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Abstract—The classifier based on rough sets is widely used in
pattern recognition. However, in the implementation of rough set-
based classifiers, there always exist the problems of uncertainty.
Generally, information decision table in Rough Set Theory
(RST) always contains many attributes, and the classification
performance of each attribute is different. It is necessary to
determine which attribute needs to be used according to the
specific problem. In RST, such problem is regarded as attribute
reduction problems which aims to select proper candidates.
Therefore, the uncertainty problem occurs for the classification
caused by the choice of attributes. In addition, the voting
strategy is usually adopted to determine the category of target
concept in the final decision making. However, some classes of
targets cannot be determined when multiple categories cannot
be easily distinguished (for example, the number of votes of
different classes is the same). Thus, the uncertainty occurs for
the classification caused by the choice of classes. In this paper, we
use the theory of belief functions to solve two above mentioned
uncertainties in rough set classification and rough set classifier
based on Dezert-Smarandache Theory (DSmT) is proposed. It
can be experimentally verified that our proposed approach can
deal efficiently with the uncertainty in rough set classifiers.

Keywords: Classification, Rough Set, Uncertainty, Evidence
Reasoning, DSmT, Belief Functions.

I. INTRODUCTION

a) Motivation: In recent years, we have witnessed the
rapid development of Rough Set Theory (RST) [1]. There
are many practical applications of this theory [2],[3],[4],[5].
Among these, Rough Set Classifier (RSC) has been widely
used in the real classification problems [6], [7], [8], [9].

b) Challenges: However, in the practical use of RSC,
there always exists uncertainty. In the literature [10] and [11],
the discussions of the uncertainty in RST mainly focus on
the following points of view: Chen [10] proposed several
uncertainty measures of neighborhood granules, which are
neighborhood accuracy, information quantity, neighborhood
entropy and information granularity in the neighborhood RST;
Zheng [11] estimated the uncertainty of rough set originated
from two parts of boundary region. Although the uncertainties
discussed in the above literature are of certain significance,
however, the uncertainties discussed in this paper are shown
in two aspects:

1) The choice of attributes: for example, in the decision
information table, some attributes are not significant in a
representation and deleting of these attributes has no real

impact on the classification results. However, such concept
of significancy is relative, for different problems, the role of
each attribute is quite different. Thus, the problems of attribute
selection are always ad hoc and depending on the user’s
preference. Obviously, different attribute selections correspond
to different strategies, which generally yield different results.
For example, in [12], authors attempted to select the most
information-rich attributes from a dataset by incorporating a
controlled degree of misclassification into approximations of
rough sets. Gao et.al [13] proposed a new uncertainty measure,
named maximum decision entropy, for attribute reduction in
the decision-theoretic rough set model. Although many robust
and efficient reduction algorithms have been proposed, most of
them concentrate on the properties of data or user preference
in the definition of attribute reduction, which result in the
difficulties of choosing appropriate attribute reductions for
specific applications. For the same data, different users can
define different reductions and obtain their interested results
according to their applications. Jia et.al [14] reviewed nearly
twenty two different attribute reduction methods, but to design
of a robust attribute reduction method is not the focus of this
paper. We emphasize the uncertainty caused by the choice
of attributes, which is not discussed in details in the recent
development of RST. For this aim, one typically seeks a policy
for avoiding choosing attributes, and we propose to emphasize
the importance of each attribute for the specific problems.

2) The choice of classes: besides, in RST, the category of
target concept is determined according to the element compo-
sition of its corresponding approximate set: if the number of
elements belonging to one class is the largest, the concept of
target is labelled as this class. However, this kind of voting
method often leads to uncertainty in making decisions, which
affects the final precision of RSC. In order to illustrate this
problem more vividly, we explain it through Figure 1: in case
one, the approximate set of target concept (red five-poited
star) has four elements (plus) belonging to class 1, three
elements (plus) belonging to class 2 and two elements (plus)
belonging to class 3. Thus, in case one, we can easily draw
the conclusion that the target belongs to class 1. However,
in case two or case three, the target cannot be labelled with
single category because there are some classes (class 1 and
class 2 in case two, class 1, class 2 and class 3 in case three)
that have the same number of votes. More specifically, if



the approximate set of such target is empty-set (case four),
which category should be allocated to the target concept?
As aforementioned, for the RSCs, there are two mentioned
neglected uncertainty issues. The theory of belief functions
[15] is widely used in uncertainty management and uncertainty
reasoning for decision-making. In this paper, we attempt to use
it to model and manage the uncertainty incorporated in RSCs.

Class 1 Class 2

Class 3

Case two

Class 1 Class 2

Class 3

Case three

Class 1 Class 2

Class 3

Case four

Class 1 Class 2

Class 3

Case one

Fig. 1: Uncertainty in Voting Strategy.

c) Contributions: Because a certain attribute does not
have the ability to distinguish items on a particular problem,
but there may be a discriminative performance on another
problem. Thus, according to the classification performance of
each attribute, the corresponding weights of all attributes in
information decision table are calculated, which are used as the
evaluation index of the importance of an attribute. At the same
time, we do not directly delete unimportant attributes which
the classical reduction algorithms have done. We just consider
all the attributes in the final classification, after all, we consider
that all existing attributes must play a role in the decision.
For the uncertainty of the voting strategy in traditional RSC,
we have no statistics of the number of votes of each class
in approximate sets. Instead, we first calculate the coordinate
of each class with respect to each attribute and then get the
distance between the target concept and each class in every
attribute, in order to calculate the Basic Belief Assignment
(BBA) of the target in each attribute. Then, we use the classical
combination rule (PCR5 is used in this paper) proposed in
DSmT [16] to sequentially 1 combine all BBAs (each attribute
has a corresponding BBA). Finally, according to the principle
of maximum belief mass, we can obtain the final class of the
target concept.

1Because PCR5 rule is not associative, which means that the fusion results
depend on the order you have chosen. Here, our default way of combination
is to combine BBAs in order from small to large. For example, if there are
three BBAs: m1,m2,m3, the way of fusion is m12 = PCR5(m1,m2)→
m123 = PCR5(m12,m3)→ mfusion = m123.

This paper is organized as follows. Section 2 reviews some
basic concepts of Dempster-Shafer Theory (DST), and DSmT.
The new rough set classifier based on DSmT (RSCD) is
proposed in section 3. Section 4 gives the summary of the
proposed classifier. In section 5, we give some experimental
results to show the performances of our new method. Also,
some meaningful discussions about the extension of RSCD
are given in section 6. Section 7 concludes the paper with a
summary and direction for future.

II. PRELIMINARIES

This section provides a brief reminder of the basics of
DST and DSmT, which is necessary for the presentation and
understanding of the more general fusion of evidence.

In DST framework, the Frame of Discernment (FoD)2

Θ , {θ1, . . . , θn} (n ≥ 2) is a set of exhaustive and exclusive
elements (hypotheses) which represent the possible solutions
of the problem under consideration and thus Shafer’s model
assumes θi ∩ θj = ∅ for i 6= j in {1, . . . , n}. A BBA m(·) is
defined by the mapping: 2Θ 7→ [0, 1], verifying m(∅) = 0 and∑
A∈2Θ m(A) = 1. In DSmT, one can abandon Shafer’s model

(if Shafer’s model doesn’t fit with the problem) and refute the
principle of the third excluded middle. The third excluded
middle principle assumes the existence of the complement
for any elements/propositions belonging to the power set 2Θ.
Instead of defining the BBAs on the power set 2Θ , (Θ,∪)
of the FoD, the BBAs are defined on the so-called hyper-
power set (or Dedekind’s lattice) denoted DΘ , (Θ,∪,∩)
whose cardinalities follows Dedekind’s numbers sequence, see
[17], Vol.1 for details and examples. A (generalized) BBA,
called a mass function, m(·) is defined by the mapping:
DΘ 7→ [0, 1], verifying m(∅) = 0 and

∑
A∈DΘ m(A) = 1.

The DSmT framework encompasses DST framework because
2Θ ⊂ DΘ. In DSmT, we can take into account also a set
of integrity constraints on the FoD (if known), by specifying
all the pairs of elements which are really disjoint. Stated
otherwise, Shafer’s model is a specific DSm model where
all elements are deemed to be disjoint. A ∈ DΘ is called
a focal element of m(.) if m(A) > 0. A BBA is called
a Bayesian BBA if all of its focal elements are singletons
and Shafer’s model is assumed, otherwise it is called non-
Bayesian [18]. A full ignorance source is represented by the
vacuous BBA mv(Θ) = 1. The belief (or credibility) and
plausibility functions are respectively defined by Bel(X) ,∑
Y ∈DΘ|Y⊆X m(Y ) and Pl(X) ,

∑
Y ∈DΘ|Y ∩X 6=∅m(Y ).

BI(X) , [Bel(X), P l(X)] is called the belief interval of
X . Its length U(X) , Pl(X)−Bel(X) measures the degree
of uncertainty of X .

In 1976, Shafer did propose Dempster’s rule and we use
DS index to refer to Dempster-Shafer’s rule (DS rule) because
Shafer did really promote Dempster’s rule in in his milestone
book [18]) to combine BBAs in DST framework. DS rule
for combining two distinct sources of evidence characterized

2Here, we use the symbol , to mean equals by definition.



by BBAs m1(·) and m2(·) is defined by mDS(∅) = 0 and
∀A ∈ 2Θ \ {∅}:

mDS(A) =

∑
B,C∈2Θ|B∩C=Am1(B)m2(C)

1−
∑
B,C∈2Θ|B∩C=∅m1(B)m2(C)

(1)

The DS rule formula is commutative and associative and
can be easily extended to the fusion of S > 2 BBAs.
Unfortunately, DS rule has been highly disputed during the
last decades by many authors because of its counter-intuitive
behavior in high or even low conflict situations, and that is
why many rules of combination were proposed in literature to
combine BBAs [19]. To palliate DS rule drawbacks, the very
interesting PCR5 was proposed in DSmT and it is usually
adopted 3 in recent applications of DSmT. The fusion of two
BBAs m1(.) and m2(.) by the PCR5 rule is obtained by
mPCR5(∅) = 0 and ∀A ∈ DΘ \ {∅}

mPCR5(A) = m12(A)+∑
B∈DΘ\{A}|A∩B=∅

[
m1(A)2m2(B)

m1(A) +m2(B)
+

m2(A)2m1(B)

m2(A) +m1(B)
]

(2)
where m12(A) =

∑
B,C∈DΘ|B∩C=Am1(B)m2(C) is the

conjunctive operator, and each element A and B are expressed
in their disjunctive normal form. If the denominator involved
in the fraction is zero, then this fraction is discarded. The
general PCR5 formula for combining more than two BBAs
altogether is given in [17], Vol. 3. We adopt the generic nota-
tion mPCR5

12 (.) = PCR5(m1(.),m2(.)) to denote the fusion
of m1(.) and m2(.) by PCR5 rule. PCR5 is not associative
and PCR5 rule can also be applied in DST framework (with
Shafer’s model of FoD) by replacing DΘ by 2Θ in Eq (2).

III. NEW ROUGH SET CLASSIFIER BASED ON DSMT
(RSCD)

A. Weights of each attribute

RST is a mathematical tool to deal with vagueness and
uncertainty [1], which can effectively analyse the incomplete
information and does not need additional data beyond the prior
information. Next, we briefly give several relevant definitions
to show how to calculate the weights of attributes:

Definition 1: An information decision system S is S =
(U,A,D), where U = {x1, x2, · · · , xn} is non-empty finite
set of samples, A = {a1, a2, · · · , am} is a non-empty finite set
of attributes, D is a non-empty set of finite decision classes.

Definition 2: Each attribute a ∈ A defines an information
function fa : U → Va, and Va is the set value of the attribute
a. We further extend these notations for a set of attributes
B ⊆ A, an indiscernibility relation Ind(B) can be defined as
follows:

Ind(B) = {(xi,xj) ∈ U2|fi(a) = fj(a),∀a ∈ B} (3)

3Recently, a new combination rule PCR6 was proposed to combine all the
BBAs altogether in a single fusion step, which can be found in [20]. Because
PCR6 rule coincides with PCR5 when combining only two BBAs [17], we
just use PCR5 rule to combine BBAs in this paper.

where xi and xj are indiscernible when (xi,xj) ∈ Ind(B).
Some equivalence classes or elementary sets are generated by
Ind(B). The elementary set of xi is represented by [xi]B .
Any finite union of elementary sets is called a B-definable set.
For pattern classification, elements have the same class label
consisting of a concept X so that X ∈ U/D, where U/D =
{[xi]D|xi ∈ U} and [xi]D represents the elementary sets of xi

with respect to decision attribute D. Sometimes X ⊆ U is not
B-definable. In other words, there exists elements that are in
the same elementary set, but have different class labels, so that
X becomes a vague concept. For this, we give the following
definitions of approximation sets of such vague concept:

Definition 3: The B-upper approximation BX and the B-
lower approximation BX of the vague concept X is defined
as follows:

BX = {xi ∈ U |[xi]B ⊆ X}, (4)

BX = {xi ∈ U |[xi]B ∩X 6= ∅}. (5)

BX ⊆ BX , and BX consists of elements that certainly
belong to X , whereas BX consists of elements that possibly
belong to X . The set BNB(X) = BX−BX is called the B-
boundary region of X, and thus consists of those objects that
we cannot decisively classify into X on the basis of knowledge
in B.

Definition 4: POSB(D) is a positive region of the partition
U/D with respect to B and is defined as follows:

POSB(D) =
⋃

X∈U/D

BX (6)

=
⋃
{Y |Y ⊆ X,Y ∈ U/B,X ∈ U/D}. (7)

Definition 5: The degree of support of the condition at-
tributes B with respect to the decision attribute D is defined
as follows:

ζDB =
|POSB(D)|
|U |

. (8)

Here, ζ is regarded as the degree of importance of each
attribute in the information decision table S. In order to
illustrate how to calculate the weight of a particular attribute
based on the aforementioned five definitions, we give a simple
example below:

Example 1: Table I is an information decision table
with U = {x1, x2, · · · , x12}, A = {a1, a2, a3, a4},
D = {d1 = 1, d2 = 2, d3 = 3}. According to the
decision attribute d and Eq.(3), if xi is set to U and B
is equal to d, we can get the [xi]B = [U ]d = U/D =
{{x1, x4, x7, x8, x12}, {x2, x3, x9, x10, x11}, {x5, x6}}.
Meanwhile, we can also partition U by using each attribute
ai, i = 1, · · · ,m based on the indiscernibility relation
Ind(B), which are illustrated in Table II. Thus, each
element X in [U ]d can be approximated by each condition
attribute ai, i = 1, · · · ,m, and then we can obtain aiX
in Table III according to Definition 3. Based on Eq.(7),
we can get the positive domain of D with respect to each
attribute ai, which is also given in Table IV. In order
to explain how positive domains are calculated in detail,



we take POSa1
(D) as an example: U/D = [U ]D =

{{x1, x4, x7, x8, x12}, {x2, x3, x9, x10, x11}, {x5, x6}},
U/a1 = [U ]a1 = {{x1, x4}, {x2}, {x3}, {x5}, {x6}, {x7},
{x8, x9}, {x10}, {x11}, {x12}}, for any elements Y , where
Y ∈ U/a1, if Y meets the condition: Y ⊆ X , where
X ∈ U/D, then Y belongs to the domain POSa1

(D), for
example, when Y = {x1, x4} and X = {x1, x4, x7, x8, x12},
it satisfies Y ⊆ X , so {x1, x4} belongs to POSa1(D).
However, if Y = {x8, x9}, Y is not a subset of any elements
in U/D, so {x8, x9} does not belong to POSa1

(D). Thus,
according to Eq.(8), we can obtain the degree of support
of ai with respect to the decision attribute D in Table IV,
which will be regarded as the weights of each attribute in the
classification problem.

TABLE I: Information decision table.
U a1 a2 a3 a4 d
x1 5.1 3.5 1.4 0.2 1
x2 6.6 2.9 4.6 1.3 2
x3 5.2 2.7 3.9 1.4 2
x4 5.1 3.8 1.5 0.3 1
x5 6.4 2.7 5.3 1.9 3
x6 6.8 3.0 5.5 2.1 3
x7 5.5 4.2 1.4 0.2 1
x8 5.0 3.3 1.4 0.2 1
x9 5.0 2.0 3.5 1.0 2
x10 5.9 3.0 4.2 1.5 2
x11 5.7 2.6 3.5 1.0 2
x12 4.6 3.6 1.0 0.2 1

TABLE II: Results of partitioning the domain U using each
attribute.

The partitioning domain

[U ]a1
{{x1, x4}, {x2}, {x3}, {x5}, {x6}, {x7}
{x8, x9}, {x10}, {x11}, {x12}}

[U ]a2
{{x1}, {x2}, {x3, x5}, {x4}, {x6, x10}
{x7}, {x8}, {x9}, {x11}, {x12}}

[U ]a3
{{x1, x7, x8}, {x2}, {x3}, {x4}, {x5}
{x6}, {x9, x11}, {x10}, {x12}}

[U ]a4
{{x1, x7, x8, x12}, {x2}, {x3}, {x4}, {x5}

{x6}, {x9, x11}, {x10}}

B. Construction of BBA of Target Concept

As discussed in the introduction section, the traditional
way of voting decision will cause uncertainty when using
RSC, and directly affect the final classification accuracy. The
evidence theory has a good ability to deal with the uncer-
tainty problem, and evidence theory generally describes such
concept of uncertainty through BBAs. However, the BBAs
in evidence theory are always given by experts depending

Two Classification Three Classification

Four Classification Five Classification

d

Fig. 2: Attribute polygon. Pentagram represents the test
example and for example, in three classification, the distances
(dotted line) are calculated between the value of one attribute
of pentagram and the vertices of one attribute triangle.

on their own experience, which cannot be obtained directly
in practical problems. Thus, this requires that, when solving
such problems, the corresponding BBAs are first constructed
and calculated before using them to make decisions. Referring
to the construction methods of BBAs in [21], [22], [23], we
propose in this paper a new construction method for the BBA
based on so-called attribute polygon in RST. Each polygon
represents an attribute and each vertice in a polygon represents
one category. That is to say, if it is a two-classification
problem, the attribute polygon is the line segment; Similarly,
if it is the three-classification problem, such polygon is the
triangle, and so on. Figure 2 illustrates the corresponding
four polygons which represent for two, three, four and five
classification problems. Besides, the coordinates of all vertices
in all attribute polygons are calculated according to [U ]d =
{{x1, x4, x7, x8, x12}, {x2, x3, x9, x10, x11}, {x5, x6}}. Then,
the Euclidean distance is used to calculate the distance be-
tween test example and each attribute polygon. Finally, we
can get the belief mass value of this example belonging to
each class with respect to one attribute by using Eq.(9) and
Eq.(10).

mx∗

ai (θs) = αeγsd
β

. (9)

mx∗

ai (Θ) = 1− αeγsd
β

. (10)

where α, γs and β are turning parameters and according to
the recommendations given in [24], these parameters are set
to α = 0.95, γs = −2 and β = 1. Besides, d is the distance
between the vertices of ai attribute polygon and each attribute
value of text example x∗. Next, we will show how to calculate



TABLE III: The lower approximation of elements in [U ]d using each attribute.

BX The B-lower approximation
a1{x1, x4, x7, x8, x12} {{x1, x4}, {x7}, {x12}}
a1{x2, x3, x9, x10, x11} {{x2}, {x3}, {x10}, {x11}}

a1{x5, x6} {{x5}, {x6}}
a2{x1, x4, x7, x8, x12} {{x1}, {x4}, {x7}, {x8}, {x12}}
a2{x2, x3, x9, x10, x11} {{x2}, {x9}, {x11}}

a2{x5, x6} ∅
a3{x1, x4, x7, x8, x12} {{x1, x7, x8}, {x4}, {x12}}
a3{x2, x3, x9, x10, x11} {{x2}, {x3}, {x9, x11}, {x10}}

a3{x5, x6} {{x5}, {x6}}
a4{x1, x4, x7, x8, x12} {{x1, x7, x8, x12}, {x4}}
a4{x2, x3, x9, x10, x11} {{x2}, {x3}, {x9, x11}, {x10}}

a4{x5, x6} {{x5}, {x6}}

TABLE IV: The positive domain of [U ]d with respect to each
attribute and weights of each attribute according to Eq.(8).

Domain ζ

POSa1(D)
{x1, x2, x3, x4, x5,
x6, x7, x10, x11, x12}

10
12

POSa2(D)
{x1, x2, x4, x7,
x8, x9, x11, x12}

8
12

POSa3(D)
{x1, x2, x3, x4, x5, x6,
x7, x8, x9, x10, x11, x12}

12
12

POSa4(D)
{x1, x2, x3, x4, x5, x6,
x7, x8, x9, x10, x11, x12}

12
12

BBAs through Example 1.
Example 1 revisited:
According to the decision attribute d in Table I, we know
that this simple example is a three-class problem because
D = {d1, d2, d3}, so we need to construct the trian-
gles. Because the decision table has four condition at-
tributes, we need to construct four triangles. In order to
show how to calculate the coordinates of vertices in each
attribute triangle, we give the calculation steps as fol-
lows: Based on the partitions of the decision attribute
d:{{x1, x4, x7, x8, x12}, {x2, x3, x9, x10, x11}, {x5, x6}}, we
can obtain the coordinates of each category with respect to
attribute a1:

• the coordinate of class one with respect to a1:

1

|X(a1)|
∑

x∈X(a1)

f(x, a1) = 5.06

where X(a1) = {x1, x4, x7, x8, x12} and | · | denotes the
cardinality;

• the coordinate of class two with respect to a1:

1

|X(a1)|
∑

x∈X(a1)

f(x, a1) = 5.6800

where X(a1) = {x2, x3, x9, x10, x11};
• the coordinate of class three with respect to a1:

1

|X(a1)|
∑

x∈X(a1)

f(x, a1) = 6.6000

where X(a1) = {x5, x6}.
where f(xi, aj) is the value of the cell of the Table I
corresponding to value xi and attribute aj .

TABLE V: All coordinates of three classes in each attribute.
Attribute Class 1 Class 2 Class 3

a1 5.0600 5.6800 6.600
a2 3.6800 2.6400 2.8500
a3 1.3400 3.9400 5.4000
a4 0.2200 1.2400 2.0000

Similarly, we can calculate all the coordinates of three
classes of four attributes, which is given in Table V as
follows. Then, we randomly select a test example, which is
denoted as x∗ = {5.1000, 3.5000, 1.4000, 0.2000}. Based on
the Euclidean distance 4, the corresponding distances between
x∗ and each attribute polygon is given in Table VI. Based on

4The Euclidean distance dij = d(xi,xj) =
√

(xi − xj)T (xi − xj) is
used here.



TABLE VI: Distances between target x∗ and all vertices of
attribute polygons.

Distance Class 1 Class 2 Class 3
a1 ↔ x∗ 0.0400 0.5800 1.5000
a2 ↔ x∗ 0.1800 0.8600 0.6500
a3 ↔ x∗ 0.0600 2.5400 4.0000
a4 ↔ x∗ 0.0200 1.0400 1.8000

TABLE VII: BBAs of x∗ with respect to each attribute.

m(·) Class 1 Class 2 Class 3 Θ
m1(·) 0.7778 0.0523 0.0005 0.1694
m2(·) 0.3862 0.0129 0.0368 0.5641
m3(·) 0.7038 0.0000 0.0000 0.2962
m4(·) 0.8596 0.0052 0.0043 0.1309

Eq.(9) and Eq.(10), we can transform these values of distances
into belief mass so as to obtain the BBAs of each attribute,
which is given in Table VII. Finally, we use PCR5 formula
Eq.(2) to combine the weight of each attribute and the BBAs of
each attribute so as to obtain the final BBA of x∗5. According
to the fusion result, we can draw a conclusion that x∗ belong
to class 1 based on maximum of belief mass principle, which
is consistent with the label of x∗ in the original dataset.

mfusion(θ1) = 0.8827;mfusion(θ2) = 0.0009;

mfusion(θ3) = 0.0007;mfusion(Θ) = 0.1157;

IV. THE SUMMARY OF RSCD
Here, we give a brief pseudo code of RSCD in Algorithm 1.

Because RSCD in this paper is a data-driven model, so, first of
all, we need to divide original dataset into training datasets and
test samples (the experiments in this paper are using ten-fold
cross validation). Afterwards, the training datasets are applied
to construct attribute polygons and calculate the weights of
attributes. Finally, we can obtain the corresponding BBAs of
each test samples by calculating the distances between test
examples and attribute polygons.

V. SIMULATIONS

We have tested the different classifiers on real datasets
given in the machine learning repository of the University of
California Irvine (UCI) [25] and listed in Table VIII.

In our tests, we do not deal with the missing data problem,
all the samples with missing values have been eliminated.
Features of the samples are normalized by their means and
standard deviations before their classification. As with the
artificial datasets, we have evaluated the nearest neighbor (NN)
classifier, the nearest class centroid (NC) classifier, two k-
NN classifiers (one is with big k (k=40) and the other with

5In the final BBA, for the sake of convenience, θ1, θ2, θ3 and Θ represent
class 1, class 2, class 3 and unknown; Andmfusion(·) = [(m1(·)⊕m2(·))⊕
m3(·)]⊕m4(·), where ⊕ denotes PCR5 rule.

TABLE VIII: UCI datasets used in the experiments.
Datasets Class Num. Feature Dimention Sample Num.
Iris 3 4 150
Wine 3 13 178
Pima 2 8 768
Bupa 2 6 345

Ionosphere 2 34 351

Algorithm 1 Solving classification problem by RSCD
Input: Dataset, α = 0.95, γs = −2 and β = 1.
Output: The final BBA of test data: mfusion(·).

1) Calculate the weights of attributes wB , by

POSB(D) =
⋃

X∈U/D

BX; wB = ζDB =
|POSB(D)|
|U |

.

2) Calculate the BBA of each attribute, by

mx∗

ai (θs) = αeγsd
β

; mx∗

ai (Θ) = 1− αeγsd
β

.

3) Combine all BBAs of attributes sequentially, by

mfusion(·) = 1;

i = 1;

while i <= m :

mfusion(·) = PCR5(mfusion(·), wi ·mi(·));
Normalization(mfusion(·)).

end

a small k (k=5)), and the ER-NN-NC classifier (both with
DS+BetP option, and with PCR5+DSmP option) [26]. The
results are listed in Table IX. As we can see in Table IX,
RSCD performs better in three datasets (Iris, Pima and Bupa)
and the classification results are close to ER-NN-NC on the
other two datasets (Wine and Ionosphere).
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Fig. 3: The principle of expanded attribute polygon.

VI. DISCUSSIONS

In this paper, the Frame of Discernment (FoD) is Θ =
{θ1, θ2, · · · , θn} where θi represents the category and here we



TABLE IX: Classification accuracies of UCI datasets.
Classifiers Iris(%) Wine(%) Pima(%) Bupa(%) Ionosphere(%).
NN 93.84 94.76 69.04 60.46 84.41

NN(Center) 92.09 95.68 72.70 56.54 79.25
ER−NN −NC(DSmT +DSmP ) 95.15 96.42 73.38 60.96 87.76

k −NN(k = 40) 89.43 95.28 71.60 61.99 67.63
k −NN(k = 5) 95.65 95.28 72.10 59.57 82.41

RSCD 98.00 94.17 74.50 62.87 84.11

just consider singletons without compound focal elements6.
Actually, some examples are difficult to be divided into a
single class, and it may be possible to belong to two categories
or several categories at the same time. On the basis of con-
structing attribute polygons in this paper, we can easily expand
the mentioned principle above to more complex circumstances
so as to ensure the particular target can belong to several
classes simultaneously. The principle is illustrated in Figure
3: In this figure, we give a brief description of the expanded
principle by using the three classification problem (triangle).
In this triangle, three vertices (light blue and solid frame)
represent single class, which is denoted by θ1, θ2 and θ3.
The difference is that, the centers of the three edges of such
triangle and the center of gravity of this triangle are defined as
compound focal elements, respectively. Specifically, the center
of θ1 and θ2 is denoted as θ1 ∩ θ2, in turn, we can define all
the centers of all edges of this triangle. Besides, the center
of gravity of this triangle is defined as θ1 ∩ θ2 ∩ θ3. Then,
we can calculate all the coordinates of these centers and also
the corresponding distances so as to obtain the BBAs of all
attributes. To illustrate the principle of the expanded attribute
polygon, we again revisit Example 1 as follows: Since the
extension method is mainly aimed at constructing BBAs, there
is no impact on the calculation of attribute weights, so the
following steps are only for BBAs calculation.
• Step 1: Calculate all relevant points in expanded polygon

which are given in Table X. In Table X, θ1, θ2 and θ3

represent Class 1, Class 2 and Class 3. θ1∩θ2 corresponds
to the hypothesis for which the target belongs to two
categories simultaneously, and so on. The coordinates of
θ1∩θ2 and θ1∩θ2∩θ3 are calculated as for example by:

a1(θ1 ∩ θ2) =
a1(θ1) + a1(θ2)

2
= 5.37.

a1(θ1 ∩ θ2 ∩ θ3) =
a1(θ1) + a1(θ2) + a1(θ3)

3
= 5.78.

• Step 2: Based on Euclidean distance, we can obtain the
corresponding distances between the target concept x∗

and all relevant points in expanded polygon, which is
given in Table XI.

• Step 3: According to Eq.(9) and Eq.(10), BBAs of x∗

with respect to each attribute are shown in Table XII.

6Here, we do not regard Θ in Eq.(10) as a compound focal element even
though Θ can be defined as Θ = θ1 ∪ θ2 ∪ · · · ∪ θn. Because Θ represents
the ignorance or unknown of category of target concept, however, compound
focal elements here mean that this target belongs to two categories or three
categories at the same time.

• Step 4: Sequentially combine all four BBAs with PCR5
rule and then, we can get the final BBA as follows.

mfusion(θ1) = 0.8763;mfusion(θ2) = 0.0001;

mfusion(θ3) = 0.0000;mfusion(θ1 ∩ θ2) = 0.0240;

mfusion(θ2 ∩ θ3) = 0.0000;mfusion(θ1 ∩ θ3) = 0.0006;

mfusion(θ1 ∩ θ2 ∩ θ3) = 0.0004;mfusion(Θ) = 0.0985.

Thus, we can also get the result that x∗ belongs to Class 1 (θ1).
The biggest difference between the extension method and the
RSCD is that the possible category of target is further divided
so as to reduce the uncertainty in classification problem, which
can be embodied in m2(·) in Table VII and Table XII. In
RSCD, the assignment of x∗ to Θ with respect to a2 is 0.5640
(see the BBA m2(·) of Table VII), which means the class of
x∗ cannot be determined if the principle of maximum belief
mass is applied. However, in expanded strategy, Θ is further
divided into θ1∩θ2, θ2∩θ3, θ1∩θ3, θ1∩θ2∩θ3, which ensure
the target can be labelled with the correct class.

VII. CONCLUSION

In this paper, a new rough set classifier based on DSmT has
been proposed to manage uncertainties using belief function
theory. Our simulation results show clearly that RSCD per-
forms well and its implementation is relatively simple since
the attribute reduction in traditional rough set is avoided. In the
implementation of RSCD, different types of combination rules
can be used which give some flexibility to the users. In this
paper, only one combination rule in DSmT (PCR5) has been
tested. Of course many more could be implemented and tested
, especially globally combing all BBAs in a single fusion step
with PCR6 rule, which is left for future investigations. Also,
The way of the attribute weights and BBAs’ calculation used in
RSCD is an open question and we plan to make investigations
on this question, and evaluate the robustness of RSCD in future
research works.
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TABLE X: All relevent points of three classes in each attribute with expanded polygon.

Attribute θ1 θ2 θ3 θ1 ∩ θ2 θ2 ∩ θ3 θ1 ∩ θ3 θ1 ∩ θ2 ∩ θ3

a1 5.0600 5.6800 6.6000 5.3700 6.1400 5.8300 5.7800
a2 3.6800 2.6400 2.8500 3.1600 2.7450 3.2650 3.0567
a3 1.3400 3.9400 5.4000 2.6400 4.6700 3.3700 3.5600
a4 0.2200 1.2400 2.0000 0.7300 1.6200 1.1100 1.1533

TABLE XI: Distances between target x∗ and all points of expanded attribute polygons.

Distance θ1 θ2 θ3 θ1 ∩ θ2 θ2 ∩ θ3 θ1 ∩ θ3 θ1 ∩ θ2 ∩ θ3

a1 ↔ x∗ 0.0400 0.5800 1.5000 0.2700 1.0400 0.7300 0.6800
a2 ↔ x∗ 0.1800 0.8600 0.6500 0.3400 0.7550 0.2350 0.4433
a3 ↔ x∗ 0.0599 2.5400 4.0000 1.2400 3.2700 1.9700 2.1600
a4 ↔ x∗ 0.0200 1.0400 1.8000 0.5300 1.4200 0.9100 0.9533

TABLE XII: BBAs of x∗ with respect to each attribute in expanded polygon.

m(·) θ1 θ2 θ3 θ1 ∩ θ2 θ2 ∩ θ3 θ1 ∩ θ3 θ1 ∩ θ2 ∩ θ3 Θ
m1(·) 0.7473 0.0293 0.0001 0.1880 0.0019 0.0119 0.0161 0.0054
m2(·) 0.3227 0.0055 0.0192 0.1235 0.0102 0.2319 0.0665 0.2205
m3(·) 0.6628 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.3366
m4(·) 0.8426 0.0019 0.0000 0.0395 0.0002 0.0040 0.0031 0.1087
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