are similar to the ones in the last
two cases. �

Appendix B

Proof of Proposition 1

We proceed to prove Proposition 1. Given X and Y , each
possible permutation π ∈ Π|Y | in (1) has a corresponding
assignment set γπ = {(i, j) : j = π (i) and d (xi, yj) < c}
such that we can write

d(c,2)p (X,Y ) =



minπ∈Π|Y |

∑

(i,j)∈γπ

d (xi, yj)
p

+cp (|X | − |γπ|) +
cp

2
(|Y | − |X |)

)1/p

(17)

where we have written d (xi, yj)
p instead of d(c)

(

xi, yπ(i)
)p

as the distance between the assigned points in γπ is smaller
than c. Also, |X | − |γπ| is the number of pairs

(

xi, yπ(i)
)

for
which d(c) (·, ·) = c, and the second term compensates for the
fact that these pairs are not accounted for when we sum over
(i, j) ∈ γπ. Rearranging terms we obtain

d(c,2)p (X,Y ) =



minπ∈Π|Y |

∑

(i,j)∈γπ

d (xi, yj)
p

+
cp

2
(|Y |+ |X | − 2 |γπ|)

)1/p

.

As the space of assignment sets Γ is bigger than the set of
assignment sets induced by permutations π ∈ Π|Y |, we have

d(c,2)p (X,Y )

≥



minγ∈Γ

∑

(i,j)∈γ

d (xi, yj)
p +

cp

2
(|Y |+ |X | − 2 |γ|)





1/p

.

(18)

We have not yet finished the proof as we have obtained an
inequality. Let us consider γ⋆ to be the value of the assignment
set that minimises the distance in Proposition 1. First,





∑

(i,j)∈γ⋆

d (xi, yj)
p
+
cp

2
(|Y |+ |X | − 2 |γ⋆|)





1/p

=





∑

(i,j)∈γ⋆

d(c) (xi, yj)
p
+
cp

2
(|Y |+ |X | − 2 |γ⋆|)





1/p

(19)

due to the fact that otherwise we could construct a
better assignment set γ̃ = γ⋆ \ γc where γc =
{(i, j) ∈ γ⋆ : d(xi, yj) > c}. That is, we know that γ⋆ does
not contain pairs (i, j) for which d (·, ·) > c. On the other
hand, if two pairs are unassigned in the optimal assignment,
their distance must be d (·, ·) > c so d(c) (·, ·) = c, as,
otherwise, there would be an assignment that returns a lower
value than the optimal one by assigning them.

We can now construct a corresponding permutation πγ⋆ ∈
Π|Y | as follows: πγ⋆ (i) = j if (i, j) ∈ γ⋆ and the rest of the
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components of πγ⋆ can be filled out arbitrarily as any selection
does not change the value of the previous equation. Then,





∑

(i,j)∈γ⋆

d(c) (xi, yj)
p
+
cp

2
(|Y |+ |X | − 2 |γ⋆|)





1/p

=





|X|
∑

i=1

d(c)
(

xi, yπγ⋆(i)

)p

+
cp

2
(|Y | − |X |)





1/p

≤ d(c,2)p (X,Y ) .

Therefore, we now have proved that



minγ∈Γ

∑

(i,j)∈γ

d (xi, yj)
p
+
cp

2
(|Y |+ |X | − 2 |γ|)





1/p

≤ d(c,2)p (X,Y ) (20)

which together with (18) proves Proposition 1. �

Appendix C

Proof of the average GOSPA metric

For RFS X with the multi object density function f(·) and
for a real valued function of RFS g(·), using the set integral,
the expectation of g(X) [20, pp. 177] is:

E[g(X)] =

ˆ

f(X)g(X)δX (21)

=
∞
∑

n=0

1

n!

ˆ

f({x1, . . . , xn})g({x1, . . . , xn})d(x1, . . . , xn).

Similarly, we have that for random finite sets X , Y with
joint density f(·, ·)

p′
√

E[d
(c,α)
p (X,Y )p′ ]

= p′

√

ˆ ˆ

d
(c,α)
p (X,Y )p′f(X,Y )δXδY . (22)

Since X and Y are random finite sets, f(X,Y ) is non-zero
only when X and Y are finite, and in this case d(c,α)p (X,Y ) is
finite. These conditions imply that E[d(c,α)p (X,Y )p

′

] < ∞ is
satisfied. Definiteness, non-negativity and symmetry properties
of (22) are observed directly from the definition. Note that,
for metrics in the probability space, the definiteness between
random variables is in the almost sure sense [14, Sec. 2.2].
The proof of the triangle inequality is sketched below.

In the proof, we use Minkowski’s inequality for infinite
sums and for integrals [19, pp. 165]. Using these Minkowski’s
inequalities, we can show that the inequality also extends
to cases that have both infinite sums and integrals as it
appears in the set integrals. For real valued functions ψn(x1:n)

and φn(x1:n) such that
´

|ψn(x1:n)|
p′

dx1:n < ∞ and
´

|φn(x1:n)|
p′

dx1:n <∞ for n = 1, . . . ,∞ and p′ ≥ 1,

(

∞
∑

n=0

ˆ

|ψn(x1:n) + φn(x1:n)|
p′

dx1:n

)
1

p′

≤

(

∞
∑

n=0

ˆ

|ψn(x1:n)|
p′

dx1:n

)
1

p′

+

(

∞
∑

n=0

ˆ

|φn(x1:n)|
p′

dx1:n

)
1

p′

. (23)

The inequality in (23) can be proved by first using Minkowski’s
inequality for integrals on the LHS:
ˆ

|ψn(x1:n) + φn(x1:n)|
p′

dx1:n

≤

(

(
ˆ

|ψn(x1:n)|
p′

dx1:n

)
1

p′

+

(
ˆ

|φn(x1:n)|
p′

dx1:n

)
1

p′

)p′

. (24)

And then using Minkowski’s inequality for infinite sums on
this, we get the RHS of (23).

Now, we use the above results for the triangle inequality of
(22). Let us consider RFS X , Y and Z with joint distribution
f(X,Y, Z):

p′
√

E[d
(c,α)
p (X,Y )p′ ]

≤ p′

√

E

[

(

d
(c,α)
p (X,Z) + d

(c,α)
p (Z, Y )

)p′
]

(25)

=

[
ˆ ˆ ˆ

(

d(c,α)p (X,Z) + d(c,α)p (Z, Y )
)p′

× f(X,Y, Z)δXδY δZ

]
1

p′

(26)

=

[
ˆ ˆ ˆ

(

d(c,α)p (X,Z)f(X,Y, Z)
1

p′

+d(c,α)p (Z, Y )f(X,Y, Z)
1

p′

)p′

δXδY δZ

]
1

p′

. (27)

If we expand the set integrals, they are of the form

p′
√

E[d
(c,α)
p (X,Y )p′ ] ≤

[ ∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

ˆ ˆ ˆ

(

f1({x1, . . . , xi}, {y1, . . . , yj}, {z1, . . . , zk})

+ f2({x1, . . . , xi}, {y1, . . . , yj}, {z1, . . . , zk})

)p′

× d(x1, . . . , xi) d(y1, . . . , yj) d(z1, . . . , zk)

]
1

p′

, (28)

where

f1({x1, . . . , xi}, {y1, . . . , yj}, {z1, . . . , zk})

= d(c,α)p ({x1, . . . , xi}, {z1, . . . , zk})

×

(

f({x1, . . . , xi}, {y1, . . . , yj}, {z1, . . . , zk})

i! j! k!

)
1

p′

(29)

and

f2({x1, . . . , xi}, {y1, . . . , yj}, {z1, . . . , zk})
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= d(c,α)p ({y1, . . . , yj}, {z1, . . . , zk})

×

(

f({x1, . . . , xi}, {y1, . . . , yj}, {z1, . . . , zk})

i! j! k!

)
1

p′

.

(30)

The multiple integrals and sums in (28) can be considered as
one major integral and sum. Using Minkowski’s inequality in
(23) for infinite sums and integrals on (28), we get

p′
√

E[d
(c,α)
p (X,Y )p′ ]

≤

[
ˆ ˆ ˆ

d(c,α)p (X,Z)p
′

f(X,Y, Z)δXδY δZ

]
1

p′

+

[
ˆ ˆ ˆ

d(c,α)p (Y, Z)p
′

f(X,Y, Z)δXδY δZ

]
1

p′

(31)

=

[
ˆ ˆ

d(c,α)p (X,Z)p
′

f(X,Z)δXδZ

]
1

p′

+

[
ˆ ˆ

d(c,α)p (Y, Z)p
′

f(Y, Z)δY δZ

]
1

p′

, (32)

which finishes the proof of the triangle inequality. �
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