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Abstract—Passive multi-target tracking applications require
the integration of multiple spatially distributed sensor measure-
ments to distinguish true tracks from ghost tracks. A popular
multi-target tracking approach for these applications is the
particle filter implementation of Mahler’s probability hypothesis
density (PHD) filter, which jointly updates the union of all
target state space estimates without requiring computationally
complex measurement-to-track data association. Although this
technique is attractive for implementation in computationally
limited platforms, the performance benefits can be significantly
overshadowed by inefficient sampling of the target birth par-
ticles over the region of interest. We propose a multi-sensor
extension of the adaptive birth intensity PHD filter described
in (Ristic, 2012) to achieve efficient birth particle sampling
driven by online sensor measurements from multiple sensors.
The proposed approach is demonstrated using distributed time-
difference-of-arrival (TDOA) and frequency-difference-of-arrival
(FDOA) measurements, in which we describe exact techniques
for sampling from the target state space conditioned on the
observations. Numerical results are presented that demonstrate
the increased particle density efficiency of the proposed approach
over a uniform birth particle sampler.

I. INTRODUCTION

Passive localization and tracking of multiple co-channel tar-
gets is an important research topic in speaker localization [1],
sonar [2], passive radar [3], and intrusion detection in wireless
sensor networks [4]. By passive, we mean that the signal
shape emitted by the target is unknown, but observed similarly
across multiple spatially distributed sensors. As a result, the
localization and tracking algorithms for these applications
rely on difference measurements between pairs of sensors.
Time-difference-of-arrival (TDOA) and frequency-difference-
of-arrival (FDOA) measurements, for example, use the gener-
alized cross correlation of raw signal measurements between
sensor pairs at different time and frequency offsets to estimate
range and range-rate differences [5], [6]. Power-difference-of-
arrival (PDOA) measurements are generated by observing the
difference in average receive power measurements between
sensors, which is closely related to the difference in the
cross correlation peak magnitudes. In applications such as
underwater acoustics and passive radar a direction finding
solution based on angle-of-arrival (AOA) is also possible [2].

Although single-target localization and tracking algorithms
using passive measurements are well understood [7], the
problem becomes significantly more complex for multiple co-
channel targets. For passive localization and tracking algo-
rithms in particular, the presence of multiple targets leads to

state space estimation ambiguities known as ghost targets.
These ghost targets manifest from the intersection of plau-
sible state space estimates suggested by each passive sensor
measurement [8]. Resolution of these ghost targets requires
specification of measurement-to-track association algorithms
that in general do not scale well with the number of targets,
especially in the presence of high clutter and high false alarm
rate environments.

A number of multi-target tracking approaches have been
proposed for the passive multi-target tracking problem based
on the random finite sets (RFS) framework [9], [10]. These
techniques extend the calculus and statistics used to derive the
standard recursive Bayes filter to the case where the cardinality
of the underlying state space is itself a random variable.
The resulting multi-target recursive Bayes filter provides a
mechanism for estimating the number of targets and their state
space estimates without having to specify a measurement-
to-track association technique. Although this filter is prac-
tically difficult to implement, a number of moment-based
approximations have been proposed that are widely used in
computationally limited settings. The probability hypothesis
density (PHD) filter results from a first-order moment approx-
imation where the cardinality distribution is assumed Poisson.
The cardinalized probability hypothesis density (CPHD) filter
results from a first-order moment approximation where the car-
dinality distribution is estimated in parallel. Both of these ap-
proximation techniques are defined for single sensor tracking
problems, as the original multi-sensor update equation requires
the combinatorial evaluation of all false-alarm and missed
detection hypotheses per sensor. In practice, the iterated-
corrector PHD/CPHD method is used which involves applying
the update step sequentially to the set of measurements from
each sensor [11], [3]. Although this approach is suboptimal
[12], [13], it remains practical in many applications due to the
marginal increase in complexity.

In this paper, we focus on the particle filter implementation
of the iterated-corrector PHD filter [14], [11], [3] applied to
the passive multi-target tracking problem using a stationary
wireless sensor network. A set of spatially distributed sensors
observe co-channel, non-overlapping (in time) signals from a
time varying number of targets. Each sensor observes pairs
of TDOA and FDOA measurements that are generated from
at most one of the targets, or the result of environmental
clutter. The goal is to use the measurements at each time
step to track the position and velocity of all targets. In
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this work, we accomplish this task using the adaptive birth
intensity extension to the PHD filter detailed in [15]. This
approach constructs an augmented state space consisting of
the original state-space variables concatenated with a label
that distinguishes a newborn target from a persistent target.
The resulting predict and update steps of the PHD filter
after applying this augmentation removes the need for prior
specification of the target birth intensity, and instead replaces
it with a particle sampling procedure based on the mea-
surements themselves. More importantly, this data-adaptive
sampling technique enables very accurate multi-target state
estimation without requiring an excessive number of particles.
This consideration is important, especially when considering
implementation on computationally limited software defined
radio (SDR) platforms.

In order to implement this technique for the TDOA/FDOA
passive localization problem, we provide the following con-
tributions. First, we describe an extension of the adaptive
birth intensity technique provided in [15] to multiple sensor
measurements using the iterated-corrector implementation of
the particle PHD filter. The approach of [15] provides a
more rigorous justification for an adaptive birth intensity, in
contrast to similar heuristics previously suggested in [16],
[17]. As opposed to the linear Gaussian approximation of
the birth intensity sampler suggested in [15], we also provide
a mechanism for directly sampling the plausible state-space
particles using the TDOA and FDOA measurement tuples. Our
technique is based on the geometric models presented previ-
ously in [18]. The specification of these sampling functions
is very important, as the relationship between the state space
estimates and the TDOA and FDOA measurements are non-
linear and non-invertible.

The remainder of the paper is organized as follows. In
Section II, a brief overview of RFS for multi-target tracking is
provided. The adaptive birth intensity particle PHD filter from
[15] alongside our extension to multi-sensor measurements
using the iterated-corrector update rule is summarized in
Section III. We then detail the TDOA and FDOA measurement
models alongside the relevant position and velocity sampling
techniques in Section IV. Finally, Section V provides a sim-
ulation comparing the performance of the proposed technique
with a standard uniform placement of birth particles.

II. RANDOM FINITE SET PRELIMINARIES

A full treatment of the multi-target tracking problem with
RFS is outside the scope of this paper. Instead, we provide
a pragmatic description using the notation provided in [15].
A detailed description of RFS can be found in [19], and its
application to the particle PHD filter in [14].

A. Random Finite Sets and Multi-target Tracking

Consider a multi-target tracking problem where the goal is
to estimate the state vector, xk ∈ X , for Nk targets at the
discrete time step k = 0, 1, . . .. At each time step, the number
of targets is random, and the states for each target evolve

according to a Markov process. The multi-target state at time
k is defined as

Xk = {xk,1, . . . ,xk,nk
} ∈ F (X )

where F (X ) denotes a finite collection of subsets defined
on X . A single sensor generates a set of measurements, zk ∈
Z , for each target in addition to false alarm measurements
(i.e., clutter) that are uncorrelated with the any of the target
states. In addition, missed detections may occur in which no
measurements are observed from a given target. The total set
of mk measurements at time step k, consisting of true target
and clutter returns, is defined as

Zk = {zk,1, . . . , zk,mk
} ∈ F (Z )

Both Xk and Zk are described as random finite sets (RFS),
where the values of the elements and the cardinality of the
sets are random variables with no specific element permutation
(i.e., ordering of the targets). In a manner similar to single-
target filtering, a RFS multi-target filter seeks to estimate
the posterior multi-target state distribution, fk|k(Xk|Z1:k),
which relates the multi-target state estimates Xk given the
measurements up until time k, denoted Z1:k = {Z1, . . . ,Zk}.
This RFS posterior is fully specified using the multi-target
recursive Bayes filter derived in [19].

B. Probability Hypothesis Density Filtering

Although particle filter implementations of the multi-target
recursive Bayes filter exist [1], they are not often used in
practice because their complexity becomes intractable for
large numbers of targets. Instead, a number of RFS moment
approximations are applied to arrive at a suboptimal but more
tractable realization. The moment approximation of interest
for this work is the probability hypothesis density (PHD). The
PHD, denoted D(x) : X → <, defines a multi-target analogue
to an expected value in the sense that it provides a point-wise
estimate of the density of targets located at xk ∈X [15], [19].
As a consequence, the standard integral of the PHD function
across the state space X evaluates to the expected number of
targets in the state space.

In a multi-target tracking system the PHD function can be
loosely interpreted as an estimate of the union (i.e., weighted
summation) of single-target tracker posteriors and a prior
density function consisting of a birth probability distribution
over the state space multiplied by the expected number of
newborn targets. Denote the most recent estimate of the PHD
intensity function at time k − 1 as Dk−1|k−1(x). The PHD
filter prediction step is given by

Dk|k−1(x) = γk|k−1(x)

+ ps(x)

∫
πk|k−1(x|x′)Dk−1|k−1(x)dx′ (1)

where ps(x) is the probability of survival for a target,
πk|k−1(x|x′) is the standard state-transition probability density
function that describes how target kinematics propagate from
time step k − 1 to k, and γk|k−1(x) is a PHD function



representing the birth process (i.e., the expected number of
targets that appear at each state space location). The PHD
filter update step is given by

Dk|k(x) = (1− pd(x))Dk|k−1(x)

+
∑

zk∈Zk

gk(zk|x)pd(x)

κk(zk) + C(zk)
Dk|k−1(x) (2)

where pd(x) is the probability of detection of a measurement
being generated from a target, gk(zk|x) is the standard single-
target measurement likelihood, κk(zk) is a PHD function rep-
resenting the measurement clutter process (i.e., the expected
number of measurement false alarms that appear at each
measurement space location). The normalization term C(zk)
is given as

C(zk) =

∫
gk(zk|x′)pd(x′)Dk|k−1(x′)dx′. (3)

Since the PHD filter involves multiple standard integrals over
the state space, it is typically implemented using a sequential
Monte Carlo (i.e., particle filter) realization [14], or using
Gaussian mixture distributions [20]. When multiple sensors
are present, the iterated-corrector approach applies the update
step of Equation (2) sequentially for the set of measurements
obtained at each sensor.

III. MULTI-SENSOR ADAPTIVE BIRTH INTENSITY FILTER

A. Adaptive Birth Intensity PHD Filter

The adaptive birth intensity technique of [15] augments the
original state space by appending a label, β ∈ {0, 1}, which
distinguishes a newborn target (β = 1) from a persisting target
(β = 0). Augmenting the original state vector of the PHD
predict and update equations with this label decouples the birth
PHD intensity from the predicted PHD intensity of persisting
targets. The PHD filter predict step for this augmented state
space, denoted Dk|k−1(x, β) is given in [15] as

Dk|k−1(x, 0) =

ps(x)

∫
πk|k−1(x|x′)

[
Dk−1|k−1(x, 1)

+Dk−1|k−1(x, 0)
]
dx′ (4)

and
Dk|k−1(x, 1) = γk|k−1(x). (5)

The PHD update step for this augmented state space is

Dk|k(x, 0) = (1− pd(x))Dk|k−1(x, 0)

+
∑

zk∈Zk

gk(zk|x)pd(x)Dk|k−1(x, 0)

κk(zk) + C ′(zk)
(6)

and

Dk|k(x, 1) =
∑

zk∈Zk

gk(zk|x)γk|k−1(x)

κk(zk) + C ′(zk)
(7)

where the new normalization term C ′(zk) is given as

C ′(zk) =

∫
gk(zk|x′)γk|k−1(x′)dx′

+

∫
gk(zk|x′)pd(x′)Dk|k−1(x′, 0)dx′. (8)

It is important to note that the addition of these target labels do
not change the mechanics of the PHD filter, but instead provide
insight as to how the birth PHD function affects the predict
and update steps. Newborn targets from the birth process are
brought into the updated PHD function based on their product
with the measurement likelihood function. As discussed in
[15], this insight allows for construction of a particle filtering
solution where the birth intensity is set such that the particle
density is high at areas of high measurement likelihood (i.e.,∫
gk(zk|x′)γk|k−1(x′)dx′ is large).
The particle filter implementation of the adaptive birth inten-

sity PHD filter for a single sensor is specified by constructing
two particle systems: one for persisting targets and one for
newborn targets. These approximations are expressed as

Dk|k(x, 0) ≈
Np

k∑
i=1

w
(i)
k,pδx(i)

k,p

(x)

Dk|k(x, 1) ≈
Nb

k∑
i=1

w
(i)
k,bδx(i)

k,b

(x)

where the sets ∪N
p
k

i=1(x
(i)
k,p, w

(i)
k,p) and ∪N

b
k

i=1(x
(i)
k,b, w

(i)
k,b) repre-

sent the particle systems for the persistent and newborn targets
respectively. The Dirac delta function δx′(x) = 1 when x = x′

and 0 otherwise. An additional particle system is defined to
represent the sum of the persistent and newborn PHD intensity
functions used in the predict step of Equation (4),

Dk|k(x, 0) +Dk|k(x, 1) ≈
Nk∑
i=1

w
(i)
k δ

x
(i)
k

(x)

which is defined as the union of the persistent and newborn
particle systems,

∪Nk
i=1 (x

(i)
k , w

(i)
k ) =[
∪N

p
k

i=1(x
(i)
k,p, w

(i)
k,p)
]⋃[

∪N
b
k

i=1(x
(i)
k,b, w

(i)
k,b)
]

where Nk = N b
k +Np

k .
With these three particle system approximations, the particle

filter variation of the single target adaptive birth intensity PHD
filter is given as follows [15]. In the predict step, the persisting
particle weights are determined by sampling all x

(i)
k,p from an

importance density function qk(x
(i)
k,p|x

(i)
k−1,Zk) and setting the

weights according to

w
(i)
k|k−1,p = ps(x

(i)
k,p)

πk|k−1(x
(i)
k,p|x

(i)
k−1)

qk(x
(i)
k,p|x

(i)
k−1,Zk)

w
(i)
k−1. (9)

The newborn particles and their weights are determined by
sampling x

(i)
k+1,b from some measurement conditioned prob-

ability distribution function b(xk+1,b|zk) for each zk ∈ Zk.



The probability density function b(xk+1,b|zk) is selected such
that all particles generated are in regions of space where
the likelihood gk+1(zk|xk+1,b) is high. The corresponding
weights for the newborn particles are uniform, and given as

w
(i)
k|k−1,b =

νbk|k−1

N b
k

(10)

where νbk|k−1 is the expected number of target births at each
predict step. In the update step, the predicted persistent particle
weights are refined as

w
(i)
k|k,p = (1− pd(x(i)

k|k−1,p))w
(i)
k|k−1,p

+
∑
z∈Zk

pd(x
(i)
k|k−1,p)gk(z|x(i)

k|k−1,p)w
(i)
k|k−1,p

L(z)
(11)

where the normalization constant is given as

L(z) = κk(z) +

Nb
k∑

i=1

w
(i)
k|k−1,b

+

Nk−1∑
i=1

pd(x
(i)
k|k−1,p)gk(z|x(i)

k|k−1,p)w
(i)
k|k−1,p. (12)

Similarly, the birth particle weights are refined from the
predicted birth particle set according to

w
(i)
k|k,b =

∑
z∈Zk

w
(i)
k|k−1,b

L(z)
(13)

Once the update step is finished, a resampling step is applied
to the persistent1 PHD particle systems in order to remove
samples with low weights. The usual approach is to compute
the weight sum of each system, normalize the particle weights
by each system’s weight sum, resample the points using each
particle system’s normalized weights, and finally set the new
particle weights uniformly such that they sum to the original
weight sums of each system. A more detailed description is
provided in [14].

B. Multi-sensor Adaptive Birth Intensity PHD Filter

Given the particle filter implementation of the single-sensor
adaptive birth intensity PHD filter [15], our extension to multi-
sensor based on the iterated-corrector rule is straight forward.
The pseudocode for the resulting multi-sensor adaptive birth
intensity PHD filter is shown in Figure 1. Each step of the
filter operates on the combined persistent (after resampling)
and newborn particle system from the previous step, using
the measurements generated by each sensor l ∈ 1, . . . , L.
The predict step (lines 1-5) is similar to what is described in
[15], and based on target survival and kinematic propagation.
Applying the iterated-corrector to the update step, the proposed
approach samples a particle system using a birth intensity

1As [15] suggests, the resampling step can also be applied for the updated
newborn particles, if necessary. In this work, we apply resampling only to the
updated persistent particle systems.

based on the measurements observed for a given sensor (lines
6-23). The predicted persistent and newborn particle systems
are updated with that sensor’s observed measurements, de-
noted Z

(l)
k , using the adaptive birth intensity PHD update steps

defined by Equations (11) and (13) (lines 17-18). Then, an
intermediate “predict” step occurs that converts all of the birth
particles generated by that sensor (after performing the update
of Equation (13)) to persisting particles (line 19-22). The next
sensor’s birth particle system is sampled using its measurement
set, and the update equations are repeated using the persistent
particle set generated after the previous sensor’s update.

It should be noted that the iterated-corrector multi-sensor
combination rule is not commutative. As a result, sensors
that are combined earlier in the update step will have a
larger effect on the resulting persistent particle system than
those combined later. For passive tracking applications, this
could have the effect of introducing persistent ghost targets
in the filter output if sensors with higher false alarm rates
are combined first. A common strategy used in passive radar
applications is to randomize the combination order, favoring
earlier selection of sensors with lower expected false alarm
rates and higher detection rates. It should also be noted that
the complexity of the proposed iterator-corrector update step
grows with the number of measurements detected at each of
the sensors, which can be very large for high false alarm rate
sensors. However, this complexity growth is largely offset by
the increase in particle placement efficiency provided by this
technique over a uniform placement of particles.

IV. PARTICLE SAMPLING FROM PASSIVE MEASUREMENTS

We now describe the application of the multi-sensor adap-
tive birth intensity filter to a passive multi-target target tracking
problem using TDOA and FDOA measurements. The TDOA
and FDOA geometry for a single sensor pair and a single target
is shown in Figure 2. Let

∆t
(l1−l2)
k = {∆t(l1−l2)

k,1 , . . . ,∆t
(l1−l2)

k,m
(l1−l2)

k

}

be the measurement RFS for TDOA measurements generated
at time-step k for sensor pair (l1, l2). Similarly, let

∆f
(l1−l2)
k = {∆f (l1−l2)

k,1 , . . . ,∆f
(l1−l2)

k,m
(l1−l2)

k

}

be the measurement RFS for FDOA measurements generated
at time-step k for sensor pair (l1, l2). The notation (l1 − l2)
represents that the measurement difference is taken with
respect to sensor l2. We assume that the signal-level detection
mechanism provides joint TDOA and FDOA detections that
are independent and normally distributed for each true target
such that

∆t
(l1−l2)
k,i ∼ N

(
1

c
(|rl1 | − |rl2 |), σ2

∆t

)
(14)

and
∆f

(l1−l2)
k,i ∼ N

(
fc
c

(|ṙl1 | − |ṙl2 |), σ2
∆f

)
(15)

where σ2
∆t and σ2

∆f represent the expected TDOA and FDOA
error variances, c is the speed of light, and fc is the carrier



Algorithm 1: Multi-sensor adaptive birth intensity PHD filter at time step k

Input:
(1) Combined persistent and newborn PHD particle system from step k − 1, ∪Nk−1

i=1 (x
(i)
k−1, w

(i)
k−1)

(2) Observed measurement set at step k for each sensor l, ∪Ll=1Z
(l)
k where Z

(l)
k = {z(l)

k,1, . . . , z
(l)

k,m
(l)
k

}
1: . Sample all particles according to target state-transition dynamics
2: for i = 1, . . . , Nk−1 do
3: Sample x

(i)
k|k−1,p from qk(x

(i)
k|k−1,p|x

(i)
k−1,Zk)

4: w
(i)
k|k−1,p ← ps(x

(i)
k|k−1,p)

πk|k−1(x
(i)

k|k−1,p
|x(i)

k−1)

qk(x
(i)

k|k−1,p
|x(i)

k−1,Zk)
w

(i)
k−1 . Equation (9)

5: end for
6: . Iterated-corrector applied to each sensor measurement set sequentially
7: for l = 1, . . . , L do
8: N b

k ←Mb ·m(l)
k . Sample Mb particles per newborn target based on the number of measurements at sensor l

9: for i = 1, . . . ,m
(l)
k do

10: for j = 1, . . . ,Mb do
11: n← j + (i− 1)Mb

12: Sample x
(n)
k|k−1,b ∼ b(x

(n)
k|k−1,b|z

(l)
k,i) . Measurement-driven birth intensity sampling

13: w
(n)
k|k−1,b ←

νb
k|k−1

Nb
k

. Equation (10)
14: end for
15: end for
16: . Update step for persistent and newborn particles at step k
17: Evaluate each w(i)

k|k,p using ∪Nk−1

i=1 (x
(i)
k|k−1,p, w

(i)
k|k−1,p), ∪N

b
k

i=1(x
(i)
k|k−1,b, w

(i)
k|k−1,b), Z

(l)
k , and Equation (11)

18: Evaluate each w(i)
k|k,b using ∪Nk−1

i=1 (x
(i)
k|k−1,p, w

(i)
k|k−1,p), ∪N

b
k

i=1(x
(i)
k|k−1,b, w

(i)
k|k−1,b), and Equation (13)

19: if l < L then
20: . Combine updated persistent and newborn particle systems for the next sensor’s update step
21: ∪Nk−1+Nb

k
i=1 (x

(i)
k|k−1,p, w

(i)
k|k−1,p)←

[
∪Nk−1

i=1 (x
(i)
k|k−1,p, w

(i)
k|k,p)

]⋃[
∪N

b
k

i=1(x
(i)
k|k−1,b, w

(i)
k|k,b)

]
22: end if
23: end for
24: . Resample persisting PHD particle system after the final sensor update
25: ν̂pk ←

∑Nk−1

i=1 w
(i)
k|k,p . Estimated number of persisting targets

26: Np
k ←Mp · ν̂pk . Number of particles to resample by

27: Resample Np
k times from ∪Nk−1

i=1 (x
(i)
k|k−1,p, w

(i)
k|k,p/ν̂

p
k) to obtain ∪Nk−1

i=1 (x
(i)
k,p, w

(i)
k,p) where w(i)

k,p = ν̂pk/N
p
k

Return:
Persistent PHD particle system ∪Nk−1

i=1 (x
(i)
k,p, w

(i)
k,p) after resampling

Newborn PHD particle system ∪N
b
k

i=1(x
(i)
k|k−1,b, w

(i)
k|k,b) after final update step

Fig. 1. Multi-sensor adaptive birth intensity predict/update step algorithm.

frequency of the observation. The quantities |rl| and |ṙl|
represent the range and range-rate from sensor l to the target,
where we have dropped the dependence on the location of
the target for convenience. Because the measurements are
obtained jointly, their detections are characterized by a single
TDOA/FDOA correct detection and false alarm rate proba-
bility per sensor. In the following sections, we describe a
measurement driven birth particle sampling procedure using
TDOA/FDOA measurements

x
(n)
k|k−1,b ∼ b

(
x

(n)
k|k−1,b|

(
∆t

(l1−l2)
k ,∆f

(l1−l2)
k

))
.

Without loss of generality, we consider the sampling technique
for a single target at a fixed time step and for a single pair of
sensors in the following subsections, denoting

∆r(l1,l2) = |rl1 | − |rl2 | (16)

and

∆ṙ(l1,l2) = |ṙl1 | − |ṙl2 | (17)

for convenience.
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A. Birth Particle Sampling from TDOA Measurements

The x, y coordinates of the target assuming the coordinate
system given in Figure 2 is given as

x = sl1 − |rl1 |
[
cos(α− α0)
sin(α− α0)

]
(18)

where the quantities |rl1 | and α must be sampled in order to
be consistent with the observed TDOA value (i.e., the range
difference ∆r(l1,l2)). Applying law of cosines to Figure 2, we
have that

|rl2 |2 = |rl1 |2 +B2 − 2B|rl1 | cos(π − α),

= |rl1 |2 +B2 + 2B|rl1 | cos(α).

Noting that |rl2 | = |rl1 | −∆r(l1,l2), the relationship between
|rl1 | and α is given as [18]

|rl1 | =
∆r2

(l1,l2) −B
2

2(∆r(l1,l2) +B cos(α))
. (19)

where |rl1 | ≥ (∆r(l1,l2) +B)/2. This lower bound is achieved
when the target is on the line that intersects sensors l1 and l2
(i.e., α = π). In order to sample points uniformly along the
hyperbola defined by Equations (18) and (19), we first use
the observed TDOA measurement to sample an estimate of
the true range difference measurement, ∆r(l1,l2), according to
the expected measurement variance and Gaussian assumption
of Equation (14). This sampled TDOA value is used to
sample |r1| uniformly between (∆r(l1,l2) + B)/2 and some
maximum value that is set based on the detection range of the
sensor or the bounding box that defines the region of interest.
Equation (19) is then solved for α to yield

α = cos−1

(
∆r2

(l1,l2) −B
2 − 2∆r(l1,l2)|rl1 |

2B|rl1 |

)
(20)

In this construction, the corresponding range on α covers
the lower half of the hyperbola (i.e., positions beneath the

line connecting the two sensors in Figure 2). To additionally
consider the upper half of the hyperbola, we invert the sign of
the inverse cosine argument in Equation (20) with probability
0.5. The sampled values of |r1| and α are substituted into
Equation (18) to generate the corresponding particle positions
in the desired x, y coordinate frame.

B. Birth Particle Sampling from FDOA Measurements

Given a particle location generated from a TDOA measure-
ment, the angles α and β can be determined uniquely by
applying law of cosines. Using Figure 2, the observed range-
rate difference of Equation (17) for that particle is expressed
as

∆ṙ(l1,l2) = |ṙl1 | − |ṙl2 |
= |v| cos(θ + (α− β))− |v| cos(θ)

= |v| [cos(θ + (α− β))− cos(θ)]

= −2|v| sin
(
α− β

2

)
sin

(
θ +

α− β
2

)
(21)

where the final step results by noting that the linear combina-
tion of two cosines with arbitrary phases is a sinusoid with a
scaled magnitude and phase shift. The resulting FDOA rela-
tionship between the velocity magnitude |v| and the platform
heading θ is then given as

|v| = −1

2
∆ṙ(l1,l2)

[
sin

(
α− β

2

)
sin

(
θ +

α− β
2

)]−1

(22)
where

|v| ≥ −1

2
∆ṙ(l1,l2)

[
sin

(
α− β

2

)]−1

(23)

with equality when

θ +
α− β

2
=
π

2
.

In order to sample a velocity magnitude and bearing for each
position particle generated by the TDOA measurements, we
use the observed FDOA measurement to sample an estimate
of the true range-rate difference, ∆ṙ(l1,l2), according to the
expected measurement variance and Gaussian assumption of
Equation (15). A velocity magnitude is uniformly sampled
between the lower bound defined in Equation (23) and some
maximum possible velocity estimate. The corresponding head-
ing of the target is then found by solving Equation (22) for θ
to yield

θ = sin−1

 −∆ṙ(l1,l2)

2|v| sin
(
α−β

2

)
− α− β

2
(24)

Similar to the TDOA case, we invert the sign of the inverse
sine argument in Equation (24) with probability 0.5 in order to
evenly samples headings with values greater than and less than
α−β

2 . The final velocity vector expressed in the x, y coordinate
system of Figure 2 can then be fully determined as

v = |v|
[

cos(θ − (β − α0))
− sin(θ − (β − α0))

]
(25)



V. TRACKING SIMULATION

A. Simulation Setup

In this section we numerically compare the tracking perfor-
mance of the proposed TDOA/FDOA adaptive birth intensity
PHD filter (denoted PHDF-M) versus a uniform birth intensity
PHD filter of comparable particle density (denoted PHDF-U).
Figure 3 shows the transmitter trajectories and receiver loca-
tions in a 2km × 2km area of interest. The velocity magnitude
of all targets was fixed at 15 m/s. The state vector of each
target consisted of position and velocity in x and y coordinates
(i.e., x = [x, ẋ, y, ẏ]T). A constant velocity transitional density,
πk|k−1(x|x′) = N (x; Fx′,Q), was assumed for persisting
targets where

F = I2 ⊗
[
1 T
0 1

]
,

Q = I2 ⊗ q
[
T 3/3 T 2/2
T 2/2 T

]
,

T is the sampling interval, ⊗ is the Kronecker product, Im
is the m × m identity matrix, and q is the process noise
intensity. The simulation used T = 1 second and q = 0.3.
The probability of survival was set to ps(x) = .98.

TDOA and FDOA measurements were
obtained from all sensor pair combinations
{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}. As described
in Equations (14) and (15), the measurement
likelihood function for each sensor pair was set to
gk(z(l1−l2)|x) = N (z(l1−l2); h(l1−l2)(x),R), where

h(l1−l2)(x) =
1

c

[
(|rl1(x)| − |rl2(x)|)
fc(|ṙl1(x)| − |ṙl2(x)|)

]
(26)

and R = diag(σ2
∆t, σ

2
∆f ). The notations |rl(x)| and |ṙl(x)| de-

note the range and range-rate from sensor l to the target located
in the state space at x. The timing and spectral measurements
standard deviations were set as σ∆t = 20ns and σ∆f = 2.5Hz,
respectively. The clutter was uniformly distributed in time
from −cB(l1−l2) to cB(l1−l2) and frequency from −2|v|fc/c
to 2|v|fc/c, where |v| = 25m/s and fc = 2.4GHz. Recall from
the previous section that the quantity B(l1−l2) represents the
straight-line distance between sensors l1 and l2. The number
of clutter points per receive window was Poisson distributed
with a mean value of λ = 2. For reference, a single realization
of the clutter and true target measurements under this value of
λ is shown in Figure 4. The probability of detection was set
as pd(x) = 0.99. For every measurement z(l1−l2) ∈ Z

(l1−l2)
k ,

newborn particles were birthed using the method described
in Section IV, with |rl1 | ≤ 2000m, |v| ≤ 25m/s, and
Mb = 500 particles/measurement. To ensure a fair comparison
between filters, the particle density of the PHDF-U was fixed
to be the same as the PHDF-M density when all targets were
present. Finally, the parameter νbk|k−1 = 0.0001 was selected
so that the average number of newborn targets per scan was
ν̂bk ≈ 0.25.
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Fig. 3. Target trajectories shown in x-y plane. Starting points denoted by ◦.
Stationary receivers shown as numbers.

5

0

5

R
x 

0-
1

TDOA (us)

250

0

250

FDOA (Hz)

5

0

5

R
x 

0-
2

250

0

250

0 25 50 75 100
discrete-time index k

5

0

5

R
x 

0-
3

0 25 50 75 100
discrete-time index k

250

0

250

Fig. 4. Single realization of observed TDOA/FDOA measurements (×) with
respect to sensor 0 over time. Measurements from actual targets shown as
solid lines.

B. Results

To capture median performance, 100 Monte Carlo (MC)
realizations of the tracks shown in Figure 3 were simulated.
State extraction was performed using the method described in
[21], where the persistent particle system before resampling
was used to estimate per particle measurement association
weights and target existence probabilities. The optimal sub-
pattern assignment (OSPA) metric [22] was used to compare
performance of the two filters. Figure 5 shows the median
OSPA metric alongside the OSPA distance and cardinality
components at each time step for the PHDF-M and PHDF-U
filters. The OSPA cutoff parameter was set to c = 20m. The
PHDF-M cardinality performance significantly outperforms
the PHDF-U. The PHDF-M was able to track all targets while
the PHDF-U was only able to consistently track one of the
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Fig. 5. 100 MC run median OSPA metric (top) over time for PHDF-M (solid
blue line) versus and PHDF-U (dashed green line); median OSPA localization
component (middle); median OSPA cardinality component (bottom).

three targets over the duration of the entire experiment. For
all tracked target states, the magnitude of the OSPA distance
component of the PHDF-M and PHDF-U was similar. To
achieve equivalent OSPA cardinality and distance performance
the number of particles of the PHDF-U had to be increased
substantially.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a technique for passive TDOA/FDOA
tracking of multiple targets using the adaptive birth intensity
PHD filter described in [15]. A multi-sensor extension of
adaptive birth intensity PHD filter using the iterated-corrector
technique was described alongside an exact technique for
performing the state-space sampling of newborn particles
directly from TDOA and FDOA measurements. This technique
was shown to adequately track the number and state of
multiple targets with significantly less particles as compared
to the uniform birth sampling technique typically used with
the PHD filter. Future work will involve the evaluation of
the proposed tracking algorithm on passive measurements
collected from a wireless sensor network of software defined
radios. Additionally, we will also be investigating sampling
techniques for PDOA and extensions to the product multi-
sensor fusion rule.
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