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Abstract

Many problems in science and engineering involve estimating a dynamic signal from indirect
measurements subject to noise, where points can either evolve in continuous time or in discrete
time. These problems are often formalised as inference in probabilistic state-space models, which
are also frequently assumed to be Markovian. For inferring the value of the signal at a particular
point in time, methods of inference can be divided into different classes, namely prediction,
filtering (tracking), and smoothing. In prediction, only past measurements of the signal are used
to infer its present value, whereas in filtering both past and present measurements are used, and
in smoothing past, present, and future measurements are used. Prediction is useful in situations
where decisions need to be made contingent on a future value of the signal before future
measurements are made. On the other hand, filtering is useful when the signal needs to be inferred
as the measurements arrive, that is on-line. Lastly, smoothing is the preferred choice when none
of the aforementioned constraints are present as it allows the use of the entire sequence of
measurements to infer the signal.

In this thesis, the filtering and smoothing problems and their applications are examined. In
particular, iterative Gaussian filters and smoothers are developed for both inferring continuous
and discrete time signals. Furthermore, it is shown that methods for inference in state-space
models can be applied to the field of probabilistic numerics. More specifically, estimating the
solutions to ordinary differential equations can be formulated as inference in a probabilistic state-
space model, hence the solutions can be inferred using either Gaussian filtering methods or
sequential Monte Carlo.

Another theme of this thesis is the exploitation of geometry - in a broad sense. Firstly, the geometry
of probability densities, namely information geometry, is exploited to approximately infer the
signal in filtering. Geometry is also exploited in terms of the geometry of the state-space, the space
where the signal takes its values. That is, for tracking a time-varying unit vector, a continuous-time
dynamic model is posed that respects the geometry of the unit sphere. Subsequently, a filtering
algorithm is developed based on the von Mises--Fisher distribution for inference in this model.
The method is demonstrated to have applications in tracking the local gravity and magnetic field
vectors using a smartphone. Lastly, the geometry of Hilbert spaces is used to approximate a
stochastic differential equation with an ordinary differential equation with random coefficients.
On this basis filtering and smoothing algorithms are developed.
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1. Introduction

A plethora of problems in science and engineering can be formalised as
a “signal in noise” problem, see Figure 1.1 for an example. That is, there
is an unknown signal, which is measured indirectly by some device. The
goal is to reconstruct the signal, however the measurement does not pro-
vide complete information about the signal and tends to be contaminated
with “noise”. Therefore, from a science and engineering point of view, a
principled way of inferring the signal is required, which is the formal term
for hazarding a guess. In the context of statistical signal processing, this
means that the properties of the signal and measurements are charac-
terised probabilistically, that is to say that the signal and measurements
are assumed to be outcomes of a probability model. Once an appropriate
model to characterise the system has been identified, inferring the signal
is formally solved by the application of Bayes’ rule.

This thesis is focused on inference in stochastic dynamic systems. That
is, a signal is a quantity that varies over time and is measured periodically.
This type of problem occurs frequently in many domains, such as tracking,
navigation, processing of audio signals, and finance (Bar-Shalom et al.,
2004, Godsill and Rayner, 1998, Lindstrom et al., 2015, Stone et al., 2014,
Titterton and Weston, 2004). More specifically, the probability models
considered in this thesis are of so-called state-space type. Inference in
state-space models is a well studied topic and several books have been
written over the past fifty years, for example, Anderson and Moore (1979),
Bar-Shalom et al. (2004), Cappé et al. (2005), Crassidis and Junkins (2004),
Gelb (1974), Jazwinski (1970), Maybeck (1979,1982,1982), Sarkki (2013),
Sarkka and Solin (2019), Simon (2006), which ought not to be taken for an
exhaustive list.

This thesis comprises of Publications I through VI and this introduction
to the research field. Detailed accounts of this thesis’ contributions are
given in the original publications. The purpose of this introduction is
to give a brief description of the research field and establish the milieu
in which the contributions lie. This serves as a basis for discussing the
significance of the contributions and their relationship with the present

17
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—signal
- measurement

amplitude

0 0.2 0.4 0.6 0.8 1

Figure 1.1. Example of a signal in noise.

scientific literature as well as pointing out future research directions.
The rest of this thesis is organised as follows. In Chapter 2, the basic
statistical toolkit used in state estimation is reviewed along with the more
esoteric concept of information geometry. Chapter 3 goes through the
dynamic signal and measurement models that this thesis is concerned
with, the combination of which define probabilistic state-space models.
In Chapter 4 the problem of inference in state-space models is discussed.
The formal filtering and smoothing relations are given as well as the
special cases that can be solved by Kalman filtering and Rauch-Tung—
Striebel smoothing. Furthermore, an account of approximate inference
methods that are related to this thesis is also given. In Chapter 5, the key
contributions of each publication are discussed, their relation with present
scientific literature, and some future research directions are pointed out.

18



2. Background

In this chapter a description of basic concepts in statistical inference as
it pertains to signal processing is given. The basic building blocks are
the prior probability density, the measurement likelihood, and Bayes’
rule, the latter determines how the former two ought to be combined
to form an estimate or posterior probability distribution. Some common
approximations to Bayes’ rule when the prior is Gaussian are also reviewed.
Furthermore, the slighty more esoteric subject of field of information
geometry is reviewed in brief.

2.1 Statistical Inference

While the primary concern of this thesis is that of state estimation, the
case of estimation in static systems is an important subproblem. Indeed,
the so-called filter update in continuous-discrete and discrete-time state
estimation is such a problem. Therefore, this section is dedicated to the
case of static estimation.

The static estimation problem involves two random variables X and Y
taking values in X ¢ R? and Y c R™, respectively, with joint probability
density pxy and the inference problem is then to infer X given that the
outcome of Y is y. In the Bayesian sense this entails computing the
probability density of X conditioned on the outcome of Y being y, which is

defined as
px,y(x,y)

py ()
where py is the marginal probability density of Y, which is given by

pxiy(xly) =

py(x)= / pxy(x,y)dx.
X

The conditional density pxy can be expressed in terms of px and pyx,
which is Bayes’ rule given in Theorem 1.

19
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0.012

- -prior
----- likelihood
0.01 —posterior
0.008
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0.004
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0 B —
-5 10

Figure 2.1. An illustration of Bayes’ rule. The prior (dashed line) is weighted by the
likelihood (dotted line) to form the posterior (solid line).

Theorem 1 (Bayes’ Rule). Let X ~ px(x) and Y | X ~ pyx(y | x). Then the
probability density of X |Y is given by

pyix(y1©)px(x)  pyix(ylx)px(x)

Py = G lopx@dx — py()

Due to Bayes’ rule and other modelling related conveniences, the model
pxy is typically formulated in terms of px and pyx directly

X ~ px(x),
Y | X ~pyix(x).

In the language of Bayesian statistics, the density px(x) is the prior density
for X and the conditional density pxy(x|y) is referred to as the posterior
density for X given the outcome y of Y. Furthermore, for each fixed y the
quantity pyx(y | x) is a function of x, which is referred to as the likelihood
function. Throughout this thesis the likelihood function and its logarithm
will frequently be referred to as L(x) and ¢(x), respectively,

L(x) = pyix(y | %),
2(x) £log py|x (v | x).

A graphic illustration of Bayes’ rule is shown in Figure. 2.1.

Point Estimation

The conditional density pxy gives a complete description of the proba-
bilistic properties of X given the outcome y of Y. However, it is often the
case that a single quantity is sought to represent an estimate as to what
the outcome of X is. A survey on the different approaches to doing this is
not given here, but rather the two most common options are given in the
following.

20



Background

Conditional mean estimate. The conditional mean estimate, as the name
suggests estimates X by its conditional mean, which is given by

EX 1Y =y]=/pr\Y(x|y)dx.
X

The conditional mean is the classical Bayes’ estimator under mean square
error risk (Lehmann and Casella, 2006). Furthermore, the conditional
variance defines an assessment of uncertainty in this estimate, which is
given by

VIX Y =yl= / xx pxpy (x| y)de —ELX | VIELX | Y]
X

Maximum a posteriori estimate. The maximum a posteriori estimate
of X is defined as the x that maximises pxy. That is,

A A
&map =arg maxpxy(x|y)
xeX

= arg max ([(x) + long(x)) .

xeX

Remark 1. Unless the plausibility of misunderstandings is fair, the out-
come y is in this thesis omitted from the notation of conditional moments.
For example, E[X |Y =y]=E[X |Y]and VIX |Y =y]=V[X | Y]

2.1.1 Inference with a Gaussian Prior

Practitioners of stochastic signal processing have a conspicuous habit of
getting themselves into inferential problems where their prior for some
quantity X is Gaussian. That is, the probability model is given by

X~ N2, (2.3a)

YIX~pyx(ylx). (2.3b)

The types of models of the form in Equation (2.3) can be divided into three
relevant and overlapping classes, which are listed in the following.

Affine Gaussian System. In an affine Gaussian system, the measure-
ment model in Equation (2.3) is given by

Y|X~A(CX+d,R). (2.4)

Conditionally Gaussian System. In a conditionally Gaussian system,
the measurement model in Equation (2.3) is given by

Y | X ~ A (c(X),R(X)).
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Third Class. The third class, covers all the measurement models that are
not conditionally Gaussian.

Approaches to Gaussian inference of the first two classes are reviewed
in the following. The third class is too broad to give a comprehensive
and unified treatment of, though some approaches for this scenario are
presented in Publication IT and Publication IV.

Affine Gaussian Systems

The case of affine Gaussian systems is particularly fortunate since the
posterior px|y remains in the class of Gaussian distributions. The particu-
lar form of this relationship is given in Lemma 1 (see, e.g., Sarkka 2013,
Lemma A.1 and A.2).

Lemma 1. Let X,Y be random variables governed by the model in Equation
(2.3), with the measurement model given by Equation (2.4) ¢(X)=CX +d,
and R(X)=R. Then X and Y are jointly Gaussian and X |Y ~ A (u*,Z"),
where

S=CzC"+R, (2.5a)
K=3C"S7!, (2.5b)
pf=p+K(y-Cu-d), (2.5¢)
T*=32-KSK'. (2.5d)

When the prior is in some class of probability distributions and the
likelihood is such that the posterior remains in this class, the class is said
to be conjugate with respect to the likelihood.

Conditionally Gaussian Measurements

Inference is in general intractable for conditionally Gaussian systems.
However, by writing Equation (2.5) in terms of the joint moments of X and
Y,

ELX | Y]=EX]+CIX,YIVIYT ! (y-ELY]), (2.6a)
VIX |Y]=V[X]-CIX,Y VY] 'CIX, YT, (2.6b)

an approximate approach is made apparent. That is, the joint moments of
X and Y are computed and inserted into the right-hand side of Equation
(2.6), which gives the following approximation.

Approximation 1 (Moment matching update). The approximation is
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given by X |Y ~ N (u*,Z%), where

S = V[e(X)1+ E[R(X)], (2.7a)
K =CIX,c(X)1S7}, (2.7b)
EX |Y]=p* =p+K(y-ElcX)]), (2.7¢)
VIX|Y]=2*=2-KSK', (2.7d)

where S =V[Y]1 by the law of total variance.

Approximation 1 is known as Gaussian moment matching, which means
that a Gaussian distribution is matched to the moments of (X,Y) (Sarkk4,
2013, Chapter 6).

2.1.2 Statistical Linear Regression

An important concept is that of statistical linear regression, which in
the context of state estimation was introduced by Lefebvre et al. (2002)
(statistical linearisation is a precursor concept, see Gelb 1974). It is a
different way of deriving Approximation 1, but it has further implications
as well. Namely, it can be used to define an iterative update, which has
come to be known as posterior linearisation (Garcia-Fernandez et al., 2014,
2015).

Suppose that the random variables X and Y are taking values in R¢ and
Y c R™, respectively, and are governed by the following probability model

X ~ px(x),
YIX~pyx(ylx).

The purpose of statistical linear regression is to find an affine representa-
tion of Y in terms of X. That is,

Y=CX+d+E,

for some matrix C € R¥*?, vector d € R¥, and random variable E € R*. While
there are of course several such affine representations, interest lies in those
that are optimal in some sense. In particular, the mean square optimal
representation is found by minimising [EH|EH2] with respect to C and d.
The resulting parameters are then given by

¢ =Cly,XIVIXI!,
d =E[Y]- CE[X],

and the residual E =Y - CX —d becomes a zero mean random variable with
covariance matrix given by

R2V[E]=V[Y]-CVIXICT.
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Statistical Linear Regression in Conditionally Gaussian Systems

If px(x) = ¥ (x;1,%) and py|x(y | x) = A (y;c(x),R(x)) then statistical linear
regression gives a different derivation of Approximation 1. In this case,
the parameters are given by

¢ =Cle(X),X1=71,
d =Ec(X)]1-Cp,
R = V[e(X)]+E[R(X)]- C=CT,

which gives the following method for approximate inference in the condi-
tionally Gaussian system.

Approximation 2 (Statistical linear regression update). The approxima-
tion is given by X |Y ~ N (u*,Z%), where

S=CzCT+R,
K=3CTs™,
EIX|Yl~p" =p+K(y-Cu-d),
VIX|Y]=2t=2-KSK'.

Remark 2. It is easy to verify that Approximation 2 and Approximation 1
are indeed the same.

Posterior Linearisation

In essence, statistical linear regression uses the density px to linearise the
relationship between X and Y that is implied by py|x. This means that px
can be thought of as a linearisation point, which is the important insight
behind the posterior linearisation update (Garcia-Fernandez et al., 2014,
2015). The trick is to alternate between approximate updating according
to Approximation 2 and updating the linearisation point, which results in
Approximation 3.

Approximation 3 (Iterated statistical linear regression update). The
approximation is given by X |Y ~ N (u*,Z*), where (u*, %) are defined as
the fixed-point to the following iteration.

sl =¢'z[el T+ R,
K =3[¢"]"[s'],
P = g K (y-Clu-al),

s+l _ 5 _glgl [KZ]T'
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where
¢! = e, x1[=Y] 7, (2.13a)
d' =E'leX)]-CY, (2.13b)
R = Ve +E IR - C'2 [, (2.130)

and E, C!, and V! are with respect to X ~ N (u*,Z!). Finally, the iterations
are initialised at the prior (u°,Z% = (u, ).

Remark 3. Originally, Approximation 3 was only derived for the case
when R(x) is constant, R(x) = R (Garcia-Ferndndez et al., 2014, 2015).
The extension to non-constant R(x) is in fact part of the contribution of
Publication II.

Remark 4. If R(x) = R and the expectations in Equation (2.13) are approx-
imated by the Taylor series method (see Section 2.1.3) then Approximation
3 is the Gauss—Newton method for the maximum a posteriori estimate (Bell
and Cathey, 1993).

2.1.3 Moment Approximations

The methods discussed previously in Sections 2.1.1 and 2.1.2, and indeed
the methods that will be discussed in Chapter 4 require computing ex-
pectations of various non-linear functions of X ~ 4 (u,X). This is often
intractable, which is why approximations are required. The two most
popular classes of moment approximation methods are the Taylor series
methods and the cubature methods. Whenever a potentially intractable
expectation appears in the sequel and indeed the prequel, it should be un-
derstood that it is approximated by any of these aforementioned methods,
which are described below.

The Taylor Series Approach

The Taylor series approach, as the name suggests, involves expanding ¢
and R in Taylor series. This is typically done up to first order around the
prior mean u, which gives

e(X) = e(u) + J (X — ),

d

RX)~RW+» GiRWX; - ).
i=1

This results in the following approximation to the moments in Equation
2.7.
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Approximation 4 (First order Taylor series approximation).
E[Y]= c(u),
CIX,Y1=ZJ ] (W),
VIe(X)] = Je(wZJ ] (),
E[R(X)] = R(p).

This approximation can of course be refined by including higher order
terms in the Taylor series (see, e.g., Sarkki 2013, Section 5.2 and Gustafs-
son and Hendeby 2012).

The Cubature Approach
Numerical integration or cubature involves approximating expectations
with respect to X ~ A (u,Z) by selecting a set of nodes {%;}}, with as-
sociated weights {w;}} ;. Then the expectation of some function ¢(X) is
approximated via the cubature rule

L

Elp()] = Y wi(%0),
=1

which results in the following approximation.

Approximation 5 (Cubature approximation).

L
Ele(X)1~ Y wie(%),
=1

L

CIX, e = Y wi(@i - e (2,
=1

L L L T
VI~ Y wie(@e (20 - (szc(%l)) (Zwlc(%})) :
=1 =1 =1

L
EIR(X)]~ Y wR(%)).

=1
The nodes and weights of the cubature rule are often selected such that
expectations of polynomials up to some order are computed exactly, such
as in tensor products of Gauss—Hermite quadratures (Golub and Welsch,
1969) or fully symmetric cubature (McNamee and Stenger, 1967). The
third degree rule of the latter came to be known as the unscented transform
when it was introduced to the signal processing community (Julier and
Uhlmann, 2004, Julier et al., 1995). Recently a class of cubature methods
known as Bayesian cubature or Gaussian process cubature has started
to gained traction in the signal processing community as well (Karvonen
and Sarkks, 2017, Prither and Straka, 2017, Prither and Simandl, 2015,

Sarkki et al., 2015).
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2.2 Information Geometry

Information geometry is the study of probability models using differen-
tial geometry (Amari, 2012, Amari and Nagaoka, 2007). While the field
contains a fairly vast amount of material, the following presentation only
includes the bare minimum for the purposes of this thesis. The interest
lies in the projection methods of Brigo et al. (1999) (see also Brigo et al.
1998, Koyama 2018). That is, the following account is based on Brigo et al.
(1999), though excluding a lot of the rigour.

2.2.1 Statistical Manifolds

Consider the family of probability densities on R?
P ={pg:0€OR"}.

A family of square root densities associated with & is defined as
P12 _ {pé/zt poe P}

and a homeomorphism ¢: Y2 — © with inverse ¢~1(0) = p}?. In the
language of differential geometry the pair (222, ¢) forms a chart of some
v-dimensional manifold 2 ¢ Z c % (R%), where

R = {pl/zl p 2 e %RY), px) = 0}~

For present purposes, a single chart is sufficient. Furthermore, the tangent
space to 2'2 at p}? is given by the set of m linearly independent vectors

L,12%"? = span {alpz/z,.. .,avpgﬂ} c A®Y),

where the partial derivatives are with respect to 6. The tangent space
L pé/zgf’l/ 2 inherits the inner product of %(R%) and for the basis elements of

L p2’1291/2 it holds that
2 4 12y _ 1
(0ipg?,0;pg°) = Zgij(g)s
where g(0) is the Fisher information matrix.

2.2.2 %»-Projections onto the Tangent Space

With the minimal setup of the preceding section, the orthogonal projection
of %(R%) onto L p;/zgl/ 2 can be defined. Since the chosen basis for L pé/zgl/ 2
is not orthonormal, the projection operator Ily: % (R%) — L pé/z.@m takes
the following form

Moo= 4g;}0)(v,0;p5*)dipg”.
i.j
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If the element v being projected has a particular form then the projection
formula simplifies according to the following lemma from Brigo et al.
(1999).

Lemma 2. Let the function u satisfy
Eg[lul?] < oo,

where Eg denotes the expectation with respect to py. Then v = 3p}?u € Z([R?)
and the projection formula takes the form

Moo= g7} (0)Eq [ud;logpy) d;py>.
ij

It is these projection formulae which form the basis of the projection fil-
ters and smoothers (Brigo et al., 1998, 1999, Koyama, 2018), the principles
of which are exploited in Publication I'V.
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3. Probabilistic State-Space Models

A probabilistic state-space model is a pair of stochastic processes, the
states, X: Tx — X <R?, and the measurements, Y: Ty — Y cR™. The sets
Tx and Ty are referred to as the index sets of X and Y, respectively, and
it is assumed that Ty < Tx In this thesis, there are two cases that are
considered. The first case is continuous-discrete time state-space models
for which the index sets are Tx =[0,7T] for some R>7T >0 and Ty = {tn}flvzl,
0<ty<tyg<...<ty=T. The second case is discrete time state-space models
for which Tx = {n}fLV:O and Ty = {n}],:’: 1- Throughout this chapter and the rest
of the thesis, Assumption 1 is a standing assumption for any state-space
model (X,Y).

Assumption 1. For the state-space model (X,Y) the following holds:
* X is a Markov process.

* The measurements {Y(T)}Tﬂy1 are conditionally independent given the
states {X(1)}re1y, respectively.

e Forevery teTy
YOI X ~pyamxm (v 20).

This chapter begins by discussing continuous-discrete-time probabilistic
state-space models in Section 3.1. The essential concept is that of stochas-
tic differential equations, for which, for the present purposes, the most
important properties are reviewed. Some examples of continuous-discrete
state-space models are also given.

In Section 3.2, discrete-time probabilistic state-space models are re-
viewed. This part of the chapter requires less effort to go through than the
former and mostly consists of classifications of different model structures
that are commonly used.

1In the discrete time case a stochastic process X evaluated at 7 will be written as
X, rather than X (7).
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3.1 Continuous-Discrete-Time State-Space Models

The class of continuous-discrete-time state-space models considered herein
can be specified by

X(0) ~ px(0)(x), (3.1a)
dX () =a(t,X(®)dt+0(t,X (1) dW(), (3.1b)
Y@ X ~pye)xa)En,y %), (3.1¢)

where a: [0, T1xR? — R? is a drift function, o: [0, T1xR? — R** is a diffusion
matrix, and W(¢) is a standard Wiener process on R¥. Furthermore, the
matrix Q (¢, X(t)) =0 (¢,X(8))o " (t,X(2)) is referred to as the instantaneous
process noise covariance rate. Equation (3.1b) is referred to as a stochastic
differential equation, which requires some care to define properly. A brief
review of stochastic differential equations is given in the following.

3.1.1 Stochastic Differential Equations

In this section an overview of stochastic differential equations is given. The
purpose is not to give an entirely stringent account but rather introduce the
concepts that are needed to apprehend the contributions of this thesis. For
a more comprehensive treatment the reader is referred to the introductory
textbooks such that Oksendal (2003), Sarkka and Solin (2019), or for
a more technical exposition to (Karatzas and Shreve, 1988, Rogers and
Williams, 2000).

The Wiener Process
The basic building block of continuous-time stochastic models is the Wiener
process, which is specified in Definition 1.

Definition 1 (Wiener Process). A stochatic process {W(t)};=q is said to be a
Wiener process if the following conditions are satisfied:

1. W(0) =0 with probability 1.

2. If0<tg<ty<---<tny <oothen the increments W(t,)—W(t,-1), n=1,...,.N
are mutually independent.

3. W) -W(s)~A(0,t—s) for any t>s=0.

There exists a version of the Wiener process that is continuous almost
surely, hence it defines a probability model on the space of continuous func-
tions (Dksendal, 2003). Moreover, for any finite grid {tn}flvzl, the variables
{W(t,}V_, are jointly Gaussian distributed. That is, the Wiener process is a
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Figure 3.1. 100 independent realisations of a Wiener process.

Gaussian process (Rasmussen and Williams, 2006). A Gaussian process is
characterised by its mean and covariance functions, which for the Wiener
process are given by

EIW(®]=0,
CIW(),W(s)] =t As.

Example realisations of a Wiener process are shown in Figure 3.1.

Stochastic Differential Equations

The Wiener process can be used to construct stochastic differential equa-
tions. That is, the Wiener process W can be used to define the stochastic
process X by the following integral equation

t t
X =X(0)+ / a(s,X(s))ds+ / o (s,X(s)) dW(s). (3.3)
0 0

The stochastic integral equation in Equation (3.3) is often written in differ-
ential form as a short-hand

dX(®) =a(t,X(®)dt + 0o (t, X)) dW (). (3.4)

It is also most commonly referred to as a stochastic differential equation
rather than a stochastic integral equation. It requires some care to prop-
erly define what is meant by Equation (3.3). The mischievous term is
fot U(s,X (s)) dW(s) for which there are two popular definitions due to Itd
and Stratonovich (Jksendal, 2003). Herein the It6 interpretation is used
unless otherwise stated. This breaks the ordinary chain rule and instead
X(¢) as given by Equation (3.4) transforms according to It6’s formula, which
is given in Lemma 3.

Lemma 3 (It6’s formula). Let ¢: R, x R? — R be a function that is at least
once differentiable in the first argument and at least twice differentiable
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in the second argument and X(t) satisfies the Ité stochastic differential
equation (3.4). Then ¢(t,X () is an Ité process with Ité differential given by

dep(t, X () = (0¢ + L), X (D)) dt + Bep(t, X (£)) AW (2), (3.5)

where the operators o/ and 9%; ; are defined by

1
AP = Y 0itx)ailt, 0+ > 05t 00Qs,(t,2), (3.62)

L]

[Bp(t,0)]; =Y 0;p(t, )0 j(t, ). (3.6b)

The operator o/ appearing in Equation (3.62a) is the generator associated
with the solution of Equation (3.4) and the operator d; + «/ appearing
in Equation (3.5) is sometimes referred to as the generalised generator
(Sarkka and Solin, 2019, Chapter 5). The importance of the generalised
generator is evident by Lemma 3, as it defines how the drift of a stochastic
differential equation changes under smooth transformations. For time-
homogeneous transformations, the generalised generator 9; + «f reduces to
the generator <.

Remark 5. In order for the stochastic differential equation in Equation
(3.3) to have a unique solution, some conditions on a and o are required.
Herein these considerations are omitted and Equation (3.3) is always as-
sumed to have a unique solution in some suitable sense. For a discussion
on this matter the reader is referred to Karatzas and Shreve (1988).

Another important property of the solution (in the sense of Itd) X(¢) of
Equation (3.3) is that X(¢) is a Markov process, which is defined in the
following.

Definition 2 (Markov process). A continuous-time stochastic process is a
Markov process if the discrete-time process {X(¢,)}Y_, satisfies the Markov
property forall t1<tg<...<tn. Thatis, if 1<sn'<n<N

Pxeixy-t (2E) He@D-1) = pxaixe,) () | 2(tn)).

The Markov property is often characterised as “the future is independent
of the past given the present” and is heavily exploited to develop efficient
method for inference in the state-space model given by Equation (3.1).

The Fokker-Planck Equation

The stochastic differential equation in Equation (3.3) defines a genera-
tive model for X(¢) in the sense that from a Wiener process, X(¢) can be
computed by solving Equation (3.3). However, it is fruitful to characterise
the probability density imposed on X(¢) by W(¢). For this purpose, the
generator < is crucial, or rather its formal adjoint on %,(R%). That is, the
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probability density associated with X (#) evolves according to the Fokker—
Planck equation?, which is given by Theorem 2 (see e.g., Sirkki and Solin
2019, Chapter 5).

Theorem 2 (The Fokker—Planck equation). Let X(t) be the solution to
Equation (3.4) and assume the probability density p(t,x) for X(t) exists and
is supported on R%. Then p(t,x) satisfies the following partial differential
equation

pt,x)=of * p(t,x)

where o/* is the adjoint of of as defined in Equation (3.62) and it is given
by
1
*plt,x) == 0ilait,0pt, )]+ 2 > 07 (@it 0)p(t,x)].
i ij

Discretisation of Stochastic Differential Equations

An important tool when working with stochastic differential equations
is discretisation, which entails finding a discrete-time representation of
the original stochastic differential equation on some grid 0 = ¢y < ¢; <
...<ty =T. An exact probabilistic description of {X(t,)}\_, is formally
given by solving the Fokker—Planck equation on the intervals [¢,-1,¢,] for
n =1,...,N with initial conditions p(¢,_1,x) = 6(x — x(¢,—1)). For an affine
model, a(t,x) = A(t)x + b(t) and o(t,x) = o(t), the solution of the Fokker—
Planck equation on the interval [¢,¢ + 2] with initial condition §(x — x(2)) is
given by (Sarkka and Solin, 2019, Chapter 6)

Pxerhx®@ | x@) = N (At +h | D)+ ba(t+ 1 | 1),Qq(t +h 1)),

where
0RbAqt+h|t)=AMA4E+h|t) Aqlt)=1, (3.7a)
t+h
bat+h|t)= / Aq(t+h|T)b(T)dT, (3.7b)
Jt
t+h
Qut+h|t)= / Ad(t+h|T)Q(T)A;1r(t+h|T)dT. (3.7¢)
t

The Fokker—Planck equation is intractable in general wherefore approx-
imate discretisations are important, examples of which are It6—Taylor
series expansions and stochastic Runge-Kutta methods (Siarkké and Solin,
2019, Chapter 8). The former class of methods are derived by iteratively
invoking Lemma 3 on a(¢,X(¢)) and o(¢,X(#)). After a single application, the
following representation is retrieved

Xt+h) =X +a(t, X®)h+0(t, X)) AW ) +Rx(t,t+h),

2The Fokker-Planck equation is also known as the Kolmogorov forward equation.
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where A, W(¢) = W(t+h)—W(¢) is a Wiener increment of size A and Rx(¢,¢+h)
is a remainder term. Neglecting the remainder term then yields the Euler—
Maruyama scheme

Xt+h)=X®)+a(t,X®)h+0(t, X)) A W(@),

which for present purposes is the only needed approximate discretisation
scheme. For a more thorough exposition on discretisation methods the
reader is referred to Kloeden and Platen (2013).

Basis Expansions of the Wiener Process

The Wiener process on R” restricted to the interval [0, 7] can be expressed in
terms of a basis of £([0,T1). More, specifically if {¢;}{2, is an orthonormal
basis of %»([0,T1), then the Wiener process {W(#)}o<;<7 has the following
Fourier expansion (Luo, 2006)

[e) ot
Wn=> U / ¢u(v)dr, 3.8)
=1 70
and the coefficients are given by

T
Uz=/ ¢1(1)dW (1),
0

where E[U;]1=0, C[U;,U;1=6;;1. The series expansion in Equation (3.8) can
be truncated at the Lth term to give a finite dimensional approximation of
the Wiener process

L t
WL => U / ¢i(r)dr. (3.9)
=1 70

Furthermore, Wy, converges in the mean square to W at a rate of L if the
trigonometric basis is selected (LLuo, 2006, Theorem 2.1)

L, 1=1

hi(t) = ﬁcos (U*%), [>1.

An example of the approximation for one realisation of the Wiener process
is shown in Figure 3.2.

Furthermore, Equation (3.9) gives an approximation to the Wiener incre-
ment dW(¢) on the interval [0,T] by

L
AW =~ dWt) =Y Uit
=1

which in turn gives an approximation to the stochastic differential equation

dX () =a(t,X(0)dt+0(¢,X () dW() (3.10)
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Figure 3.2. The convergence of Wy, to W for L =1,...,28. Wy, is shown to the left and the
root mean square error (RMSE) is shown to the right.

on the interval [0,7] by (Sarkki and Solin, 2019, Section 9.8)

L
dXp () =a(t,XL0) dt+ o (,XL0) Y Uig(t)dt. (3.11)
=1

While Wy, converges to W as L — oo, examining in what sense the solution of
Equation (3.11) Xz, converges to the solution of Equation (3.10) X as L — co
requires some care. This has been examined in the one dimensional case,
where it turns out that X;, converges to X if Equation (3.10) is interpreted
in Stratonovich sense (Wong and Zakai, 1965). For convergence in higher
dimensions the reader is referred to the appendix of Lyons et al. 2014
and references therein. The approximation in Equation (3.11) is used in
Publication VI to develop a series approximation for Gaussian smoothers.

3.1.2 Examples of Continuous-Discrete-Time State-Space
Models

In this section, some of the more prominent classes of continuous-discrete
state-space models are reviewed together with some examples.

Affine Gaussian Models
Affine Gaussian state-space models are of the following form:

dX ()= A®X()dt +b(t)dt + o (£)dW(2), (3.12a)
Y () | X ~ N (Ctn)x(tn) +d(tn), R(2n)). (3.12b)

If A, b, 0, C, d, and R are constant the model is said to be affine time-
invariant (ATI), if additionally 5 =0 and d = 0 then the model is said to
be linear time-invariant (LTI). On the contrary, if A, b, o, C, d, and R
are time-varying then the model is said to be affine time-variant (ATV),
or linear time-variant (LTV) (b =0 and d = 0). An important example of
a LTT system is the ¢ times integrated Wiener process on R? with linear
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Gaussian measurements,

X Dpyde, i=1,...,q,

dX(i)(t) —
r2awa), i=q+1,

(3.13a)

Y(tn) | X ~ N (Cx(t,),R), (3.13b)

where the sub-vectors XV(¢) e R? of the complete state X(¢) are ¢ +1—i
times iterated integrals of the Wiener process I'/2W () e R?, and T'V2 e R¢*¢
is the symmetric square root of some positive definite matrix I'. The model
matrices associated with Equation (3.13a) are given by

q
A= <Zeie;r+1) 1y,
i=1

0=€4+1® Fl/z,

where e; are canonical basis vectors in R? and ® denotes Kronecker’s
product. If R is formally set to zero and the measurement matrix is given
by

C=-e] ®A+e) o]y,
then Equation (3.13) is a model for the solution of the following differential
equation (Tronarp et al., 2019):

y(t) = Ay(t).

This type of model was used to develop probabilistic solvers for ordinary
differential equations in Publication III, though in general non-linear
measurement models are required. An example realisation of the ¢ times
integrated Wiener process is shown in Figure 3.3.

Remark 6. In the tracking literature it is common to take q = 1, in which
case the dynamic model in Equation (3.132) is known as the nearly constant
velocity model (CV) or Wiener velocity model (Li and Jilkov, 2003).

Conditionally Gaussian Models
Conditionally Gaussian models are of the following form.
dX()=a(t,X(®)dt+0(¢,X (1) dW(), (3.15a)
Y () | X ~ N (e, x(tn),R(tn, x(tn))). (3.15b)

Conditionally Gaussian models might be a poor choice of words because
X(s)| X(), s>tisnot Gaussian distributed in general, though infinitesi-
mally it is correct in the sense that the following holds formally.

Xt+d)=X@®) +a(t,X(®)dt+0(t, X)) dW().
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Figure 3.3. One realisation of the ¢ times integrated Wiener process (X)) on R for ¢ =
0,1,2,3.

An example of a continuous-discrete conditionally Gaussian model is the
radar tracked coordinates turn model. The dynamic model is given by

dPx(t) = Px(t)dt,

dPy (¢) = Py(t)dt,

dPz(t) = Pz(t)dt,

dPx(t) = —¥(t)Py(t)dt + ox dWx(2),
dPy () = Y(@)Px(t)dt + oy dWy (2),
dPz(t) = 07dWz(t)

dW¥(2) = oy dWy(2),

where (Px,Py,Py) is the position (of, e.g., an aircraft), (Px,Py,Py) is the
velocity vector, v is the turn rate, and Wx, Wy, Wz, and Wy are mutually
independent standard Wiener processes. Essentially, the coordinated turn
model is a Wiener velocity model in the Z-direction with the rate of change
in velocity determined by oz € R,. In the X-Y plane, this is a circular
motion around origin with angular rate ¥, which is perturbed by the
Wiener processes Wx and Wy with the magnitude of the perturbations
determined by ox,0y € R,. Lastly, the turn rate is subject to a perturbation
by Wy with its magnitude determined by oy € R,. By denoting the complete
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state vector by X, this can be written more compactly as
dX(t)=a(X(®))dt+odW(),
where

Px Py P, Px Py Py \y)

Wx Wy Wz W),

S

_'

1]
I/~ /N

Px Py P; -¥YPy ¥YPx 0 0),

000o0x 0 0 0
T_|000 0 oy 0 0
000 0 0 o7 O
000 0 0 0 oy

As the term "radar-tracked“ might suggest, the state is measured by a
radar. That is, measurements are taken of the range \/P% + P% + P, the

azimuth angle tan™! (Py/Px), and the elevation angle tan™! (Pz/,/P% + P2)
subject to independent Gaussian measurement errors for each measured
quantity. This can be written as

-1 Py(t,) - Py(tn)
¢T(X(ta) = <\/Px(tn)2+Py<tn>2+Pz(tn>2 tan”! pigy tan”! W)

V(ty) ~ N (0,diag(c%,0%,08)),
Y(tn) = c(X(tn)) + V(tn).
Consequently, the complete state-space model is given by
dX(®) =a(X(®)dt+odW(t),
Y(t) | X ~ N (c(X(tn)),diag(al%,aﬁ,,ag)) .

This is a slightly simpler version of a dynamic model that was used in
Publication I. An example realisation of the radar tracked coordinated
turn model is shown in Figure 3.4.

A Spherical State-Space

In, for example, reference vector tracking the state-space is identified with
the unit sphere in R%, X = $2. A simple model for a stochastic process on $2
is given by

AX(t) = —CU) x X(£)dt — y2X () de + X (2) x AW (2), (3.20)

where Q(z) is a deterministic angular velocity vector and y > 0 is a scalar
diffusion constant. This model was used in Publication V to model the
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Figure 3.4. Example realisation of the radar tracked coordinated turn model.

evolution of the local gravity vector with measured angular velocity C(z)
subject to noise. If 1 =0 and y = 1 then Equation (3.20) reduces to the
Wiener process on $2 (Price and Williams, 1983, Van Den Berg and Lewis,
1985). Thus if X models the local gravity vector of some sensor platform
then a suitable state-space model is given by

dX(¢) = -Q) x X (@) dt — y2X @) dt + y X () x dAW(2),
Y(tn) | X ~ N (gx(tn),0%1),

where Y (¢,) are accelerometer readings and g is the local gravity constant.
An example realisation of Equation (3.20) is shown in Figure 3.5.
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Figure 3.5. One realisation of the stochastic rotation model in Equation (3.20) with 2 =0
(Spherical Wiener process).

3.2 Discrete-Time State-Space Models

Discrete-time Markov models are defined via a Markov kernel or transition
density. Assuming the stochastic process {X,},en, is @ Markov process,
then similarly to the continuous-time case (see Definition 2) the following
holds for n’' < n.

anHXl}?:,O (xn | {xl}?:l) = anIX,Lr(xn [ 21).
In particular, if ' =n -1, then
n-1\ _
Px, i (xn Ha}]2g) = P, 1%, (n | %n-1)

and px,x, ,(x, | x,-1) is said to be the transition density (at time n). The
transition densities px,x, ,, n =1,...,N fully characterise the process X.
Consequently, due to Assumption 1, probabilistic state-space models in
discrete time are fully specified by the following probability densities:

XO NPXO(-"C),
Xn 1 X1 Nanan,l(x | Xn-1),

Y, X, "'pY,L\Xn(y [ 7).
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3.2.1 Examples of Discrete-Time State-Space Models

In this section, some of the more prominent classes of discrete time state-
space models are reviewed together with some examples.

Affine Gaussian Models
In discrete time, affine Gaussian state-space models are of the following
form.

Xo ~ N (1o, Zo),
X | Xp-1~ W(Anxn—l +bn:Qn)y
Y. | X, ~AN(Crxp+dn,Ry).

The distinctions between affine time-invariant (ATI), affine time-variant
(ATV), linear time-invariant (LTI), and linear time-variant (LTV) are made
completely analogously to the continuous time setting. Recall the g times
integrated Wiener process as defined in Equation (3.13). Given a grid
{to}_, with ¢ =0 and ¢y = T it can be discretised exactly using the methods
described in Section 3.1.1. If a uniform grid is selected, ¢, =t,-1+h, n=
1,...,N, then the discretised model is linear time-invariant, X(nh) = X,,,

Xn |Xn—1 "L/V(AXn—l,Q),

where the d x d blocks of A and @ are given by

Loy, i<y,
Ajj= T ,
0,i>.
p2q+3-i-j
:I .
4(2g+3-i—j)Ng+1-)Ng+1-))!

Qij

If the "position of X, XV, is measured with an error of covariance R, then
the measurement model is given by

c:(Id 0 ... o),

Yn |Xn "‘L/V(CXn,R).

Conditionally Gaussian Models

In discrete time, conditionally Gaussian models have the property that
X,1X,-1 and Y, | X, are indeed Gaussian distributed. That is, the model
is given by

Xo ~ N (1o, Zo), (3.26a)
Xn | Xn-1~ N (an(xn-1),@n(xn-1)), (3.26b)
Yo | X, ~ A (en(n),Rnlxn)). (3.26¢)
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Figure 3.6. One realisation of the stochastic volatility model. The signal is on the left and
the measurements are on the right.

An example of a conditionally Gaussian model is the stochastic volatility
model, which is given by

Xp | X1~ N (X1 -m)+m,Q),
Yy | X, ~ AN (0,exp(X5)).

The stochastic volatility model is commonly used to model volatility in
financial time series. That is, the variance of returns (Lindstrom et al.,
2015). An example realisation of the stochastic volatility model is shown
in Figure 3.6.
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4. Inference in Probabilistic
State-Space Models

The previous chapter covered the mathematical description of the latent
signal X and its relation with the measurement signal Y. That is, the
mathematical description of the system (X,Y) with which this thesis is
concerned with. The present chapter is concerned with inferring the latent
signal X given the measurements Y. For this purpose, the following two
sets are defined.

@/(r)z{Y(s):ssr}, 7,5€ Ty, (4.1a)

Y (1)={Y(s):s<T1}, T,5€Tx. (4.1b)

The sets #'(r) and % ~(7) is the information provided by the measurements
Y about the latent signal X up to time 7 and up to just before time ,
respectively. The complete information provided by the measurements is
simply the union of all #/(r) and it is denoted by . Furthermore, the sets
in Equation (4.1) define two classes of conditional densities through Bayes’
rule, namely

p(s,x 1% (1), (4.2a)
p(s,xl@‘(r)). (4.2b)

There are some important classifications of the densities in Equation (4.2)
for particular choices of 7 and s as listed below.

* If s=7€ Ty then p(s,x| #(1)) is a filtering density and p(s,x|# (1)) is
a (one-step ahead) prediction density.

* If s <7 € Ty then both p(s,x | # (1)) and p(s,x | # ~(r)) are smoothing
densities. Unless 7 is the smallest element in Ty, in which case p(s,x |

% (1)) is a prediction density.

* If s > 7 € Ty then both p(s,x | #(r)) and p(s,x | # (1)) are prediction
densities.

43



Inference in Probabilistic State-Space Models

Herein the concern is with inference on a fixed interval. The index sets
are given by Tx =[0,71and Ty = {t,}\_;, 0<t1<...ty =T or Tx = {n}’_; and
Ty ={n}}_, for the continuous-discrete time and the discrete time inference
problems, respectively.

4.1 Bayesian Inference in Continuous-Discrete Models

In this section inference in continuous-discrete time models is discussed. It
starts off with describing the formal solution to the filtering and smoothing
problem. The solution to the former problem can be expressed using the
the Fokker-Planck equation and Bayes’ rule, while the latter problem also
requires some results from Leondes et al. (1970) or equivalently Anderson
(1972). The discussion of the formal solution is then followed by inference
in affine Gaussian models for which inference is done via the Kalman filter
(Kalman, 1960) and the Rauch—Tung—Striebel smoother (Rauch et al.,
1965). This section concludes by discussing approximate strategies for
conditionally Gaussian models with emphasis on the assumed density
approach (Maybeck, 1979,1982,1982) and its relation to the projection
methods (Brigo et al., 1999, Koyama, 2018).

4.1.1 The Formal Solution

The formal solution of the continuous-discrete time inference problem
involves finding the filtering and smoothing densities associated with the
following state-space model.

X(0) ~ pxo)®), (4.32)
dX() =a(t,X(®)dt+0 (¢, X)) dW(@), (4.3b)
Y (&)1 X ~ pyeoixin (tnsy 1), (4.3¢c)

What is meant by formal here is that precise mathematical relations
between the filtering densities, likelihoods, and smoothing densities are
given. These relations need not be appropriate for implementation on a
computer system but do define the bullseye for approximate methods.

The Formal Filtering Relations
The filtering density is denoted by pr(x,t) = p(x,t| #(#)). In the intervals
between measurements it is governed by the Fokker—Planck equation

pr(t,x) =" pr(t,x), te€ltn-1,t). 4.4)

The filtering density is a so-called cadlag function (left continuous with
right limits). That is, the half-open integration interval in Equation (4.4)
indicate that, strictly speaking, pr(¢,,x) is not the object that is computed,
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but rather the prediction density pr(¢,,x) = limss, pr(¢,,x). The filtering
density at time ¢, is then formally computed via Bayes’ rule, using the
prediction density and the likelihood.

L(tn,x)pr(t,,x)
JxL(tn,0)pF(ty,x)dx’
Recall that the likelihood is given by L(t,,x) = py,)x,)n, ¥(En) | ).

(4.5)

pF(tn’x) =

The Formal Smoothing Relations

There’s a formal relationship between the smoothing density pg(¢,x) =
px,t| % (tn)) and the filtering density pr(¢,x), which similarly to the pre-
diction in Equation (4.4) takes the form of a partial differential equation.
Before arriving at this conclusion, it is fruitful to give Proposition 1 (Leon-
des et al., 1970, Egs. (25) and (26)).

Proposition 1. Let the stochastic processes X and Y be governed by Equa-
tion (4.3). Assume that the filtering and smoothing probability densities
exist and are supported on the entirety of R?. Then the mean of a smooth
function $(X(t)) satisfies the following relation under the smoothing distri-
bution

(E[QX )| Y (tn)] = E[ X @) | ¥ (tN)],

where the operator %1 is defined by
H1() = Zal(t X0 pla) - > ZQU(t )07 p(x)

i,J

- Zai(b(x)anij(t,x) (4.6)
i,J
F(t, x)

_ 9;p
2 Qi 00ipw =" = e

ij

The evolution of the smoothing density given in Theorem 3 follows di-
rectly from Proposition 1 and the method of adjoints on %»(R%), which gives
a partial differential equation for the smoothing density pg.'

Theorem 3. Let the stochastic processes X and Y be governed by Equation
(4.3). Assume that the filtering and smoothing probability densities exist
and are supported on the entirety of R%. Then the smoothing density is given

by
pst,x)=—- Zd ai(t,x)ps(t, x) ZO Qi,j(t,x)ps(t,x)}

+Y0;[0,Qij(t,0pst,x)] + > 0;[Qi j(t,x)ps(t,x)d;log pr(t,x)).
ij i,J

4.7

1A partial differential equation for the smoothing density is also given in Equation
(28) of Leondes et al. (1970). Unfortunately, in the original reference there is a
sign error in the first term on the right-hand side.
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This can be written more compactly as
ps(t,x) = A7 ps(t,x),

where the adjoint #7" of X1 is given by

1
L Plx) = _Zai [ait, 2)p0)] -5 Za%j Q1 j(t, x)p(x)]
l v 4.8)
+Y 0;[0,Qi (£, 00p@)] + > 0:[Q1,;(t,00p(x)d;log pr(t,x)].
i, i
Equation (4.7) is solved backwards from t =ty with terminal condition
ps(tn,x)=pr(tn,x).

Remark 7. Anderson (1972) presents another expression for the evolution
of the smoothing density in terms of the generator «f and its adjoint of*,
namely

Ps(t,x) = A *[prl(t,x) - pr(t,x)sd B—;’] (t,%).

4.1.2 Inference in Affine Models

It is rarely the case that the filtering and smoothing densities are in some
finite dimensional space, which makes their computation intractable in
general. However, there are some exceptions such as, Benés and Benés—
Daum problems (Benes, 1981, Daum, 1984). Though, the most important
of such cases arise from the affine Gaussian model, which reduces the
inference problem to manipulations of the joint two first moments of X
and Y. Then the filtering densities can be computed with the Kalman filter
(Kalman, 1960) and the smoother densities with the Rauch—-Tung—Striebel
smoother (Rauch et al. 1965, see also Striebel 1965).

Continuous-Discrete Time Kalman Filter

The continuous-discrete Kalman filter computes the filtering densities for
the affine Gaussian model in Equation (3.12). If the filtering density at
time ¢,-1 is given by

pr(ta-1,9) = N (0" (tn-1), 2" (tn 1)),

then the prediction density at any time ¢ > ¢,,_; will be Gaussian as well.
In particular, the prediction density at time ¢,, which is denoted by

prt,,0) =N (50" (£,), 27 (1)),
is retrieved by solving the following set of ordinary differential equations
1 ()= A@pF @)+ b(®),

SFO=AOZF @)+ =FOAT@®) +Q(1), t€[tn_1,tn).
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Furthermore, the filtering density at time ¢, is
PF(tn, ) = N (18 (£0),ZF (2,)),
with parameters given by
S(tn) = Ct)Z" (t;)C T (tn) + R(ty),
K(tn) =2 (t,)CT(t)S ! tn),
() = 1P () + K () () - Ct)pE () - d(tn)),
2P (t,) = 2F () - K(t,)S(t)K (2,

which is referred to as the Kalman update.

Continuous-Time Rauch—Tung—-Striebel Smoother

The continuous-time Rauch—-Tung—Striebel smoother takes the filtering
density as input to produce the set of smoothing densities on [0,T]. More
specifically, the smoothing density is given by

ps(t,x) = N ;15 (8), =5 (2)),

and
150 = ApS )+ b+ QW [EF 0] " (1@ - 1F 1), (4.11a)
) _ 11T
50 = [A0+QW[EF ] | PSw+ 250w +@w[EF 0] | -Qw.

(4.11b)

The ordinary differential equations in Equation (4.11) are solved back-
wards in time on the interval [0, 7] with terminal conditions uS(T) = uf (T)
and 25(T) = 2F(T). Equation (4.11) can be written more succinctly by
defining the parameters

AS()= A +QW[=F )],
bS8 = b() - QW [=F ()] i ),
which gives
1S @ =ASOES @) +b5@),
356 = ASO5 0+ 250 [AS0)] T - Q.
4.1.3 Approximate Inference in Non-Affine Models
Many approaches to inference in continuous-time non-affine models pro-

ceed in a similar manner to the approximate inference methods with Gaus-
sian priors as discussed in Section 2.1.1, which are particular instances
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of the assumed density approach (Maybeck, 1979,1982,1982). However,
other approaches exists as well, such as sequential Monte Carlo methods
(Sarkka and Sottinen, 2008), fixed-form variational Bayes (Ala-Luhtala
et al., 2015, Archambeau et al., 2008, Sutter et al., 2016), expectation
propagation (Cseke et al., 2016), and the projection methods (Brigo et al.,
1998, 1999, Koyama, 2018). In the following some of the most prominent
approaches to assumed Gaussian density estimation in non-affine mod-
els (see Eq. (3.15)) are discussed, followed by a short description of the
projection methods.

The Assumed Density Approach

As the name suggests, assumed density filters and smoothers approximate
the formal filtering and smoother solutions Equations (4.4), (4.5), and
(4.7), under the assumption that the filtering and smoothing densities are
in a particular class of densities (Maybeck, 1979,1982,1982). This class
is most commonly taken to be Gaussian, though deviations exists (see,
e.g., Lee 2018a,b, Tronarp et al. 2018b). From Equation (3.4) and Lemma
3, differential equations for the predictive mean and covariance can be
derived®. They are given by

GE[X®) % (®)] =E[alt, X)) | ¥ (t)], (4.14a)
OVIX@®) | ¥ (D] = E[alt, XENX @) - uF )T 12 (1))

+E[(X (@) - @F 0)at, XN |2 ()] +E[Q(t, X () | (1)],
(4.14b)

where E[-| 2/(¢)] is the expectation with respect to the exact filtering density.

The assumed Gaussian density approach operates by replacing these
expectations in Equation (4.14) with expectations with respect to the Gaus-
sian approximation of the filtering density. That is, the assumed Gaussian
prediction equations are given by Approximation 6.

Approximation 6 (Assumed density prediction). The approximation is
given by pp(t,x) = N (x;uf (1), 2F (t)), where

i1 (&) = EF [alt, X@))],
2F() =] [a(t, XENX @) - pF @) ] +EF [(X (@) - pF @)alt, X (@) ]
+E [, X)),
and EF is the expectation with respect to X (t) ~ JV(pF(t),ZF(t)).

The assumed density prediction is then followed by its update, which is
in fact Approximation 1 from Section 2.1.1. For the reader’s convenience,
it is re-stated in Approximation 7 below.

2These relations can also be obtained by manipulating the Fokker—Planck equa-
tion directly.
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Approximation 7 (Assumed density update). The approximation is given
by pr(ty,x) zJV(JC;NF(tn),ZF(tn)), where

Stn) = VL [eltn, X (tn)] +EL [R(tn, X(20))],
K(tn) =€ [X(tn), c(tn, X (£,))] S (tn),
F (t) = i (6) + K ) (9(t0) ~ B [e(tn, X(2))] ),
2P =21 () - Kt)St)K T (ty).

and [AEf;, @f%, and \A/f; are expectations, cross-covariances, and covariances
with respect to X(¢,) ~ N (uF (¢;),2F (¢})), respectively.

Approximations 6 and 7 together define the continuous-discrete assumed
Gaussian density filter. There are various approaches to using the assumed
density filter to define an assumed density smoother. One approach is to
approximate the operator .#; by replacing the exact filtering density in
Equation (4.6) with the approximation from the assumed density filter,
which gives approximate expressions for d;E[X(¢) | # (¢tn)] and 9;V[X(2) |
%/ (tN)]. Then these expectations are replaced with approximations from
the assumed density smoother. The resulting approximation is given in
Approximation 8, for which a detailed derivation is given by Siarkki and
Sarmavuori (2013).

Approximation 8 (Assumed density smoother I). The approximation is
given by ps(t,x) = N (x; S (), Z5(1)), where

(5 =7 [at, X)) - £ [QE, XNZS 0171 (X (D) - 15 1)) ]
+E [, X=F 017 (X - kF )],
3 i A T
@)=t {a(t,X(t))(X(t) - (t))T} +E5 [a(t, X(0)(X(0)- ¢ t))T]
B [QE XONEF 1 (X0 - 1 1) (X0 - 15) ]

T

+E7 | Qe XONZF 017 (X - 1F (1) (X () - 15 ()

T

[ )']
[Q(t XONZSO1I (X O - 15 ) (X&) - 5 (@)) T]
&7 ']

QXIS (X - 15 1) (X&) - S ()
+E7 [Q(t, X(2))],

and £ is the expectation with respect to X(t) ~ N (us (t),28 (t)). Additionally,
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if Q(t,x) is constant in x, Q(t,x) = Q(t) then this simplifies to
(5() = £ [at, X)) +QOIEF 017 (15 () - 1 1),

. N N T
55(t) = £5 [a(t,X(t»(X(t) - uF(t))T} +£5 [a(t,X(t))(X(t) - uF(t»T]

.
+QEF o1 1=5wm+ [Q(t)[zF(t)]—le(t)} -Q(®).

Another approach to deriving assumed density smoothers is to discretise
the stochastic differential equation in Equation (3.15) using the Euler—
Maruyama scheme, applying the discrete time assumed density smoother
(See Section 4.2.2) and take the formal limit as the discretisation interval
tends to zero (Siarkki and Sarmavuori 2013, see also Siarkka 2008). This
results in Approximation 9.

Approximation 9 (Assumed density smoother II). The approximation is
given by ps(t,x) = N (x;15 (), 25(t)), where

(5@ =8 [alt, X(0)] + EF1Q(t, XeNIEF 017 (15 (1) - pF (1)
+E [alt, X)X @) - pF )T (WS @) - 1P ),

55 = (&5 [att, XO) (X0 - 17 0) "] +EF 1@ XN (ZF (@1 25

N " T
+[ (B [ae.xan (X0 - " @) | +ES 1@ X @0 ) 2T (01 25 )
- B Qe X)),

and B is the expectation with respect to X(t) ~ A (uS(t),Z5(2)).

Projection Filtering and Smoothing

Similarly to the assumed density approach, the projection method con-
strains the approximate filtering and smoothing densities to be in a par-
ticular class of densities. From the formal prediction relation in Equation
(4.4), it follows that the square root of the density evolves as

0Pt 0) = Vel pYAt,x),

where the operator Va7~ acts on p2 according to

2
\/E*pl/2 = piz o*p.

Assuming that pg(¢,,x) is in some parametric class of densities, pr(¢,,x) €
2 ={pg: 0 €O}, the projection approach is to use the projection formula in
Section 2.2 according to (Brigo et al., 1999, cf. Eq. (15))

0uDY2 ) (t,2) = Mgy oVl B2, (t,%). (4.21)
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Note that py=%, (¢,,x) € 2 implies that p3%, (¢,x) € P for ¢ € [ty,tn+1). There-
fore, Equation (4.21) evolves in a finite dimensional manifold and can, as
the notation suggests, be identified with a curve 0z(¢) in © (Brigo et al.,
1999). When 2 is the class of Gaussian densities, 0r(t) = (1 (¢),ZF(¢)), then
the projection prediction in Equation (4.21) is the same as the assumed
density prediction in Approximation 6 (Koyama, 2018, Eqs. (28) and (29)).

As for the filter update, the projection framework classically does not offer
a way to perform Bayes’ update unless the class of densities 27 is conjugate
to the measurement likelihood. One approach to approximate updates
with the projection method was proposed in Publication IV (Tronarp and
Sarkkai, 2019b), this will be discussed in more detail in Chapter 5.

The projection approach to smoothing is completely analogous to that of
the prediction. That is, a square root form of the smoothing density can be
obtained from Equation (4.7), which is given by

*
dpe2(t,x) =/ H1 pyA(t,x),

where the operator ;" acts on p2 according to

-1/2
* P
VA p?= 51D

By using the projection formula again, the following relation is obtained
for the approximate smoothing density (Koyama, 2018)°:

*
0By %8, 0) = Tlggy0 \/H1 P (t, ). (4.22)

As it is not obvious from the notation, it should be noted that the output
of the projection filter pg,(;) replaces the exact filtering distribution pr in
the expression for £, in Equation (4.22) (recall the definition of %7*
in Equation (4.8)). Furthermore, if & is the class of Gaussian densities,
0r(t) = (1F(0),2F 1)) and 05(t) = (u5(t),Z5(1)), then the projection smoother
in Equation (4.22) reduces to the assumed density smoother in Approxima-
tion 8 (Koyama, 2018, Equations (30) and (31)).

4.2 Bayesian Inference in Discrete-Time Models

In this section, inference in discrete time models is considered. The formal
solution to the filtering and smoothing problems is reviewed. Both prob-
lems are considerably simpler than in the continuous-discrete setting, in
the sense that their solutions only involve integrals rather than partial
differential equations (Sédrkka, 2013). Following this, inference in affine
Gaussian models is discussed, which can be solved by the discrete-time

3 Koyama (2018) uses the expression obtained by Anderson (1972) for the formal
smoothing solution.
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versions of the Kalman filter (Kalman, 1960) and the Rauch—Tung—Striebel
smoother (Rauch et al., 1965). Then, the assumed density method in dis-
crete time is reviewed as well as its iterated variants (Bell, 1994, Bell and
Cathey, 1993, Garcia-Fernandez et al., 2014, 2015, 2017). Lastly, a brief
overview of sequential Monte Carlo methods is given.

4.2.1 The Formal Solution

The formal solution of the discrete time inference problem involves finding
the filtering and smoothing densities of the following state-space model:

Xo ~ px,(x),
Xn | Xn-1~px,1X,1 (x| Xn-1),
Y, X, ~pYn\X,Z(y [ x5).

As with the continuous-time inference problem this entails that exact math-
ematical relations between filtering densities, likelihoods, and smoothing
densities are given.

The Formal Filtering Relations

The filtering density is denoted by pr(n—1,x)=p(n—1,x|%(n-1)). As the
dynamics is defined by a Markov model, it follows that the one step-ahead
prediction density is given by (Sdrkké, 2013, Theorem 4.1)

pi(n,x)=/pxnwxn,l(xlu)pF(n—l,u)du. (4.24)
X

The filter update is the same as for the continuous-discrete case. That is,

Ly (x)pp(n,x)
Ln(x)p;w(n,x)dx'

prlx,n)= T (4.25)
X

The Formal Smoothing Relations
Denote the smoothing density by ps(n,x) = p(n,x| % (N)). Then the smooth-
ing recursion is given by (Siarkka, 2013, Theorem 8.1)

pan+Lu) ps(n+1,u)du. (4.26)

ps(n,x) :pF(n,x)/
X

4.2.2 Inference in Affine Models

As with the continuous-discrete time case, ”closed-form“ solutions to the
discrete-time inference problem are elusive. However, for affine models
there are discrete-time versions of the Kalman filter (Kalman, 1960) and
Rauch-Tung—Striebel smoother (Rauch et al., 1965). These recursive
algorithms are described in the sequel.
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Discrete-Time Kalman Filter
Just as in continuous-discrete time, the discrete time Kalman filter op-
erates by alternating between predictions and updates. If the filtering
density at time n—11is pp(n—1,x) = A (x;uf_;,=F ) then the prediction
density at time n is given by pp(n,x) = A (x;u%, =F) where
#5 = Anl‘f:—l +bn,
P =AZE AT+ Q..
Furthermore, the filtering density at time 7 is pp(n,x) = A (x;uf ,2F) and
the parameters are given by
S,=C,2PcT+R,,
K,=3Pcls; 1,
Hn = tin1 + Kn (yn = Cutty; = dn),
P =3P K,S,K],

which follows directly from Lemma 1.

Discrete-Time Rauch-Tung-Striebel Smoother

The smoothing density at the terminal time stamp N is given by ps(N,x) =
pr(N,x) and for n < N it is given by ps(n,x) = A (x;u5,Z5). The discrete-
time Rauch—-Tung—Striebel smoother is then a backwards recursion for the
parameters p5 and =5, which is given by (Rauch et al., 1965)

Gn=3FAT, [22,,] 7, (4.29a)
Hon = i, + G (Hrns1 = Hiis1) (4.29b)
=36, (25, -22,,)G]). (4.29¢)

4.2.3 Inference in Non-Affine Models

Just as in continuous-discrete time, the assumed density approach is a pop-
ular tool for the discrete time inference problem. In fact, for the assumed
density approach considerable research effort has been put towards ap-
proximating the necessary expectations (Arasaratnam and Haykin, 2009,
Arasaratnam et al., 2007, Ito and Xiong, 2000, Julier et al., 2000, Priher
and Straka, 2017, Prither and Simandl, 2015, Sirkka, 2008, Wu et al.,
2006) and formulating iterative variants (Bell, 1994, Bell and Cathey, 1993,
Garcia-Fernandez et al., 2014, 2015, 2017, Skoglund et al., 2015, Tronarp
et al., 2018a). Another popular approach is sequential Monte Carlo (Aru-
lampalam et al., 2002, Cappé et al., 2007, Del Moral et al., 2006, Doucet
et al., 2000, Godsill et al., 2004, Gordon et al., 1993). In the following the
assumed Gaussian density approach and the particle filtering approaches
are reviewed.
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The Assumed Density Approach

In the discrete time, the assumed density approach approximates the
left-hand sides of the formal filtering and smoothing solutions Equations
(4.24), (4.25), and (4.26) is approximated within a specific class of densities.
Although the assumed density is most commonly taken to be Gaussian,
quite a few assumed density approaches based on other classes of densities
have cropped up over the years. For instance, there are approaches based
on the Student’s t distribution (Huang et al., 2016, Priiher et al., 2017,
Roth et al., 2013, Tronarp et al., 2016), the von Mises—Fisher distribution
(Bukal et al., 2017, Kurz et al., 2016, Markovic et al., 2014a,b, Traa and
Smaragdis, 2014), and the Bingham distribution (Gilitschenski et al., 2014,
2016, Glover and Kaelbling, 2014, Kurz et al., 2013, 2014). The exposition
here is restricted to the assumed Gaussian approach for conditionally
Gaussian systems. The following equations for the predictive mean and
covariance follow from the Markov property

E[Xp | %ho1] =E[an(Xp-1) | Fh1], (4.30a)
V[Xn | %-1] = V[an(Xn-1) | Fh1] +E[@n(Xn-1) | Zho1], (4.30b)

see Equation (3.26). Replacing the expectations in Equation (4.30) with
expectations with respect to the Gaussian approximation to the filtering
density gives the assumed Gaussian prediction equations, which are given
in Approximation 10.

Approximation 10 (Assumed density prediction). The approximation is
given by prp(n,x) = A (x;uf,ZF), where

/JiJ = u::i—l [an(Xn—l)] >
P =V [anXn D] + B [@n(Xn1)],

and EE_| and VE_| are expectations and covariances with respect to X,_1 ~
N (uE_ 1, ZF ), respectively.

Since the exact update in discrete time is structurally the same as in
continuous-discrete time, it should come as no surprise that the assumed
Gaussian update equations are the same as well, which are re-stated in
Approximation 11.

Approximation 11 (Assumed density update). The approximation is
given by pp(n,x) = A (x;uf,ZF), where

Sp = VP [en(X)] +EE [Rn(X,)],
K, =Cl[X,, (X)),
/Jf; = ﬂf: +K, (yn - ﬂ::f:[cn(Xn)]):

>F-¥P _K,S,.K],
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and B2, €F, and VT are expectations, cross-covariances, and covariances

with respect to X, ~ N (uf,ZL), respectively.

Finally, the assumed Gaussian smoother follows by noticing that G, in
Equation (4.29) in moment form is given by

G,=C [Xn,XrHl | @/n]\/[Xn+1 |@/n] _1-

Replacing these moments with the moments with respect to the Gaussian
approximation gives the assumed Gaussian smoother in Approximation 12
(Sarkkéa and Hartikainen, 2010).

Approximation 12 (Assumed density smoother). The approximation is
given by ps(n,x) = N (x;15,25 ), where
. -1
G, = Cfl‘ [Xn;an+1(Xn+1)} [Zf:JrJ s
M = i + G (1~ Hne)
25 = 25 +Gp (z;zg+1 - 25+1)GI,

and CF is the cross-covariance with respect to X, ~ A (uf ,=F).

Iterated Posterior Linearisation
In order to understand the iterated posterior linearisation method, it
is instructive to re-write the assumed density method, Approximations
10, 11, and 12, in statistical linear regression form, which are given by
Approximations 13, 14, and 15.

Approximation 13 (Statistical linear regression prediction). The approx-

imation is given by pp(n,x) = N (x;uk , ZF), where

= An“fl‘—l +by,

with
Ap =€ [an(Xp-1), Xn 1] [Zh_1] 7, (4.352)
by =B [an(X-1)] - Anid_y, (4.35b)
Qn =V [anXp D] +Ey_; [Qu(Xn-1)] - A, 2147, (4.35¢)

and Ef_,, CF |, and VE_| are expectations, cross-covariances, and covari-

ances with respect to Xn_1 ~ A (uf_1,ZF_,), respectively.
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Approximation 14 (Statistical linear regression update). The approxi-
mation is given by prp(n,x) = N (x;ul | =F), where

S,=C,zPCT+R,, (4.36a)
K,=3PC's 1, (4.36b)
i =P + Ky (9, - Coplh —dy), (4.36c¢)
F-3P_K,S,KJ, (4.364d)
with
Cp = €L [en(X,), X, ] [22] 7, (4.37a)
dn =8 [cn(X)] - Crpl, (4.37b)
R, =VE[c,(X,)] +EF [R,(X )] - C,2ECT, (4.37c)

and £F, CP, and VE are expectations, cross-covariances, and covariances
with respect to X, ~ N (yﬁ =P ), respectively.
Approximation 15 (Statistical linear regression smoother). The approxi-
mation is given by ps(n,x) = N (x; 5,25 ), where
: -1
Gn= ZfL‘A;LI—'Fl [25+1} >
s S
Hn = i + G (K1 = ti11)
S _sF s P
Zn = zn + Gn (Zn+1 - znJrl)GI'
The statistical linear regression filter and smoother are generalisations
of the extended Kalman filter and smoother, respectively. In fact if the first

order Taylor series method (Approximation 4) is used to approximate the
linearisation parameters the following is obtained for the prediction

An = Jan (ug—l)’

by
Qn

Qan (#5—1) - dJa, (#5—1)#5:—1’
Qn (/Jf:—l),

and
/Jf: =an (u§—1)7

Zf: =da, (ufffl)szflJL (#{;‘71) +@Qn (uﬁ‘—l)’

which is the prediction of the standard extended Kalman filter when @,
does not depend on the state (Sarkka, 2013). Similarly for the filter update
the following holds when using Approximation 4

CA‘n ~de, (,Uf;),
&n = cn(ﬂﬁ) -dJe, (/»‘5)”5’
Rn =R, (IJIS),
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Sn=de, (1) Zn e, (k7)) + Bu (1),
Ky =29, (17)S5",

Hy = 1y + K (yn = cn (1),

P =3P _K,S.K),

which is the filter update of the standard extended Kalman filter when @,
does not depend on the state (Sarkki, 2013). Lastly, the smoother gain is
now given by

Gn=3hay | (uh)[Zh.] 7,

An+1

which is precisely how the smoother gain as computed by the extended
Kalman smoother (Siarkki, 2013).

The similarities between statistical linear regression and extened Kalman
filtering/smoothing can also be understood by using integration by parts,
which gives A, and C, as

An = Eﬁ_l [Jan (Xn—l)] s

Con=EL [, (Xn)].

Consequently, the prediction is given by

uf = [Ef—l [an (anl)] ’

S =8 [T, (X 1) ZE LB [T, (Xn1)] T+,

the update is given by

Sn =B [, (X0)|Z0EL [, (X)) T+ B,
K, =2E} [J.,(Xa)] 'S,
1y = 1, + K (90— E5 [0n(X0)]),
sF =3P _K,S,KT,
and the smoother gain is given by
G = ZhEL [Ja,. (Xa)] T [Zh00])

That is, rather than using point evaluations the statistical linear regression
method is using averaging.

The iterated posterior linearisation method for smoothing proceeds iter-
atively by replacing the expectations, cross-covariances, and covariances
in Equations (4.35) and (4.37) with the current best approximation to
the corresponding smoothing marginals (Garcia-Fernandez et al., 2017,
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Tronarp et al., 2018a). More specifically, denote the approximate filter, pre-
diction, and smoother marginals at iteration I by pr(n,x) = A (x;uf ;,ZF ),
Pr (n,x) = (/V(x;/vtil,Zil), and pg (n,x) = ;/V(x;,uf,l,ZS ), n=0,...,N, re-

n,l
spectively. Then the approximate filtering, prediction, and smoothing

marginals at iteration [ + 1 are obtained through Approximations 16, 17,
18.

Remark 8. The posterior linearisation approach to filtering simply alter-
nates between the standard assumed density prediction, Approximation 10,
and the iterative update described in Approximation 3.

Approximation 16 (Iterative statistical linear regression prediction). The
approximation is given by pp,,(n,x) = N (x;pf | 2P, ), where
P A F P
Hng+1=Aniln_ 1741+ bns
P A vF AT 16
21 = AniZy 104140 +@Qn
with

Anl = @;?—l,l [an(Xn—lxXn—l} [zs—l,l} _1’

B

l;n,l = [ES—I,Z [an(Xn—l)} _AAn,l.ug—l)ly

Qi =V 1 [anXn-D] +E5 1 [@nXn-1)] —AnyZ5 4 AT,

and [Ef_l » @5_1 »and \A/;":_ll are expectations, cross-covariances, and covari-
ances with respect to X1 ~ W(yf_l Z,Zf_l l), respectively.

Approximation 17 (Iterative statistical linear regression update). The
approximation is given by pr+1(n,x) = JV(x;,uiHl,ZiHl), where

A <P AT A
Sni+1=CniZy 11Ch + Ry,

_sP AT o-1
Kn,l+1 = Zn,l+1cn,lsn,l+1’
F _ P A P e
Hni+1 = Hni+1 +Kn,l+1(yn ‘Cn,lﬂn,z+1 ‘dn,l)’

F_ <P T
2101 = 2y 101~ Knis1Sn 141K, 141

with
A A -1
Cry =C5  [enXn), X0 ] [25,] 77,
dng =5 | [enXn)] = Crgisl ),
Ry =V3  [eaXn)] +E5 ) [Rn(Xn)] - CuZhCT,
and [Ef o @5 o and \7;? ; are expectations, cross-covariances, and covariances

with respect to X, ~ A (1,25 ), respectively.
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Approximation 18 (Statistical linear regression smoother). The approxi-
mation is given by pg(n,x) = L/V(x;uf’lﬂ,if’l“), where

_<F AT P -1
Gn,l+1 = Zn,l+1An+1,l [zn+1,l+1] ’
S _F S P
Hni+1=Hpi+1t Gni+1 (#n+1,1+1 _/Jn+1,l+l)’
S _vF S P T
2 1= Zne1 + Gni1 (Zn 141 — Zna141) Guier-

Remark 9. In the original derivation, the posterior linearisation method
(Garcia-Ferndndez et al., 2014, 2015, 2017) assumed Q,(x) = Q, and R,(x) =
R,,. The extension to x dependent @, and R, is part of the contribution of
Publication II.

Remark 10. If Q,(x) = Q,, R,(x) = R,, and the expectations in Approxi-
mations 16, 17, and 18 are approximated with Taylor series expansions,
then the method reduces to the iterated extended Kalman smoother (Bell,
1994, Bell and Cathey, 1993). This follows immediately from the previous
discussion of the connections between statistical linear regression filtering
and smoothing with extended Kalman filtering and smoothing.

Particle Filtering

In quite a significant departure of the above approaches, the particle filter
is based on importance sampling rather than approximating the filtering
density in a fixed class of densities (Sarkka, 2013, Chapter 7). That is, for
some importance density gx,,, (xo.,) and function ¢(xo.,) the expectation of
¢(Xo:n) given the data &, can be written as (Cappé et al., 2007)

[E[(P(XO:n) | @n] = /X(,b(xo:n)PXo;nlYl:n(xO:n |y1:n)dx0:n
(4.51)

:/(P(xO:n)W(xO:n)QXO:n(xO:n)de:n-
X

where W is the likelihood ratio

DX Vi (%0: | Y1:0)

Wxon) =
(xon) 9., (%0:n)

This expectation can then be approximated by sampling Xo.,; ~ ¢x,., (x0:n)
and then computing

R LISE (X )W (X1
[E[(wb(XOn)l@n] z|E[(,[7(A)(0:n)|9yn} = Zl_l(l)( o ’l) ( o ’l). (452)

L1 WX

The particle filter is then a clever algorithm to sample X., recursively, and
circumvent the fact that px,,v,.,(Xo0:n,1 | ¥1:n) can typically only be evaluated
up to proportionality*. That is, the importance density is constructed to

4When p Xo:n Y1 Xo:n,1 | ¥1:n) can be evaluated exactly the denominator in Equation
(4.52) is unnecessary, even foolish.
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have the following factorisation® (Cappé et al., 2007)

qXon (%0:n) = 4X,1X,, 1 (X | Xn-1)q X, , X0:n-1),
which entails the following recursion for the likelihood ratio

Lp(xn)px, X, n | Xn-1)P X0 11101 K0:n—1 | Y1:n-1)
a9x, |X0;n,1(xn | xO:n—l)QXOZn,l(xO:nfl)

Wxo:n) o

_ Ly (xn)px, 1%, 1 (n | Xn-1) DXolVi X0 | Y1:0) (4.53)
4X,Xom1(%n | X0:n-1) QX1 (X0:n-1) )

Ly (x Xn | Xp—
_ Ln@n)px,ix, (o | 20 1)W(x0:n_1).
4X,1Xon1 En | X0:n-1)

The recursion for the particle filter is thus as follows. The trajectories
{Xo;n_l,l}lel with weights {wn_l,l}lel have been sampled at time n — 1. Each
trajectory is then advanced to time n by sampling (Arulampalam et al.,
2002)

Xn,l ~ anlXo;n,l(x | XO:n—l,l)y
and the weights are advanced by

Ly(Xn)Pxn1%,_1 Xnt1Xn-11)
W= 94X 1Xgin—1 Xni1 Xom-1,) W(Xo:n-1,)
M= AL LaGn)Pxaix,_ Knal Xn10)

=1 gx,1x0._1 Xn11Xom-1,)

(4.54)

W(Xom-11)

where the denominator of Equation (4.54) compensates for the fact that
the numerator is proportional rather than equal to the likelihood ratio
at time n (see Equation (4.53)). From inspection of Equations (4.51) and
(4.52), it would appear the algorithm is done, in fact so far the sequential
importance sampling algorithm has been described (Sirkka, 2013, Section
7.3). However, sequential importance sampling suffers from the so-called
degeneracy problem (Doucet et al., 2001), which is solved by adding a
re-sampling step (see Douc and Cappé 2005 for a review on re-sampling
schemes). For instance, multinomial sampling operates by sampling L
indices {I l}lel that are independently drawn from the categorical distribu-
tion over 1,...,L with weights w1,...,wr and then assigning I; to the /th
trajectory. That is,
XO:n,l - XO:n,Il,

where
P =k)=wyp.

The performance of the particle filter is heavily dependent on the choice
of importance density gx,,, which determines the convergence properties
of the algorithm (see, e.g., Crisan and Doucet 2002). In the bootstrap filter,
the importance density is selected as gx,x,, , = px,x,, (Gordon et al.,

5q X0, 15 allowed to depend on y1., and g¢x,x, ,(xn | x,-1) is allowed to depend on
yn, this is omitted in the notation here.
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1993). However, other approaches try to approximate the locally optimal
qXx,1Xn, (Doucet et al., 2000), which is given by

q§n‘XO:n—1 o Lp(xn)px,1x, ,(n | xp—1). (4.55)

While the particle filter targets the smoothing distribution in theory,
there are problems in practice (Kitagawa, 1996). Namely, when using
re-sampling, it would happen that more and more trajectories share a
distant past. Consequently, the algorithm does not sample the state-space
efficiently. On the other hand, if re-sampling is not used then the issue of
degeneracy rears its ugly head again. Consequently specialised algorithms
have been developed to sample efficiently from the smoothing distribution
(Godsill et al., 2004), or in other ways post-process the particle filter output
(Doucet et al., 2000).
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5. Discussion

This chapter provides a discussion on the contributions of the present
thesis. The contribution of each publication is described briefly followed by
some reflections on the results and future directions of study. Briefly put, in
Publication I the discrete-time posterior linearisation method (see Section
4.2.3) is extended to the continuous-discrete-time setting. In Publication II
the posterior linearisation method is extended to a more general class of
state-space models than it was originally defined for (cf., Garcia-Fernandez
et al. 2014, 2015, 2017). In Publication III, a contribution to probabilistic
numerics is given (Hennig et al., 2015), where the solution to an ordi-
nary differential equation is modelled by a continuous-discrete state-space
model for which the inference strategies in Sections 4.1 and 4.2 can be
employed for approximate inference, which generalises the approaches of
Kersting and Hennig (2016) and Schober et al. (2019). In Publication IV
the projection methods of information geometry (see Sections 2.2 and 4.1)
are employed to develop an approximate update formula for the Bayesian
filter. In Publication V, a model for tracking a norm-constrained vector
is developed together with a continuous-discrete assumed density filter
based on the von Mises—Fisher distribution. Lastly, in Publication VI
basis expansions of the Wiener process (see Section 3.1.1) are employed
to develop continuous-discrete assumed Gaussian filters and smoothers,
which generalises the result of Lyons et al. (2014).

5.1 Publication |

The aim of this contribution was to define statistical linear regression (see
Section 2.1.2) to stochastic differential equations. That is, finding an affine
approximation to

dX () =a(t, X)) dt+0 (¢, X)) dW(),
which entail the following approximations of a and o

a(t,x) = A(t)x + b(t),
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o(t,x)=a(t),
and the affine approximation is thus given by
dX ()= AW)X@)de +b()de +o(&)dW(2).

Denote the linearising process by X (t)}o<s<7 and define the auxiliary pro-
cess
dX () =a(t,X®) dt + o (¢, X)) dW(B), (5.2)

where W is a standard Wiener process, which is independent of X. An
approximation of the auxiliary process (X, (D}o<s<r is then formed, X, ()~
X(t) and

dX, (1) = A()X ()t +b(E)dt +6(1) dW (1),

where W(¢) is a standard Wiener process, which is independent of X(0).

5.1.1 The Main Findings

Two different ways to obtain the parameters A(¢), b(¢), and 5(¢) were found.
The first one is based on the Euler—-Maruyama discretisation of Equation
(5.2) whereafter the standard statistical linear regression method of Sec-
tion 2.1.2 is employed locally to obtain A(¢), b(¢), and G(¢) at each time point.
The parameters are then given by

A®) = Clat, XN, XD V[X(@®)] 7, (5.32)
b(t) = E[a(t, X(8)] - AGE[X(2)], (5.3b)
710 =E[ot, X0, X@)] . (5.3¢)

On the other hand, the second approach was based on minimising an upper
bound to the terminal mean square error
~ ~ 2

[peeaEs il

which results in the following parameters

AW =Clat,X®), X V[X©®)] 7, (5.4a)
b(t) =E[a(t,X(1))] - ADE[X ()], (5.4b)
Fo(t) = E[o(t, X(2))]. (5.4¢)

These parameters can then be plugged into the filtering and smoothing
equations in Section 4.1.2 and if the parameters are obtained by selecting
X (¢) to be the filtering process then they can be computed online. In this
case, the parameters selected by Equation (5.3) gives the standard assumed
density filter and smoother as described in Section 4.1.3. However, this
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does not hold when the parameters are selected by Equation (5.4) unless
o(t,x) = o(t) since E[o(t, X®))] #E[o(t, X)o7 (¢, X(¢)] " in general.

In any case, when the linearisation is done with respect to the filtering
distribution in the filtering pass, with respect to the smoothing distribution
in the smoothing pass, and o(¢,x) = o(¢) then the parameters due to both
Equations (5.3) and (5.4) reduce to the Type I smoother of Sarkki and
Sarmavuori (2013) (see Approximation 8). This is Proposition 2 of Tronarp
and Sarkka (2019a). On the other hand, if the linearisation with respect
to the filtering distribution is kept in the smoothing pass, then the Type
II smoother (see Approximation 9) of Sarkka and Sarmavuori (2013) is
obtained provided that Equation (5.3) was used for the linearisation.

However, the most important part of the contribution is that the present
linearisation scheme can be employed to develop iterative smoothers. This
is done by selecting {)A( (t)}oS ;<7 to be the current best approximation to
the smoothing process, then linearise using either Equation (5.3) or Equa-
tion (5.4), which in turn can be plugged into the filtering and smoothing
equations of Section 4.1.2 to obtain a better approximation. Evidence
from simulation studies suggests that a moderate to vast improvement
in estimation accuracy can be expected and that the iterations converge
rapidly.

5.1.2 Reflections and Outlook

It is encouraging that the Type II smoother of Sirkki and Sarmavuori
(2013) could be derived with the present linearisation methods. Unfortu-
nately, for the the Type I smoother of Sirkki and Sarmavuori (2013) this
is only the case when o(t,x) = o(¢). Moreover, if it is possible to derive the
Type I smoother with a linearisation approach, then it would imply that
the smoothing equations in Approximation 8 can be written as

5@ = A0 ®+b0)+ Q@) [=F )] (1) - i ), (5.52)

« A _ A A 11T 4
35() = [A(t)-rQ(t)[ZF(t)] 1}Zs(t)+Zs(t)[A(t)+Q(t)[ZF(t)] 1} -Q.
(5.5b)

At the present moment it is not clear how this can be done in an appropriate
manner.

Another important gap is the convergence analysis of the iterative
smoothers, which only consists of fairly limited empirical findings at the
present moment. The convergence analysis of the discrete time counter-
parts has been established by a similar argument as for the Gauss—Newton
method (Garcia-Fernandez et al., 2017, Tronarp et al., 2018a). However, it
is not clear how to extend these arguments to the continuous-discrete-time
setting considered here.
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5.2 Publication Il

In this contribution, the posterior linearisation method is extended to more
general state-space models than what was considered by Garcia-Fernandez
et al. (2015, 2017). More specifically, the following state-space model is
considered:

Xo~N (ub,Z8), (5.6a)
Xn | X1 ~Px, X, (X | Xp-1), (5.6b)
YulX ~py,x, (| x). (5.6¢)

In order to arrive at a tractable state estimator it is required that the
following moments are tractable:

ELX 7111 X051,
VX111 X0],
ElY, | Xnl,
VLY, | X5],

where E[X,,1 | X,] and V[X,.1 | X,] are the expectation and covariance of
X,+1 with respect to px,x, ,, and E[Y, | X,] and V[Y,, | X,,] are expectation
and covariance of Y,, with respect to py, x,. Additionally, to arrive at a
feasible state estimator Assumption 2 is required.

Assumption 2. For any p, and X, the following holds
ClE[X 11X, X, #0,
ClEY, | X,],X,] #0,
where C is the cross-covariance with respect to X, ~ N (tn,Zy).

Essentially, Assumption 2 means that a non-trivial linear estimator of
X, using Y,, or X,;1 can be constructed. For example, the method does not
work on the stochastic volatility model (see, Eq. (3.27)) since

C[ELY, | X,]1,X,] = C[Elexp(XA/2)V,, | X,,1,X,] = C[0,X,]=0.

Consequently, statistical linear regression yields the parameters € =0,
d =0, and R = V[exp(X,,)], which implies that no update takes place (see
Approximations 14 and 17).

5.2.1 The Main Findings

The idea is that the statistical linear regression method can be applied
to Equations (5.6), which is most easily realised by defining the following
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quantities:

a,(x)=EX, | X,-1]

>

X, 1=x

Qn(x)=V[X, | X,1]

b
n-1=%

cn(x) =E[Y, | X,

)

X,=x

Ry (x) = VLY, | X,]

Xn:x.

That is, applying the statistical linear regression method on the state-
space model in Equation (5.6) is equivalent to applying it to a conditionally
Gaussian state-space model and an iterative smoother can be implemented
by Approximations 16, 17, and 18.

Additionally, the convergence analysis of Garcia-Fernandez et al. (2017)
was extended to the present setting. While the condition of convergence
is hard to verify in practice, the result guarantees that the method is
convergent if initialised sufficiently closed to a fixed point. The reader is
referred to Tronarp et al. (2018a) for more precise statements regarding
the convergence.

5.2.2 Reflections and Outlook

The contribution has already had notable impact on research in Gaussian
process classification (Garcia-Fernandez et al., 2019a) and target track-
ing with von Mises—Fisher distributed direction of arrival measurements
(Garcia-Fernandez et al., 2019b). However, one drawback of the present
formulation is that the Kullback-Leibler based Gaussian approximations
to px,.,1x, and py,x, that were used to justify the original method (Garcia-
Fernandez et al., 2015, 2017) no longer work in the present context.

In order to illustrate this point, let us consider the linearisation of some
density py|x(y | x) with respect to X ~ px(x) = A (x;u,%). The Kullback—
Leibler justification of statistical linear regression and indeed posterior
linearisation is then to approximate pyx by

py|X(y|x):ﬁy‘X(y|x)=JV(y;éx+&,R), (5.10)

the parameters C, d, and R are then selected to minimise the following
Kullback-Leibler divergence

(C,d,R)=argmin D (pyixpx || pyixPx). (5.11)
C.d.R

However, already at Equation (5.10) problems are afoot. Namely, if Y
has outcomes in the space Y # R™ for all m then pyx does not define a
probability density on Y. Consequently the Kullback—Leibler divergence
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in Equation (5.11) does not make sense. For example, in the contribution
the density py x(y | x) = Po(y; c exp(x)) is considered, hence Y =Nj.

While the method reduces to iterated extended Kalman filter if @ ,(x) = @,
R, (x) = R, and if the statistical linear regression solutions are approxi-
mated with Taylor series Bell (1994), Bell and Cathey (1993) and it can
be related to a Kullback—Leibler minimisation for conditionally Gaussian
models (Garcia-Fernandez et al., 2015, 2017), it is not clear how to ap-
propriately characterise the method in the more general setting. This
is an important topic for future research and indeed there are already
some results in this direction. Unfortunately, these results are not mature
enough for publication at the time of writing this thesis. Lastly, it is noted
that the conditional moment tricks used in the present contribution appear
similar to the methods of West et al. (1985), however they do not develop
iterations. On the other hand, West et al. (1985) deals with general expo-
nential family measurements, which suggests an extension of the present
iterative method.

5.3 Publication Il

In this contribution, the problem of numerically approximating the solu-
tions of ordinary differential equations was examined. That is,

y@®)=f(t,y), ¥0)=yo, (5.12)

where f:[0,T]1xR? is the vector field and yo € R? is the initial value. The
approach was to pose the problem as inference in a probabilistic state-
space model, which places it in the field of probabilistic numerics (Hennig
et al., 2015). A continuous-time prior X : [0,T] x R?4*D was defined via a
stochastic differential equation

dX(@®)=FX()dt+udt+DdW(¢t) (5.13)

and each d x 1 sub-vector of X is denoted by X\, j=1,...,¢ +1. Here X
and X® models y(¢) and 3(¢), respectively, and consequently their initial
conditions are set to XP(0) = yo and X®(0) = £(0, y0). The remaining state
components are reasonably used to model higher order derivatives. The
g times integrated Wiener process (Eq. (3.13)) is a prominent example of
a prior for the solution of an ordinary differential equation (Kersting and
Hennig, 2016, Schober et al., 2014, 2019). Furthermore, for any time point
t the following likelihood model was used

r(t,X®) 2 X2 - (£, XD®), (5.14a)
Z) | X ~ N (h(t,X(®),R), (5.14b)
2(H)£0, (5.14c)
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which essentially means that XV is measured to solve the differential
equation with some added noise as determined by R.

5.3.1 The Main Findings

For a uniform grid {¢,}\_, with step size 2 Equations (5.13) and (5.14) can
be written as a discrete-time probabilistic state-space model by using the

exact discretisation method (Eq. (3.7)):

X(tns1) | X(t) ~ N (ARX (£n) +E(R),Q(R)), (5.15a)
Z(tn+1) | X(tns1) ~ A (htns1, X (tn41)),R), (5.15b)
2(tp41) £0. (5.15¢)

Now the problem of numerically solving Equation (5.12) has been put in
a form that can be solved by the methods discussed in Section 4.2. That
is, assumed density filtering, for which R =0, whereas R is set to some
small value for particle filtering, to enable standard linearisation methods
for constructing proposal distributions (Doucet et al., 2000) at the cost of
only targeting the actual inference problem approximately. If the vector
field f(¢,y) is affine in y then the measurement function A(¢,x) is affine
in x, which implies inference can be solved exactly by Kalman filtering
and Rauch-Tung—Striebel smoothing (see Section 4.2.2). Furthermore,
the stability theory of Kalman filtering in linear time invariant systems
(Anderson and Moore, 1979) has a rather remarkable consequence. That
is, consider modelling the solution of the following linear test problem

3 =Ay(y), y(0)=ypeR? (5.16)

with Equation (5.15), where the prior on X is a ¢ times integrated Wiener
process, and assume A is of full rank. Then the filter mean of X(¢,) tends to
zero for any ¢ =1,2,..., pf; — 0 as n — oo (Tronarp et al., 2019, Theorem 2).
That is, the solution estimate of will tend to zero regardless of the stability
properties of Equation (5.16). This is a stronger property than A-stability
(Dahlquist, 1963), where it is required that the estimate of the solution of
Equation (5.16) tends to zero whenever the exact solution does.

5.3.2 Reflections and Outlook

The major point of the contribution is that the solution of Equation (5.12)
can be modelled by a probabilistic state-space model and thus approxi-
mating the solution of Equation (5.12) is simply a matter of selecting an
approximate inference algorithm for Equation (5.15) and some standard
options were show cased (Tronarp et al., 2019). However, for each indi-
vidual algorithm a convergence rate of the solution estimate is required,
which is presently lacking. Though due to the connection with estimation
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of stochastic processes and splines (Kimeldorf and Wahba, 1970, Sidhu
and Weinert, 1979, Weinert and Kailath, 1974, Weinert and Sidhu, 1978,
Weinert et al., 1979), it would appear that the convergence analysis of
splines (Golomb and Jerome, 1971, Wahba, 1973a,b) would carry over to
the case of affine vector fields after necessary changes are made.

Lastly, it is rather unfortunate that the present development requires
R >0 in Equation (5.15) for the particle filtering approach to work. This is
required for the approximations of the locally optimal importance density
(see Eq. (4.55)) of Doucet et al. (2000), otherwise the likelihood ratio is
zero with probability one

L. X, px,%x, . Xni 1 Xn-171)
an|X0:nfl(Xn,l |Xn—1,l)

This is because Xf; # [(tn,Xn;) almost surely under ¢x,x,,, as con-

structed by the methods of Doucet et al. (2000) when R =0. One way to get
around this drawback is to construct ¢x,x,, , such that X f?} =f(t,, X fllg)
with probability one. Though doing this in a clever manner is not entirely

=0 (with probability one).

trivial.

5.4 Publication IV

The problem examined in this contribution is primarily that of approximate
Bayesian updating as discussed in Section 2.1. Suppose that the prior 7(x)
is a member of some parametric set of probability densities, 2 ={pgy: 0 €
O cR™}. That is, 7 = py, for some pg, € Z and 0y € ©. Then for a likelihood
L(x)=m(y | x), Bayes’ rule gives the posterior

ly)= L(x)m(x)
P =T Lntds

The key idea is to define a curve y(r,x), 7 € [0,1] such that y(0,x) = 7(x)
and y(1,x) = p(x | y). Thereafter, the ideas from information geometry and
projection filtering (see Sections 2.2 and 4.1.3 ) are used to approximate
y with some other curve 7y)(x) such that 7g¢) € 2 for all 7 € [0,1]. More
specifically, y was defined according to (Tronarp and Sarkka, 2019b, Eq.

(6)

L@ rx)
y(T,x) = T LG dx’ (5.17)

which implies that
ar,}/l/Z(T’x) — %X\Y [,Yl/z] (T,x), Y1/2(0,x) — nl/Q(x)’

where the operator x|y : Lo — % is given by!

1

%X‘yw](x):Q(é(x)— / f(x)¢2(x)dx)<p(x).
X

1S‘crictly speaking, the domain of the operator %xy is not all of %, but rather all
pY2 € %, for which the integral [, ¢(x)p(x)dx is finite.
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By the same method used in projection filtering (see Section 4.1.3) the
approximate curve, the projection update, is given by

0: 75 () = Mo 0 Uxy 150 ), ¥2(0,2) = n%(w), (5.18)
which in turn defines an approximation of the posterior according to

p(x | y) = Toa)(x).

As with the projection filter and smoother, Equation (5.18) defines a curve
in O, which is given by (Tronarp and Sarkké, 2019b, Eq. (8))

0(1) = g O)Egr) [(X)V oy log Tor (X)],  6(0) = B, (5.19)

where g(0(1)) is the Fisher information matrix of & evaluated at 6(r) and
Eg(r) is the expectation with respect to 7).

54.1 The Main Findings

The most important finding is that if & defines an exponential class that
is conjugate to the likelihood L(x). That is p(x | y) € 22, then the projection
update as defined by Equation (5.18) is exact (Tronarp and Sarkki, 2019b,
Theorem 1).

Theorem 4. Let py(x) = g(x)exp (0T T(x)—«(0)) for any 6 € ® and pg € 2 and
assume L(x) x exp(n' T(x)). Then

Tow (@) = plx | y) = gx)exp (0x,y T(x) - k(Ox|y)),

where
9X|Y =0+ .

It is clear that Theorem 4 applies to the Gaussian family of priors as
well, since the Gaussian family is also an exponential family (Tronarp and
Sarkki, 2019b, Theorem 2).

Another important point is that the expectation in Equation (5.19) can
often be computed in closed form. This is exemplified in the article by
taking the Gaussian family as prior combined with Laplace likelihoods or
the stochastic volatility likelihood. More broadly, for exponential families
with sufficient statistic T'(x), and log-likelihoods ¢(x) that are polynomials
in the sufficient statistic T'(x), computing the expectation in Equation (5.19)
reduces to computing derivatives of the log-partition function x(6).

5.4.2 Reflections and Outlook
The idea of exploiting curves going from priors to posteriors is not new

as such. Indeed, it is similar to the concept of tempering, which has been
used to develop Monte Carlo samplers based on the sequential Monte
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Carlo approach (Del Moral et al., 2006), and the notion of progressive
likelihoods that is used to develop progressive Gaussian filters (Steinbring
and Hanebeck, 2014).

However, the key idea behind the projection update is not the curve
going from prior to posterior per se but rather how it is used to develop
approximate inference algorithms. It appears that the formalism of infor-
mation geometry provides an elegant way of doing this. Furthermore, it
may be possible to develop diagnostic tools to assess the accuracy of the
approximation by monitoring the local projection residuals (Brigo et al.,
1999, Section 6).

An issue with the present development is that the projection update in
Equation (5.18) depends on the curve y, which was selected in a rather
ad-hoc manner. There are infinitely many curves from prior to posterior of
which y as defined in Equation (5.17) is just one example. It thus appears
fruitful to explore principled ways of selecting the curve connecting the
prior to the posterior, perhaps at the cost of losing some of the aforemen-
tioned computational benefits of the present selection. One option in this
directions would be to consider geodesics on the unit sphere in %, (Bauer
et al., 2015).

5.5 Publication V

In this work, the problem of tracking a reference vector is examined.
That is, there is some time-varying vector r(¢) € R® such that OtHr(t)H2 =0.
Without loss of generality, the case when r(#) is on the unit sphere is
considered, () € $2. The deterministic kinematics are given by

r(t) = -Q@) x r(?),

where Q(¢) is the angular velocity. It is assumed that measurements (t) of
Q(t) are available through a three-axis gyroscope and that r(¢) is measured
such that the likelihood at every measurement instant ¢, is given by
Vv 2
Ltp,roc exp (- 27),

where

2
o[y -8Qr(t,) -]
pn - U% )
where g € R, is some scalar gain, @ € SO(3) is a rotation matrix, b € R® is a
bias term, and V: R, — R, is at least once differentiable.

5.5.1 The Main Findings

Firstly, in order to account for the noisy measurements of Q(¢) a norm-
preserving stochastic differential equation for () was formulated, which
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is driven by Q(¢). It is given by
dR(®) = —Q(t) x R(t)dt — y2R(2)dt + YR(2) x AW (2), (5.20)

which can be verified to be norm preserving by using It6’s formula on
HR(t)H2/2 (Tronarp et al., 2018b, Lemma 1).

Secondly, an assumed density filter based on the von Mises—Fisher distri-
bution (Mardia and Jupp, 2000) is developed, whose probability density
function for S? is given by

VM F (rsp,m) = exp (nu’ r —y3() ys2(r),
where 1 €[0,00), € S?, ys2 is an indicator function for the set $2, and
ws(n) =log(4n sinhn) —logn.

From Equation (5.20) and using the assumed density method, R(z) ~
V MF (r;ut),n(t)), the following prediction equations are retrieved

() = =Qt) x u(t), (5.22a)
o o Ws(n()
i(t)=—y VIO (5.22b)

Furthermore, if V(p2) = p2 (i.e., Gaussian likelihoods) then 7.#.% is a
conjugate prior and the parameter update is given by (Tronarp et al.,
2018b, Proposition 1)

s

n(tn) = ' %QT(y =b)+n(t, ;)
Oy

%QT(y —b)+n(t;)ut;)
n(t,)

I«L(tn) =

In general, V.4 % is approximately a conjugate prior by Taylor expand-
ing V in p? up to first order around p?2| (Tronarp et al., 2018b,
Approximation 1).

r(t,)=ut,)

5.5.2 Reflections and Outlook

Assumed density filters based on the von Mises—Fisher distribution have
previously been developed in discrete-time (Bukal et al., 2017, Kurz et al.,
2016, Markovic et al., 2014a,b, Traa and Smaragdis, 2014). The contri-
bution of the present publication was to develop a continuous-discrete
formulation and to provide further evidence that there are benefits to
appropriately accounting for the geometry of the state-space X.

As discussed in Section 4.1.3 there is a correspondence between the as-
sumed density filter and the projection filter in the Gaussian setting. There

73



Discussion

is evidence that this might be the case for the proposed the von Mises—
Fisher filter as well. More specifically, the von Mises—Fisher distribution
is an exponential family with natural parameter 6(¢) = n(#)u(¢). From Eq.
(5.22) together and the chain rule it follows that

| : y(lool])
e(t):_( Y ”71+[9(t>]x>9(t>,
o] v ([low]])

which can equivalently be written as

) -1
6 = [VowVaws([lo@])| EowlsR®), (5.24)

where Eg(, is the expectation with respect to R(t) ~ ¥ .« F (02)/||0t)||.|[0@)| )
and «f is the generator associated with Equation (5.20), which is to be
understood as acting point-wise on ¢(r) = r. Equation (5.24) precisely
coincides with the projection method of prediction for exponential families,
since the sufficient statistic for the von Mises—Fisher distribution is in
fact s(r) =r (see e.g., Eq. (15) in Koyama 2018). However, there is a catch,
namely that the projection filter operates on the evolution of the probability
density as determined by the Fokker-Planck equation and not the evolution
of the sufficient statistic, which is how the continuous-discrete von Mises—
Fisher filter was derived (Tronarp et al., 2018b). That is, the preceding
argument is not sufficient to establish the continuous-discrete von Mises—
Fisher filter as a projection filter but it does tempt further investigation.

5.6 Publication VI

In this contribution, the continuous-discrete time inference problem is ex-
amined for conditionally Gaussian models with state-independent diffusion
matrix

dX (@) =a(t,X(®)dt+ o) dW (D),
Y(tn) | X ~ N (ctn,x(tn),R(t,)).
The problem is approached in the assumed density framework. However,
rather than working with the conventional prediction equations (see Eq.

(6)), basis expansions of the Wiener process are employed (see Section 3.1.1).
This is done interval-wise [¢,-1,¢,], n=1,...,N and ¢y =0 according to

L
AX®O =a(t,X®)dt+0®)Y Unipni(®)dt, t€ltn 1,tal,
=1

where U, ; ~ 4 (0,1), U, is independent from U, ;» if I #1', and {¢, )72, is
a basis in %([¢,-1,t,]). Consequently, an approximate model on the grid
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{t,})_, is given by

U= (o7, .Ul (5.262)

tn L,
dn(X(tn_l),Un)=X(tn)+/ a(t,X(t))dt+Z/ o), 1Py, (t)dE, (5.26b)

th-1 1=1 7 tn-1

X(tn):dn(X(tn—l)’Un)~ (526C)

5.6.1 The Main Findings

Due to the approximation in Equation (5.26¢), the filtering problem on
the measurement grid {,}_; is of a standard form and can be solved by
either numerical integration or Taylor series expansions of d, in both
X(tp,-1) and U, (Sarkka, 2013, Algorithm 5.5). The former approach was
already presented by Lyons et al. (2014). Furthermore, by either using
numerical integration or Taylor series expansions, smoother gains can be
computed for the smoothing problem on the measurement grid (Tronarp
et al., 2018a, Algorithms 1 and 2). Additionally, a scheme for approximat-
ing the smoothing solution between measurement grid points was also
developed (Tronarp et al., 2018a, Section III.D). However, it appears to
behave fairly poorly (Tronarp et al., 2018a, see, e.g., Fig. 2).

5.6.2 Reflections and Outlook

While it appears that the series expansion approach can serve as a decent
alternative to the standard assumed density smoothers on the measure-
ment grid points, it appears to be a poor choice if interpolation of the
smoothing solution between measurement grid points is needed. It is
presently not clear how to rectify this issue. On the other hand, one may
note that the conditional mean and covariance of the dynamics due to the
approximation in Equation (5.26¢) are given by

ELX (t,) | X (tp-1)] = / n (X (tn-1,un)) A (u,;0,1)du,,
U
VIX () | X (tp-1)1= / G (X (tn-1,u2))d) (X (tn-1,un)) A (uy;0,Dduy,
U
- ( / dn(X(tn—l,un))JV(un;O,I)dun)
U

< / dn(X(tn_l,un))W(un;o,I)dun)T.
]

Consequently it is straight-forward to apply the methods developed in
Publication II to arrive at an iterative smoother on the measurement grid.
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Errata

Publication Il

j3 The legend entry "KF“ in Fig. 5 should be
"EKF“.

Publication IV

The collection of tangent vectors at 0 is given
by {0s.p}", and not {9y, p}?*_,. "For the pro-
jection update (PU) we take R,V, [...]* should
be "For the projection update (PU) we take V,

[...]%

Publication VI

¢3 In the unnumbered equation succeeding Eq.
(3) it should be C5[-,-1=C[-, | (tx)] and not
CSL1=EL,- | & (tx)].
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