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Abstract— The Simultaneous Localization And Mapping
(SLAM) estimation problem is a nonlinear problem, due to
the nature of the range and bearing measurements. In latter
years it has been demonstrated that if the nonlinearities from
the attitude are handled by a separate nonlinear observer, the
SLAM dynamics can be represented as a linear time varying
(LTV) system, by introducing these nonlinearities and nonlinear
measurements as time varying vectors and matrices. This makes
the SLAM estimation problem globally solvable with a Kalman
filter, however, the noise structure is no longer trivial. In this
paper, a new bearings only SLAM estimation algorithm is
presented, including a novel design of the noise covariance
matrices. Simulations of the SLAM estimator are presented, and
show the performance of the state and uncertainty estimates,
as well as the stability of the proposed estimator.

Index Terms— Navigation, Sensor data fusion, Localisation,
Mapping, Kalman Filter

I. INTRODUCTION

Robust navigation and positioning of unmanned aerial
vehicles (UAVs) are fundamental for any autonomous mis-
sion, particularly in challenging environments where absolute
positioning systems are absent or unreliable. A scenario
were the UAV’s and other autonomous vehicles are used for
inspection missions, demonstrates the need of high accuracy
and consistency in position and attitude estimates. In this
scenario the vehicles will have to work as closely as possible
to the inspection target, which increases the need for stable,
consistent and accurate estimates. Missions can be the in-
spection of structures such as bridges, power lines, windmills
etc. In this case, the electromagnetic interference and the
existence of ferromagnetic materials from the environment
may degrade any magnetometer to the point of becoming
unusable [1]. To tackle these situations, aided navigation
techniques such as simultaneous localization and mapping
algorithm (SLAM) can be used. SLAM fuses the data from
the surroundings with the data from the inertal measurements
unit (IMU) to increase accuracy in the navigation. By as-
suming stationary landmarks, the change in the landmarks
relative positions (LRP) can give information about the
motion of the vessel, and hence can be fused with the IMU
to increas navigation estimates. These sensors are typically
provided in ranges and/or bearing angles between the vehicle
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and each landmark, and with these SLAM also builds a map
of the surroundings of the vehicle. Over the past decades,
the research community has devoted tremendous effort in the
field of probabilistic SLAM. For a detailed review on SLAM
see [2] and [3], and the references within, which includes
several successful implementations of SLAM algorithms in
experiments. A common approach is to use the extended
Kalman filter (EKF) SLAM, however, there are some chal-
lenges related to consistency and stability, especially in
regards of the error in the linearization due to wrong attitude
estimates [4]. For bearing only SLAM, there are a variety of
methods; filter banks [5], Rao-Blackwellized particle filters
(RBPF)[6], linear mono SLAM [7] and multi-state constraint
Kalman filter (MSCKF) [8]. In [9], a hybridized SLAM
decides if a feature is processed using MSCKF or EKF,
depending on the feature’s track length; this in order to
decrease computation time.

A proposed structure for global exponentially stable (GES)
estimation was presented by Johansen and Brekke [10], for
range and bearing, bearing only and range only SLAM.
Nonlinearities from the attitude are handled by a nonlinear
observer [11], so that the the nonlinear system can be
represented as a linear time varying (LTV) system. This gives
the LTV system

ẋ(t) = A(z(t), t)x(t) +B(z(t), t)u(t) (1)
y(t) = C(z(t), t)x(t) (2)

where x is a vector with the states of the vehicle and
landmark positions, y is the vector output with a linear
time varying dependency to the states. The vector z contains
auxilliary, possible nonlinear, measurements, such as attitude
and bearing angles represented as a linear time varying
rotation matrix and line of sight (LOS) vectors; The u are the
inputs to the system such as acceleration. This representation
makes the SLAM problem solvable with the Kalman filter
(KF), and global stabillety can be proven by observability
analysis [12]. Further, necessary and sufficient conditions on
the observability of the nonlinear system are derived in [13].
Similar work, is done by Lourenco and Guerreiro [14][1],
in which a globally asymptotically stable (GAS) sensor-
based SLAM estimation is presented, for range and bearing,
bearing only and range only measurements. In addition, they
are able to estimate the gyro bias with range and bearing
measurements. They also present the SLAM problem as
a LTV system and uses KF for estimation, however, they
present the system in the coordinate system of the sensors,
called robosentric coordinate system.



A. Contribution

The contribution of this paper is two-folded. The main
contribution is the redesign of the bearing only SLAM
presented in [10]. The new design requires less sensors as
it uses neither gyro nor bearing derivative. In addition, an
intuitive assumption for achieving observability is found, and
is less restrictive compared to the one from [10], explained
in Section III. In addition, a novel design of the output
covariance matrices through linearisation are proposed and
analysed. Simulations are done in 2D, and Monte Carlo (MC)
simulations were used to investigate the consistency of the
SLAM estimator.

The structure of this paper is as follows: Notation and pre-
liminaries are presented in Section II; Section III contains the
previous work of the presented SLAM estimation; Section
IV presents the new bearing only SLAM estimation, with
observability analysis of the system. Section V presents the
the design of the covariance matrix, while Section VI shows
the simulation results. Section VII concludes the paper and
suggests future work.

II. NOTATION AND PRELIMINARIES

A. Notation and math

Scalars are in lower case a, x, ω, vectors are lower case
bold a,x,ω, matrices are bold upper case A,X,Ω, and
sets are upper case A,X,Ω. Exceptions may happen. The
0 denotes the scalar zero, while 0 is the matrix zero where
dimensions are implicitly given by the context. The accents
•̂, •̃, •̇, •̄, denotes estimate, estimate error, time derivative and
upper bound. Random white noise variables are denoted w•
for scalars and w• for vectors. The subscript •m denotes the
measured value. Some common mathematical expressions
are: The Euclidean norm for vectors denoted ‖ • ‖, absolute
value, denoted | • | and the transpose, denoted •>. The
representation of index sets will be done with {1, n} = {x ∈
Z|x ≤ n}.
A vector can be represented in different coordinate systems,
the representation is denoted with the superscripts •b, •n
which represents the body-fixed and inertia-fixed coordinate
systems, and will be called body-frame and inertia-frame.
Lower case will denote the indices of a landmark, vector or
matrix •i and •ij .

B. Rotation

Rotation is the attitude change between two coordinate
systems, and a rotation from coordinate system b to n is
denoted with subscript •nb. This can be represented as:
Euler angles
θnb = [ρ, φ, ψ]> ∈ {R3| |ρ| ≤ π, |φ| ≤ π, |ψ| ≤ π}, or
rotation matrix
Rnb ∈ SO(3)
where SO(3) = {Rnb ∈ R3×3|R>nbRnb = I, det(Rnb) =
1}. The rotation of vector xb is calculated with the rotation
matrix xn = Rnbx

b. The cross product is presented in

matrix form as S(x)y = x × y, where S(•) is a skew-
symmetric matrix

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 or S(x) =

[
0 −x
x 0

]
(3)

where for two dimensions the S matrix corresponds to the
cross product [0, 0, x]× [y1, y2, 0]. Here x could represent
rotation rate ω for instance in a 2-D scenario. More detailed
information can be found in Sola [15] and Fossen [16]. Let
the rotation matrix denote the rotation from the body-fixed
frame to an inertia-fixed frame. The attitude dynamics is
described by

Ṙnb = RnbS(ω) (4)

,where ω = ωbib is the angular velocity of the frame b relative
to n decomposed in b. The ω is assumed bounded ‖ω‖ ≤ ω̄

C. Landmark and vehicle dynamics

We assume that there is a vehicle with position pn and
m stationary landmarks where the ith landmark has position
pni . The landmark relative position (LRP) are the vectors
between the vehicle and the landmarks δni = pni − pn. This
vector can be represented by its range and bearing,

%i = ‖δni ‖ , lni = δni /‖δ
n
i ‖. (5)

The range is the geometric distance, while the bearing is
represented by a line of sight (LOS) vector on the unit ball,
pointing at the landmark. These can also be presented in
body-frame

δbi = R>nbδ
n
i , lbi = R>nblni (6)

The kinematics of the position of the vehicle is

ṗn = vn = Rnbv
b (7)

and we have

v̇n = fn + gn = Rnbf
b
IMU + gn (8)

The change in the LRP is then

δ̇ni = −vn (9)

To find the dynamics of the LRP in body-frame, (4) and
(6)-(9) were used with the product rule.

˙
δbi = −S(ω)δbi − vb (10)

From this, the dynamics of the range and bearing can be
found

%̇i = −(lni )>vn = −(lbi )
>vb (11)

l̇
n

i =
1

%i
(lni (lni )> − I)vn =

1

%i
S(lni )2vn (12)

l̇
b

i = −S(ω)lbi +
1

%i
(lbi (l

b
i )
> − I)vb

= −S(ω)lbi +
1

%i
S(lbi )

2vb
(13)



D. Sensor model 2-D special case

There are several sensors used for SLAM, both internal
and from the surroundings. In this paper we will focus on
bearing only SLAM, and the design and analysis of the
noise characteristic in 2-D. We will refere to the output
as the vector y in (18), while the sensors will refere to
the actual measurements from the sensors. The sensors
models are summarized in Table I. The sensor measurments
are: Attitude, bearing angle, velocity and accelerometer. We
will assume that an attitude and heading reference system
(AHRS) [11] is available, feeding an estimate ψ̂ +wψ from
which the rotation matrix can be built

Rnb =

[
cos(ψ̂ + wψ) − sin(ψ̂ + wψ)

sin(ψ̂ + wψ) cos(ψ̂ + wψ)

]
(14)

were we see that the rotation matrix is nonlinear, and pro-
duces noise that is affected by the nonlinear transformations.
Other measurements are potentially the magnetometer and
accelerometer. The magnetometer is handled by the AHRS
system, and the accelerometer measurement is

f bIMU = f b + (Rnb)
>gn (15)

where the gn is neglected in the 2-D case, and acceleration
bias can be handled as in [11]. Bearing measurements
from stationary landmarks are also available. The bearing
measurement in 2-D is an angle, with the measurement
model

lbim =

[
cos(βi + wβi)
sin(βi + wβi)

]
(16)

TABLE I: Overview of the measurements used in SLAM in 2-D

Measurments

Measurments Noise

Bearing: lbi = [cos(βi + wβ), sin(βi + wβ)]
>(1 + wl) [wβ , wl]

> = N (0, diag(σβ , σl))

Attitude: Rnb

cos(ψ + wψ) − sin(ψ + wψ)

sin(ψ + wψ) cos(ψ + wψ)

 wψ = N (0, σψ)

Acceleration: fbIMU = fb + wf wf = N (0, σf I2)

Velocity: vb + wv wv = N (0, σvI2)

E. Observability theory

As mentioned, a Kalman filter can be used on a LTV
systems to get a GES observer. Consider the LTV system

ẋ(t) = A(t)x(t) +B(t)u(t) +wx (17)
y(t) = C(t)x(t) +wy (18)

with the state transition matrix Φ(t, t0) satisfying

d

dt
Φ(t, t0) = A(t)Φ(t, t0) (19)

Then the observability can be characterized by the observ-
ability Gramian [17]

WO(t, t+ T ) =

t+T∫
t

(C(τ)Φ(τ, t))>(C(τ)Φ(τ, t))dτ (20)

If there is a T > 0 such that the Gramian is positive definite
for any t, the system (A(t), C(t)) is Uniformly Completely
Observable (UCO) [18] [19]. The KF is then,

˙̂x = A(t)x̂+B(t)u(t) +K(y −C(t)x̂) (21)

K = PC(t)>R(t)−1 (22)

Ṗ = A(t)P + PA(t) +Q(t)− PC>(t)R(t)−1C(t)P
(23)

where R is the positive definite covariance matrix of the
measurment noise wy , and Q is a possitive semi-definite
matrix of the prosess noise wx. If in addition, the covariance
martix Q is such that (A(t),

√
Q) is controlable, P (0) is

symetric positive definite, and C(t) is bounded, the dynamic
x̃ is globally exponetially stable, and P is uniformally
bounded [12]. Here we have reviewed the continuous-time
KF, for convenience, and note that its discrete-time version
should be used in implementations.

III. PREVIOUS WORK

As mentioned, a GES SLAM estimation was presented by
[10]. Both range and bearing, bearing only and range only
SLAM were presented as a LTV system, and solved with
Kalman filter. The nonlinearities from the attitude are esti-
mated with the comlimentary filter [11], with semi-globally
exponetially stability. The stability of the system is then
proved by observability for the LTV system. Similar work
has been done by Lourence and Guerreiro [14] [1], where a
range and bearing, and bearing only, SLAM filter is presented
in body-frame coordinate system. The global stability is
proven with an observability analysis, thus guaranteeing GES
of estimator using the Kalman filter. When using the Kalman
filter, an assumption is that the process and measurement
noise is Gaussian and white, and can therefore be represented
by the covariance matrices Q and R although this is not
the case for the nonlinear measurements coming out of
the LOS vector and rotation matrix. This means the LTV
solution is not necessary optimal but the strong convergence
provided by the KF, combined with approximation of the
noise characteristics; results in a stable and useful estimation.

lbim

vb

Attitude

!IMU

R̂nb SLAM

p̂ni

p̂n

v̂n

Magnetometer

IMU
f b
IMU

mb
mag

Bearing sensor

Velocity sensor

Fig. 1: Block Diagram of the structure of the SLAM attitude observer in
cascade with the SLAM filter



For the observability analysis of [10], an assumption was
made in which

‖S(ω)lbi +
˙
lbi‖ ≥ ε (24)

for some ε > 0. By examining the dynamics of the bearing
measurements (13), we see that this assumption is violated
every time the velocity vb is parallel to the bearing mea-
surement lbi , which gives a restriction on the suitable paths.
To address this, a new bearings only SLAM estimation is
presented with a new observability analysis.

In addition, an algorithm for estimating the vehicles po-
sition was presented in [10]; where the vehicle estimate is
set to zero at the start pn(0) = 0, which gives pni = δni (0).
The position can then be estimated as

p̂n(t) =

m∑
i=1

wi(t)(δ̂
n

i (0)− δ̂
n

i (t)) (25)

p̂ni (t) = p̂n(t) + δ̂
n

i (t), i = {1,m} (26)

where it should be noted that the estimate will converge with
a constant deviation so that p̂n(t) = pn(t) + d, in which

d =
m∑
i=1

wi(t)δ̃
n
i (0).

IV. OBSERVABILITY ANALYSIS

The proposed bearing only SLAM model is
presented in Table III. For the states x =
[vn, δn1 , · · · , δnm%1, · · · , %m]>, the corresponding

TABLE II: Overview of the Bearing only SLAM, for the corresponding
matrices see [10]

Bearing Only SLAM, [10]

States Input

x = [vn, δn1 , · · · , δnm, %1, · · · , %m]> u = Rnbf
b
IMU + gn

Measurement model

yv = vb = (Rnb)
>vn , y = [yv , yV1 , · · · , yVm, yE1 , · · · , yEm]>

yVi = 0 = δni −Rnb%il
b
i

yEi = 0 = wiv
n − qi%ilbi

wi = S(lbi )
2(Rnb)

>, qi = S(ω)lbi + l̇bi

Dynamics model

v̇n = u

δ̇ni = −vn

%̇i = −(lbi )>(Rnb)
>vn

system matrices will be

AB =



0 0 · · · 0

−I3 0 · · · 0
...

. . .
...

−I3 0 · · · 0

−(Rnbl
b
1)> 0 · · · 0

...
. . .

...

−(Rnbl
b
m)> 0 · · · 0


BB =



I3

0
...

0

0
...

0



CB =


R>nb 0 · · · 0 0 · · · 0

0 I3 · · · 0 −Rnbl
b
1 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · I3 0 · · · −Rnbl
b
m


We make an assumption on the trajectory of the vessel, to
ensure observability of the bearing only SLAM:

Assumption 1: There exist a T > 0, so that for every
landmark a τi > 0 exists, so that for all t > 0 we have
t < τi < t+ T , and that ˙lni (τi) 6= 0.
This assumption ensures that the vehicle does not moves
on a fixed line from a landmark (see Figure 2), ensuring
that ˙lni (τi) 6= 0 for any landmarks for the entire observation
period.

Theorem 1: The model presented in Table III, is UCO if
and only if assumption 1 holds.

Proof: We will use the same techniques as in [20].
In the proof we will show that the subsystems xBi =
[vn, δni , %i]

> for each landmark is observable. Because
of the independence of the landmarks, the entire system
is completely characterized by the subsystem in terms of
observability. This gives the system

AB(t) =


0 0 0

−I3 0 0

−(Rnb(t)l
b
i (t))

> 0 0


CB =

R>nb(t) 0 0

0 I3 −Rnb(t)l
b
i (t)


TABLE III: Overview of proposed the Bearing only SLAM

New Bearing Only SLAM

States Input

x = [vn, δn1 , · · · , δnm%1, · · · , %m]> u = Rnbf
b
IMU + gn

Measurement model

yv = vb = (Rnb)
>vn , y = [yv , yV1 , · · · , yVm]>

yVi = 0 = δni −Rnb%il
b
i

Dynamics model

v̇n = u

δ̇ni = −vn

%̇i = −(lbi )>(Rnb)
>vn



which is UCO as proven by calculating the transition matrix
for the subsystem, and then calculateing the observability
Gramian. The state transition matrix is found by the Peano-
Baker series [21]

Φ(t, t0) = I3 +

t∫
t0

AB(σ1)dσ1 +

t∫
t0

AB(σ1)

σ1∫
t0

AB(σ2)dσ2dσ1 · · ·

(27)

where we see by the structure of AB(σ2) that AB(σ2)2 = 0,

which also is the case for AB(σ1)
σ1∫
t0

AB(σ2)dσ2 = 0,

because the integral preserves the zero elements of the
matrix. This eliminates all the higher terms of the Peano-
Baker serie, so we are left with

Φ(t, t0) = I3 +

t∫
t0

AB(σ1)dσ1 =

 I3 0 0

(t− t0)I3 I3 0

−RL∗(t, t0)
> 0 I3


where RL∗(t, t0) =

t∫
t0

Rnb(τ)lbi (τ)dτ . This can be inserted

to (19) for confirmation. We can then calculate the observ-
ability Gramian

W(t+ T, t) =

t+T∫
t

(CBΦ(τ, t))>(CBΦ(τ, ))dτ (28)

(29)

where

CBΦ(τ, t) =

 R>nb 0 0

c[1](τ, t) I Rnbl
b
i

 (30)

and c[1](t, t0) = I(t−t0)+Rnbl
b
iRL∗(t, t0)> If the observ-

ability Gramian is full rank, the system is UCO. If W(t, t0)
is not full rank, there exist a vector c = [c>v , c

>
δ , c

>
% ]> with

magnitude ‖c‖ = 1 such that

c>W(t, t0)c = 0 (31)

which corresponds to

c>W(t+ T, t)c =

t+T∫
t

‖CBΦ(τ, t)c‖dτ =

t+T∫
t

‖f(τ, t)‖dτ

We then need to find a c so that f(τ, t) = CBΦ(τ, t)c and
its derivative is zero for all τ > 0. Which gives the equations

f(τ, t) =

 R>nb(τ)cv

cvc[1](τ, t) + cδ + lni (τ)c%

 = 0 (32)

ḟ(τ, t0) =

−S(ω(τ))R>nb(τ)cv

cv ċ[1](τ, t) + ˙lni (τ)c%

 = 0 (33)

Immediately we see from (32) that it is necessary with cv =
0, which leads to the equality cδ = lni c%. We also see from
(33) that we need to have ˙lni c% = 0. By Assumption 1, there
exist a τi such that ˙lni (τi) 6= 0, which implies that we need
c% = 0, which again imply that cδ = 0, following from (32).

This contradicts that ‖c‖ = 1. We have proven that the the
Gramian W(t + T, t) is full rank, and the system is UCO,
if and only if Assumption 1 holds.
In the proof we showed that the bearing only SLAM is UCO,
if and only if, there exist a τi such that ˙lni (τi) 6= 0, which
implies that the inertia-frame bearing measurement Rnbl

b
i

can’t be constant. This is shown by assuming that the bearing
measurement is indeed constant, and showing that it makes
the system unobservable. For the assumption ˙lni 6= 0 not
to hold, we can see from (12), that the velocity vector of
the vehicle has to be zero or parallel to the bearing such
that S(lni )vn = 0 for all time. By definition of observability
[18], an observable system must be able to distinguish two
different initial states, by the knowledge of the input and
output only. Then consider the two cases, scenario a and
b, where two vehicles start at different distance from a
landmark, but along the same angle and moving parallel
to the bearing measurements lni at the same velocity and
orientation, and has the same acceleration (see Figure 2).
This would result in them having the same matrices AB

and CB . If then, they in addition start with the same
estimates [v̂na(0), δ̂

n

a(0), %̂a(0)] = [v̂nb (0), δ̂
n

b (0), %̂b(0)],
it would lead to the same state estimate evolution and
output ya(t) = yb(t), thus the different initial conditions
are not indistinguishable from each other which makes the
system unobservable. Since we have shown that the system
(AB ,CB) is UCO if the Assumption 1 holds, we know that
globally exponentially stability can be achieved for the KF
in the nominal case.

v
n
a

v
n
b

l
n
a

l
n
b

Fig. 2: Two scenarios where the vehicle starts at the same angle from
a landmark, with the same velocity along parallel trajectory to its global
bearing measurement.

V. COVARIANCE MATRIX DESIGN

In this section we will estimate the covariance matrices
QB and RB for the plant noise wx and output noise wy ,
respectivly, when the bearings only SLAM is implemented.
As mentioned, the dependency of AB and CB on bearing
measurements and the rotation matrix, gives the need of ap-
proximating the noise characteristics. If the noises are small
perturbations, linearisation can give good approximation of
the noise characteristics. It should be noted that suboptimal
covariance matrices QB and RB will not damage the global



stability, which can be seen in [12]. It is shown in the
proof that symmetry and positive definiteness are sufficient
conditions on QB and RB for the nominal system to be
GAS. The sensor models in Section II-D for the 2-D scenario
will be used.

A. Introduction of virtual noise

When approximating wx and wy through linearisation, a
problem is that the dimension of the output vector y from the
bearing only SLAM in 2-D have dimension 2m + 2, while
the number of sensor measurements used in the output are
m+3. The rank of the covariance matrix of the sensor matrix
SB is therefore less than the dimension of the covariance of
the output matrix RB , which can result in a singular output
covariance matrix approximation

R̂B = Y wSBY
>
w . (34)

The vector w contains all the noise variable from the
measurements, which for our case could be w =
[wv1, wv2, wψ, wβ1, · · · , wβm]>. The matrix Y w is then
the Jacobian Y w = ∂y

∂w . With this in mind, and the fact
that the distributions from the bearing vectors is nonlinear
and has a covariance with dimensions two, while the bearing
angle has dimension one; it is natural to introduce a virtual
noise parallel to the bearing measurement

lbim =

 cos(βi + wβi)

sin((βi + wβi)

 (1 + wli) (35)

By introducing the virtual noise, the dimension of the sensor
matrix increases to 2m+3, which ensures a full rank output
covariance matrix when using (34). This also improved the
performance of the filter substantially, compared to just using
regularization.

B. Noise model Linearization

As mentioned, linearisation was used for approximating
the nonlinear stochastic models. Hence we need the partial
derivatives with regard to the noise inputs for the rotation
matrix

∂Rnb

∂wψ
= RnbS(1) (36)

where S(1) is the matrix

S(1) =

[
0 −1

1 0

]
(37)

The LOS partial derivatives with regard to the noise inputs
is then

∂lbim
∂wβj

=

{
S(1)lbi i = j

0 i 6= j
(38)

∂lbim
∂wlj

=

{
lbi i = j

0 i 6= j
(39)

Where i and j are different indices for LOS measurements.
For the process model, the main noise will come from the

accelerometer, as an input to the velocity estimate v̂n thus
propagating to the rest of the estimates by the Kalman
filter. In addition, the range estimates have noise coming
from the auxiliary measurement vectors lbi and matrix Rnb.
Since these occur in both AB and CB , there will be
correlations between the plant noise and the measurement
noise. Simulations where done, where the noise in AB was
turned of, without any notable difference, so in this paper
the noise from AB and CB are assumed uncorrelated, and
implemented that way. Recall that the landmark distances are
given by the differential equations

%̇i = fi(x, t) = (Rnb(ψm)lbi (βm))>vn

= (Rnb(ψ)l
b
i (β))

>vn + wxi

where wxi is the plant noise. From Table I, we see that
the measurements related to lbi and Rnb are the attitude
ψ, and bearing angles βi. In addition, the virtual noise wl
was introduced, as explained in Section II-D. We therefore
introduce the noise vector wi = [wψ, wβi, wli], with
covariance SBi = diag(σ2

ψ, σ
2
βi, σ

2
li). To estimate the plant

noise wxi linearisation is used

ŵxi =
∂fi
∂wi

wi = fwiwi. (40)

With partial derivatives from above we find

fwi =
[
∂fi
∂wψ

∂fi
∂wβi

∂fi
∂wli

]
fwi =

[
−(RnbS(1)lbi )

>vn −(RnbS(1)lbi )
>vn −(Rnbl

b
i )
>vn

]
Giving the covariance of the %i dynamic to be estimated as

q̂B%i = fwiSBif
>
wi (41)

the plant noise covariance matrix of the whole system will
then become

Q̂B = QB +QBf + FwSBF
>
w . (42)

The covariance matrix QBf = diag(σ2
f , σ

2
f , 0, · · · , 0) is

from the accelerometer; The matrix QB is included to allow
some tuning, although it was left zero in the implementation.
The matrix SB is the covariance matrix of the vector
w = [wψ, wβ1, wl1, · · · , wβm, wlm]>, which is the
noise vector for the whole system, dependent on how many
landmarks there are. The matrix Fw is the Jacobian matrix
with respect to the w of ẋ = f(t, x) = ABx for the whole
system

Fw =
[
0 0 . . . 0 f1

w

>
. . . fmw

>
]>

(43)

where the row vector f iw is the partial derivative of row
number i of f(t, x) with respect of the the vector w, i.e.
f iw = [ ∂fi∂wψ

, · · · ∂fi∂wβi
, ∂fi
∂wli

, · · · ]
The same method is employed for the output model. The

outputs are

yBv = gv(t, x) = R>nbvn (44)

yBi = gi(t, x) = δbi −Rnbl
b
i%i (45)



where i is the index of the landmark. To approximate the
noise of the output, linearisation can also be used here

ŵyv =
∂gv
∂wi

wi = Gwvwi (46)

ŵyi =
∂gi
∂wi

wi = Gwiwi (47)

With partial derivatives from section II-D we find

Gwv =
[
∂gv
∂wψ

∂gv
∂wβi

∂gv
∂wli

]
, Gwi =

[
∂gi
∂wψ

∂gi
∂wβi

∂gi
∂wli

]
leading to

Gwv =
[
−S(1)R>nbvn 0 0

]
Gwi =

[
−%iRnbS(1)lbi −%iRnbS(1)lbi −%iRnb(l

b
i )
]

We can then use the same elements for the whole system,
where we linearise the entire output y = CBx = g(t, x) =
[gv
>, g1

>, · · · , gm>]> with respect of the whole noise
vector w. The linearisation becomes

Gw =


∂gv
∂wψ

0 0 · · · 0 0
∂g1

∂wψ

∂g1

∂wβ1

∂g1

∂wl1
· · · 0 0

...
...

...
. . .

...
...

∂gm
∂wψ

0 0 · · · ∂gm
∂wβm

∂gm
∂wlm


We get the approximate output covariance matrix the same
way we obtained the process noise covariance matrix

R̂B = RB +GwSBG
>
w (48)

Here, matrix Gw is the Jacobian of the function g(t, x), and
SB is a positive definite tuning matrix, where in addition,
the covariance of the velocity are maintained in the matrix
elements RB(1:2,1:2) = Iσv

2. The matrix RB is also for
tuning/regularization, ensuring that the covariance matrix is
always full rank, regardless if %̂i = 0. This was tuned so
that the the covariance estimates where consistent with the
estimate errors.

VI. SIMULATION RESULTS AND
PERFORMANCE EVALUATION

The bearings only SLAM estimator was simulated in Mat-
lab, where the model was discretized with a time-step ∆t =
1[s] using Euler. It was implemented using the discrete-
time Kalman filter, with estimates starting at the origin. The
simulations are in 2D environment, and for simplicity all the
landmarks are observed at all time steps. The sensors are
implemented as presented in section II-D with white noise
having standard deviation as follows: accelerometer σf =
0.1[m/s2], AHRS σψ = 0.8o, bearing angle σβ = 0.4o,
velocity σv = 1[m/s] and the virtual noise σl = 4.5 · 10−4.
These were also used in the design of the covariance matrices
R̂B and Q̂B . The tuning/regularization matrix SB had di-
agonal entries SB = diag(σ2

v , 502, · · · , 502) . The standard
deviation σv combined with the expected initial distance to
the landmarks, helped determine P (0). The vehicle travelled
in a spiral for 1350 seconds. The results can be seen in Figure

3. The estimated vehicle trajectory and landmark estimates
are in blue, while the true vehicle trajectory is in red, and the
landmarks are marked with 1,2,3,4. The position estimates
have also been translated, making comparison easier. The
estimates converge fast, and the estimate error of landmark
1 can be seen in Figure 4. The error characteristics were
the same for all the landmarks. From the error plots, it is
apparent that there is a bias in the estimate error, which is
oscillating. MC simmulations were made for 2500 seconds,
where the results of Landmark 1 are shown in Figures 5-
6. In Figure 5, the average error of all the simulations is
plotted for every time step. This bias vanishes if the the
bearing and attitude noise is turned off in the matrix CB in
both filter model and simulation model. Bias compensation
from Bar-Shalom [22] has been explored, without success.
Nevertheless, it is apparent that the bias is predictable; and
with an 1-2% error it is regarded as aceptable; which is
suported by examining Figure 3. To examine the concistency
of the SLAM solution, a normalized error squeared (NES)
test [22][p.234-236] was also preformed, resulting in Figure
6. The authors acknowledge that the NES test fails in the
strictest sense, especially because of the bias. However, the
result of the NES test also demonstrated stability of the
solutions and the covariance estimates. So it is hardly critical,
but future research should address this with more detail.

Fig. 3: The landmark and vehicle position estimates of the bearing only
SLAM. For this figure, the end position estimate is set equal to the true
end position for easier comparison in the figure, and one can see that the
evolution of the position estimates converge to the same trajectory as the
true vessel.

VII. CONCLUSION

In this article we have presented a globally asymptoti-
cally stable bearing only SLAM estimation, that is able to
estimate landmarks and its relative position with bearing
only measurements in addition to IMU, velocity and atti-
tude measurements. The system was represented as an LTV
system, where an observability analysis was performed; in
which conditions on the trajectory was found so that with
KF, global convergence could be achieved in the nominal
case. A new design of the input covariances was proposed,
using the Jacobian of the system.



Fig. 4: The error of 150 trajectories of the Landmark 3 estimates, with 3σ
plotted red. Here the covariance matrix is the covariance from linearization
added with a diagonal matrix. It is apparent that the biassed estimates offsets
the error.

Fig. 5: The mean error in range estimates of landmark 4 from 3000 MC
simulations, from 500 < t < 2500.

A. Future work
Future work include further analysis of the noise charac-

teristics of the bearing only SLAM solution and exploration
of the noise correlation structure in detail. In addition, the
goal is to develop an attitude observer for bearing only
measurements, which is not dependent on magnetometer to
estimate gyro bias, and experimental validation of the SLAM
solution together with solutions presented in [10].
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