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Abstract—Autonomous vehicles operating in dynamic environ-
ments rely on precise localization. In this paper we present a
novel approach for cooperative localization of vehicular systems
and an infrastructure RADAR which is resilient against out-
liers generated from the RADAR. The problem of cooperative
localization is represented as a factor graph, where interrelated
topologies (including that of outliers) are added as constraint
factor between vehicle states. Corresponding probabilities for
multiple topologies between states of the two vehicles are calcu-
lated using the Probability Data Association Filter and assigned
to the respective edges in the graph. Simulation results indicate
that this technique has significant benefits in the context of
improving the resilience against outliers while optimizing joint
state estimates. The methodology presented in this paper has
the potential to provide a robust and flexible framework for
cooperative localization in the presence of clutter, obscuration
and targets entering and leaving the field of view.

I. INTRODUCTION
With advancements in communication technologies and

increase in the sensor proliferation in the environment, Coop-
erative Localization (CL) has become a viable and beneficial
solution for a number of autonomous vehicles [1].

Many solutions use the Kalman Filter (or its derivatives
like Extended Kalman Filter and Unscented Kalman Filter)
[2] for tracking the cooperative state variables and their
covariances. Other methodologies like Markov Localization
[3], split covariance intersection filter [4], random finite set
framework [5], and Symmetric Measurement Equation Filter
[6] also provide novel ways of solving this problem.

The CL problem can also be formulated and solved as a
graph. Pose graph and Landmark SLAM (Simultaneous Local-
ization and Mapping) is one of the commonly used methods.
GTSAM [7] and g2o [8] are examples two such frameworks
which provide various graph based estimates based on SLAM
for robotic use. Graph based solutions easily adapted for non
linear problems and hence are at times well suited for real
world problems.

Our previous work ([9]) proposed a solution which added
a Topology Factor into the graphical model, implemented
as a factor graph in the GTSAM framework. By incorpo-
rating additional information (through the Topology Factor),

improved performance over the Kalman Filter was achieved.
This work also addressed other challenges, namely bandwidth
limitations; data association uncertainties; unknown coordinate
transformations; and scalability.

This paper proposes a novel method for providing robust
CL when the configuration of external sensor (here RADAR)
is unknown. Although quite accurate, RADAR generates a
significant clutter. But [9] assumes a clutter free environment.
Therefore the proposed solution in [9] can result in multiple
topology constraints between the states of vehicles. The key
idea presented herein is to track and assign probabilities to
these topological constraints between targets. Optimization
algorithms (e.g. Gauss Newton or Levenberg Marquardt) are
used to optimize the joint probability density function and
extract the final fused states. The topology resulting from the
clutter will get a lower probability and hence, will have less
weight when trying to solve the problem graph. The performed
experiments show high resilience to clutter detected by the
RADAR.

This problem can also be generalized for any solution which
uses a graph based framework. Sünderhauf et al. [10] pro-
posed the method of Switchable Constraints which strengthens
the pose graph based solution specifically against false loop
closures. Instead of incorporating another data association
algorithm in parallel to SLAM, the solution rejects the outliers
during the optimization.

II. PROBLEM DESCRIPTION

A simple CL scenario can be seen in the Fig. 1(a). Dotted
blue lines represent the RADAR coordinate system.

The assumptions are as follows:

1) Vehicles have GPS sensors to measures their position in
an absolute reference of a 2D global coordinate system.

2) The infrastructure RADAR sensor measures the relative
positions of the vehicles in its own local 2D coordinate
system. Its configuration information is not available,
such that its location and orientation is unknown.



3) The vehicles and the RADAR Sensor can communicate
in either direction to exchange data. There is no timing
delay or data error in communication.

4) No mechanism is available, including communication
mechanism and/or the protocol to identify individual ve-
hicles. This introduces a challenge from the perspective
of data association.

5) The environment has uniform clutter and can have miss
detections.

Then the task of CL is to lower the error in position
estimation by fusing the measurements from all the sensors.

III. FACTOR GRAPHS
A. Overview

Definition: A bipartite graph Gk = (Fk, Vk, Ek) is
defined as a Factor Graph when: (1) It has two types of nodes:
factor nodes fi ∈ Fk and variable nodes vj ∈ Vk; (2) Edges
eij ∈ Ek can exist only between factor nodes and variable
nodes, and are present if and only if the factor fi involves a
variable vj [11].

In simpler words, a factor graph explains the connection
between the complex functions and its factors of simpler
functions. Fig. 1(b) shows a simple factor graph with vari-
ables a, b, c, d, e and functions f1 and f2 with factorization:
h(a, b, c, d, e) = f1(a, b, c) ∗ f2(c, d, e).

Factor graphs were initially introduced for the calculation
of the sum-product algorithm [12]. Indelman, V. et al. [11]
demonstrated the use of factor graph for multi-sensor infor-
mation fusion for navigation.

B. Factor Graph formulations

A factor graph Gk (using the above definition) can be
expressed as:

g(X) =
∏
i

fi(Xi), (1)

where Xi is the set of all variables xj connected by an edge
to factor fi.

An error function of each factor fi represents the error
between the predicted measurement and the actual measure-
ment. To obtain the predicted state, the aim for non-linear least
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Fig. 1. (a) Topology for vehicle infrastructure CL. Dashed Axis in blue
represent the coordinate system of the RADAR. (b) Factor graph with
variables a, b, c, d, e and functions f1(a, b, c) and f2(c, d, e).

squares optimizers is to minimize this function. This is done
by adjusting the estimates of the variables X . The optimal
estimate X̂ for complete graph G is obtained as:

X̂ = arg min
X

(∏
fi(Xi)

)
(2)

The above methodology can be compared with Kalman
Filter. h(·) is the measurement model that predicts a sensor
measurement from a given state estimate. The factor is then
synonymous with this measurement model. For a Gaussian
noise model, a measurement factor can be written as:

fi(Xi) = d[hi(Xi)− zi], (3)

where hi(Xi) is the measurement model as a function of
the state variables Xi; zi is the actual measurement and the
operator d(·) represents a cost function.

The process model can be similarly represented as a factor
graph (more detail is provided in [13]).

C. Factor formulations

We briefly explain how factors are generated for various
sensor measurements. For details, please check [9].

1) Odometry Measurements: Using a constant velocity
model, the odometry measurement equation is given by:

zot+1 = ho(zot ) + no (4)

where zot is the Odometry measurement at time t, ho is the
function to calculate the odometry measurement at time t+ 1
and no is the measurement noise. This results in a binary
factor, fODOM , and for states Xt+1, Xt can be written as:

fODOM (Xt+1, Xt) , d(zot+1 − ho(zot )) (5)

2) GPS Measurements: The GPS measurement equation is:

zgt = hg(zt) + ng, (6)

where ng is the measurement noise and hg is the measurement
function, providing the relation between the measurement zgt
and the position of the vehicle. Equation (6) gives an unary
factor fGPS which is written as:

fGPS(Xt) , d(zgt − hg(zt)) (7)
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Fig. 2. (a) Factor graph with three state nodes and two odometry factors.
(b) Factor graph with three state nodes, two odometry factors and three GPS
factors. (c) Factor graph for n vehicles with three state nodes, two odometry
factors, three GPS factors and two topology factors each.



3) Topology Measurements: The topology information (the
inter-vehicle distance) at time t can be calculated as:

(zTt )2 =

N−1∑
i=1

N∑
j=i+1

(pix,t− pjx,t)
2 +

N−1∑
i=1

N∑
j=i+1

(piy,t− pjy,t)
2 (8)

where pix,t, p
i
y,t represents the x and y position of ith vehicle

as observed by RADAR. pj terms are analogous to pi terms.
This can be formulated as following:

(zTt )2 = htop(z1, · · · , zN ) + ntop (9)

where ntop is the measurement noise, zi = (pix, p
i
y) and htop

is the new measurement function, relating between measured
positions of all the N vehicles and the new topology mea-
surement. The corresponding N − ary factor, for N vehicles,
becomes:

fTOP (X1t, · · · , XNt) , d((zTt )2 − htop(z1, · · · , zN )) (10)

Fig. 2 illustrates Factor Graphs with various factors.

D. Smoothing

We use the LM optimization algorithm to solve the factor
graph. Using an initial estimate x0 it iteratively finds an update
∆ from the linearized system:

arg min
∆

J(x0)∆− b(x0) (11)

where J(x0) is the sparse Jacobian Matrix at the current
linearization point x0 and b(x0) = h(x0)−z is the residual for
given the measurement z. The Jacobian matrix is equivalent to
a linearized version of the factor graph, and its block structure
reflects the structure of the factor graph. After solving (11),
the linearization point is updated to the new estimate x0 + ∆.
Further detail on this process is presented within [11].

The Jacobian for the Odometry, calculated from (4), is
diag[1, 1]. Further detail on this process is presented in [9].
The Jacobian for GPS from (6) is same as that of odometry.

The Jacobian for topology measurement from (8) with ∂x
and ∂y is:

diag

[
N−1∑
i=1

N∑
j=i+1

2 ∗ (pix,t − pjx,t),

N−1∑
i=1

N∑
j=i+1

2 ∗ (piy,t − pjy,t)

]
(12)

E. Topology Measurement Uncertainties/Covariances

Odometry and GPS sensors provide the measurements
directly and their uncertainties/covariances are provided by
sensor manufacturers. The topology measurement is a derived
measurement. If σ2

x and σ2
y are the x and y variances respec-

tively for the infrastructure sensor (refer [14] for details), then
we get:

Cov(x, y) = diag
[
σ2
x1
, · · · , σ2

xn
, σ2

y1
, · · · , σ2

yn

]
(13)

Then using (8) and (13), we obtain the covariance for the
topology estimate at any time t as:

σ2
topx,y

= M · Cov(x, y) ·MT (14)

where M is a 1X2N matrix as follows:

M =
[

∂
∂x1

(zTt )2, · · · , ∂
∂xn

(zTt )2, ∂
∂y1

(zTt )2, · · · , ∂
∂yn

(zTt )2
]
(15)

IV. PROBABILITY DATA ASSOCIATION FILTER

Probability Data Association Filter (PDAF) is a well known
Bayesian target tracking filter. Instead of using one measure-
ment to update the state, it utilizes all the measurements of
the target. It discards the measurements which do not satisfy
the given limits, known as Gates, and assigns weights to the
remaining validated ones [15].

Here we give only a brief overview of calculating the
probabilities of multiple measurements at any given time.
Please refer to [16] for details.

Let zt be the set of validated multiple observations at time
t and let mt be the number of observations at time t. Then
we get:

zt = {z1
t , · · · , z

mt
t } = {zit}

mt
i=1 (16)

And the complete set of observations up to time t as

Zt = {zj}tj=1 (17)

Using the above defined sets of observations, lets us define
the following events:

χi
t = {zit is the correct measurement}, i = 1, · · · ,mt

χ0
t = {None of the validated measurement is correct}

(18)

Using (18) and (17), we define βi
t , a posteriori probability

of each return having originated from the object in track as:

βi
t , P{χi

t|Zt}, i = 0, 1 · · · ,mt (19)

This is the ’probabilistic data association’.
Now x̂t, the final state estimate at time t, using βi

t can be
written as:

x̂t =

mt∑
i=0

x̂itβ
i
t (20)

where x̂it denotes the updated state conditioned on χi
t.

The association probabilities for the set zt are then calcu-
lated as

βi
t =

ei∑mt

i=0 ei
, (21)

where,

ei = exp

(
− 1

2
(z̃it)

TS−1
t z̃it

)
, i = 1, . . . ,mt (22)

e0 = (2π/γ)nz/2mtcnz (1− PDPG)/PD (23)

where St, PG and PD denote the innovation covariance, the
generation probability (the target originated measurement falls
within the validation gate) and the detection probability (the
correct measurement is detected) respectively. z̃it denotes the
innovation. cnz

is the volume of the nz dimensional unit
hypersphere (c1 = 2, c2 = π, c3 = 4π/3, etc.). γ is the



threshold for the validated measurements by defining the
following validation region:

{zi : (z̃it)
TS−1

t z̃it ≤ γ} (24)

Hence using PDA filter, it is possible to calculate the asso-
ciation probability βi

t for each validated radar measurement zi

at time t, and false-positive measurements are later assigned
with lower weights.

V. SOLUTION

To solve the problem presented in Section II, we implement
the PDA Filter along side the Factor Graph. The probabilities
thus obtained from the PDA Filter are used as the weights for
the factors.

Measurement factor in eq. (3) contributes fully while try-
ing to estimate the corresponding state. For a total of mi

measurements (including clutter) for a state, each with some
probability, the measurement factor can be rewritten as:

fi(Xi) = βj
i · d[hi(Xi)− zi], j = 1, · · · ,mi (25)

where βj
i is the probability for jth measurement of ith state.

RADAR measurements are often accompanied with some
clutter. Hence we track the topology of the vehicles. Using
(25) and (10), we get:

fTOP (X1t, · · · , XNt) , βj
i · d((zTt )2 − htop(z1, · · · , zN ))

(26)
where βj

i is the probability for jth measurement of ith state.
The solution can be understood from Fig. 3. RADAR results

in three measurements (represented with triangles) for the first
vehicle and one for the second vehicle for (n− 1)th state. For
the nth state corresponding measurements are two and three
respectively. Of these multiple measurements for each state
only one is the true measurement and rest are clutter. Each
RADAR measurement is represented by a triangle of different
colour.

Now three measurements of the first vehicle and one mea-
surement of the second vehicle at (n−1)th give us three topol-
ogy factors. These are represented by the squares. Similarly
it gives six topology factors for the nth state. Our proposed
solution works as follows. The dotted circle represents the
Gate for the topology measurements, i.e. the topology factors
which satisfies the Gate are considered and rest are removed.
For each of the validated measurement probability is calculated
using PDAF. In the figure the size of the rectangle inside
the Gate represents the probability of the measurement. These
calculated probabilities are used in (26). Hence only validated
topology factors contribute to the final solution based on the
weights.

VI. EVALUATION

A. System Setup

The simulation was implemented with two vehicles on a
ground plane for 200 steps. To implement the factor graphs
and the corresponding factors we utilize the Georgia Tech
smoothing and Mapping (GTSAM) open source library [7].
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Fig. 3. Factor graph for (n-1) and nth state of two vehicles with four state
nodes, two Odometry factors, four GPS factors and nine topology factors.
Dotted circle represents Gate Boundary for PDA Filter. Triangles represent
the RADAR readings of the vehicles associated with the states.

Simulated vehicles have internal sensors to measure their
location in global coordinates. A RADAR sensor is assumed
to be located outside the two simulated vehicles, and provides
location within its local coordinate system. No configuration
information for the RADAR is available and hence the trans-
formation between the two coordinate systems is unknown.

All the sensors are assumed to have zero mean Gaussian
noise. The covariances are assumed as diag[1.0, 1.0] and
diag[15.0, 15.0] for the Odometry and the GPS respectively.
We assume the step interval T as 1. The RADAR has one valid
reading with covariance diag[0.5, 0.5] and the remaining is
clutter having uniform distribution. For our tests we randomly
generate 1-3 measurements for each vehicle, resulting in a
maximum of 9 Topology Factors between two vehicles at each
time step.

For tracking the topology factor, PDAF has the detection
probability and generation probability of 0.99. We assume the
corresponding track detection and initialization has been al-
ready successful. Then using PDAF we assign the probabilities
to the resulting topologies for a given state.

The performance is measured by calculating Root Mean
Square Deviation (RMSE) value for the complete system.

We perform the simulation, and compare and contrast our
results four way, between:

1) the fused trajectory only using Odometry and GPS
measurements.

2) the fused trajectory for Odometry, GPS measurements
and Topology Factor with probability 1 for each state
(assuming no clutter).

3) the fused trajectory for Odometry, GPS measurements
and multiple Topology Factors for each state (assuming
clutter) with probability 1 assigned to each of them. This
implies we incorporate all the Topology Factors resulting
from RADAR.

4) the fused trajectory for Odometry, GPS measurements
and multiple Topology Factors for each state (assuming
clutter) with probability assigned to each of them using
PDAF (proposed solution).

We perform two such simulations, one set with linear trajec-
tories and the second with random trajectories.
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Fig. 4. Ground Truth and fused trajectories for two vehicle simulation. Case 2 without clutter (unrealistic scenario) and with topology, results in the trajectory
near to the Ground Truth. Case 3 with clutter (realistic scenario) includes all clutter measurements from RADAR and with topology, results in the worst
trajectory. Case 4 with clutter (realistic scenario) assigned weights using a PDAF and with topology, although is worse than Case 2, results in a better trajectory
than the Case 3 which is a realistic scenario and Case 1 (which does not use any topology).
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Fig. 6. Topology Measurements for 200 steps (refer Results).

B. Results

Fig. 4(a) and 4(b) shows the ground truth, and the trajec-
tories from the four methods for 2 vehicles. It can be seen
that trajectory for the proposed approach (Case 4) is close to
the ground truth and performs better than no topology (Case
1). But it performs little worse when compared to the Case 2
where it uses only one measurement with probability 1. But
the Case 2 also assumes no clutter which is untrue in real

environments. And if we use all the measurements (including
clutter) from the RADAR (Case 3), the trajectory is the worst.

This can be further verified quantitatively and qualitatively
by the total RMSE values of the system as plotted in graphs in
Fig. 5(a) and 5(b) for Fig. 4(a) and 4(b) respectively. RMSE
for the Case 3 (with clutter and without PDAF) is even higher
than the Case 1 of no topology factor. This is because clutter
significantly increases the error by adding false information to
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the graph. Although the Case 2 (without clutter) performs the
best (as it does not add any false information to the problem
graph) but does not reflect the real environment. Hence it can
be seen from RMSE using PDAF with cluttered measurements
(Case 4) is an effective solution for the real environments.

Fig. 6(a) and 6(b) show the plot of topology measurements
for Fig. 4(a) and 4(b) respectively. Since topology measure-
ments is a one dimension value, all the measurements for a
step fall on a straight line parallel to Y-axis.

Fig. 7 compares the the total topology measurements for
all the steps against the topology measurements selected by
PDA Filter, which are effectively used by the LM Algorithm
for estimating the final states for Fig. 4(a).

C. Remarks

Presently, the solution is implemented as a batch process.
A online solution like iSAM2 of GTSAM can be used for
run-time state estimation. Further it also has the potential of
supporting plug-and-play paradigm [17].

The results presented here assume tracking of two vehi-
cle system, thereby resulting in one topology measurement
which can be tracked using PDA Filter. For more than two
vehicles we would need Joint Probability Data Association
Filter (JPDA) [18]. Therefore further work should evaluate
the robustness of the solution with multiple vehicle systems.

VII. CONCLUSION

False positive measurements are Achilles’ heel for graph
based solutions. The burden of correct graph construction falls
on a separate front end module. This front end heavily relies on
input from sensors, which inherently have a certain degree of
unreliability and can also result in clutter measurements. The
PDA filter alongside the factor graph implementation results
in a solution which can provide resilience against such clutter,
that may have escaped the initial front end filtering. Simulation
results indicate that, the presence of clutter for a graph with
weighted Topology Factors does degrade the RMSE perfor-
mance when compared against situation with only Topology
Factors and no clutter. But important result is that, RMSE of
the proposed solution is still superior than the case without
any topological factor. Therefore, this has a potential to solve
the challenge of cooperative localization in realistic dynamic

scenarios where (1) location and configuration of RADAR
is unknown; and (2) clutter, obscuration and miss detections
degrade the state estimates.

Future work will focus on the presented approach for more
than two vehicle systems with incremental smoothing using
real data.

ACKNOWLEDGMENT

This work was supported by fortiss GmbH and BMWi IKT
III SADA Project http://www.projekt-sada.de/.

REFERENCES

[1] R. Kurazume, S. Nagata, and S. Hirose, “Cooperative positioning with
multiple robots,” in Robotics and Automation, 1994. Proceedings., 1994
IEEE International Conference on, May 1994, pp. 1250–1257 vol.2.

[2] S. I. Roumeliotis and G. A. Bekey, “Distributed multirobot localization,”
IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 781–
795, Oct 2002.

[3] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approach
to collaborative multi-robot localization,” Autonomous robots, vol. 8,
no. 3, pp. 325–344, 2000.

[4] H. Li and F. Nashashibi, “Cooperative multi-vehicle localization using
split covariance intersection filter,” IEEE Intelligent Transportation
Systems Magazine, vol. 5, no. 2, pp. 33–44, Summer 2013.

[5] F. Zhang, H. Stähle, G. Chen, C. Buckl, and A. Knoll, “Multiple vehicle
cooperative localization under random finite set framework,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Nov 2013, pp. 1405–1411.

[6] E. W. Kamen, “Multiple target tracking based on symmetric measure-
ment equations,” IEEE Transactions on Automatic Control, vol. 37,
no. 3, pp. 371–374, Mar 1992.

[7] “GTSAM, Georgia Tech smoothing and Mapping,”
https://collab.cc.gatech.edu/borg/gtsam/.
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