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Abstract— Recent advances in Machine Learning (ML) have
profoundly changed many detection, classification, recognition
and inference tasks. Given the complexity of the battlespace,
ML has the potential to revolutionise how Coalition Situation
Understanding is synthesised and revised. However, many issues
must be overcome before its widespread adoption. In this paper
we consider two — interpretability and adversarial attacks. Inter-
pretability is needed because military decision-makers must be
able to justify their decisions. Adversarial attacks arise because
many ML algorithms are very sensitive to certain kinds of input
perturbations.

In this paper, we argue that these two issues are conceptually
linked, and insights in one can provide insights in the other. We
illustrate these ideas with relevant examples from the literature
and our own experiments.

Index Terms—interpretability, interpretable machine learning,
deep learning, adversarial machine learning, adversarial exam-
ples, explainable AI, AI alignment, internet of battlefield things

I. INTRODUCTION

Recent advances in machine learning (ML), particularly
deep learning (DL), have begun to have a profound impact in
many areas of decision-making [1]. Within military operations,
ML has the potential to revolutionize the way in which
Situational Awareness (SA) is developed and revised [2]: by
fitting parameter values of flexible and general models directly
to data, it is possible to create algorithms that can be far more
accurate and capable than those using features engineered
directly by humans. These advantages are extremely important
in new war fighting concepts, such as the Internet of Battlefield
Things (IoBT) in which the battlefield is populated by multiple
agents [3], [4] which collect many types of hard and soft data.

However, before ML can be applied to [oBT and CSU,
many challenges must be overcome. In this paper we consider
two: interpretability and adversarial examples. Interpretability
is required because military decision-makers must be able to
provide reasoned justifications for their decisions. Therefore,
the ML systems must a provide level of explanation to support
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this justification. Adversarial examples arise because many ML
systems can exhibit sensitivities which means that a carefully
crafted input can cause them to make mistakes [5]-[7].

Although interpretability and adversarial examples are not
often considered together, we argue that they are concep-
tually linked, and that research into one has the potential
to provide valuable insights into the other. The existence
of adversarial examples illustrates that ML models do not
learn input mappings and class boundaries that align with our
intentions as model builders, despite the model performing
well at the given task. Adversarial examples could thus be
used to better understand a model’s decision surfaces and
feature representations. Improving interpretability will allow
us to improve model alignment through a better understanding
of how best to design and train the model, as well as helping to
spot mistakes by providing explanations for model decisions.
This should allow us to build models that are more robust to
adversarial examples.

Our contributions are as follows: in Section II we introduce
the motivating example of SA in a military coalition operation.
In Sections IIT and IV, we survey the literature related to
interpretability and adversarial examples respectively, devel-
oping specific ideas with reference to the coalition context.
Following these discussions, we develop our central thesis
which links the two concepts. In Section V we propose
how adversarial examples could be employed to improve ML
interpretability, while in Section VI we consider how inter-
pretability techniques could be employed to improve defences
against adversarial examples, illustrating our ideas with some
preliminary experimental results. Conclusions are drawn in
Section VIIL.

II. COALITION SITUATIONAL UNDERSTANDING IN THE
INTERNET OF BATTLEFIELD THINGS

The work in this paper is motivated by the need to develop
Coalition Situational Understanding (CSU) in the Internet of
Battlefield Things (IoBT). The IoBT vision is illustrated in
Fig. 1, which shows three collaborating coalition partners



(blue, green and yellow). In the IoBT vision, the future
battlefield is populated by multiple smart machines which
can act as agents. Agents can be of different types. These
include sensors, munitions, weapons, vehicles, robots, and
human-wearable devices. They can sense, communicate, and
collaborate with one other and with human warfighters [3],
[4]. The data from these different agents must be combined to
create SU. This SU must be formed at two levels: within each
coalition partner, and amongst all the coalition partners. There
are numerous challenges in achieving this. These include
source bias, heterogeneous data, soft data, different policies
for data sharing and access, and variable mutual trust impose
information flow constraints and affect data quality, on which
the ML models and SU are based [8]. Placing these challenges
within a coalition setting makes these issues even harder, when
different partners might not even agree on the ontological
description of the battlefield.
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Fig. 1. Conceptual illustration of the Internet of Battlefield Things. The
g p g

environment is populated by a large number of disparate agents. These in-
clude sensing and inference systems which continually distribute information
between one another and human operators. Figure adapted from [8].

Military decision-makers must be able to provide reasoned
justifications for their decisions; therefore, ML systems must
provide a suitable level of explanation for their outputs to
facilitate reasoning. In other words, the ML systems must be
in some sense interpretable. In a military coalition, model in-
terpretability between coalition partners is especially important
for engendering trust; indeed, a specific level of interpretability
may be required by the coalition’s information-sharing policies
(2].

The distributed setting of the IoBT also provides adver-
saries with opportunities to interrupt the operation of the
network [3]. For example, in Fig. 1 the adversaries (purple
stars) could attack a network by injecting fake sensor data,
corrupt information flowing between agents, or even perform
offline attacks by corrupting training data and classifiers. What
makes this risk particularly important is that malicious actors
can craft inputs that are explicitly designed to cause a ML

model to make errors — so-called adversarial examples [5]—
[7]. Adversarial examples are often imperceptible to human
operators, but can cause an ML model to reach an incorrect
decision, often with an arbitrarily high degree of confidence.
These mistakes can affect all three levels in Endsley’s SA
model [9]. At Level 1 (perception), ML models might be used
to recognize patterns or detect anomalies; mistakes at this level
will impact Level 2 SA, comprehension — also referred to as
Situational Understanding (SU) — as inference will be made
using misleading inputs. ML systems may also be employed
at this level, and could make mistakes even if the inputs from
Level 1 contain none. The same reasoning applies to Level 3
SA (projection). Adversarial examples could thus prove hugely
detrimental to SA.

In the rest of this paper, we explore the concept of in-
terpretability and the use of adversarial examples, bearing in
mind the IoBT conceptual model and how different methods
and techniques will help towards our goal of Al alignment in
coalition operations.

ITI. INTERPRETABLE MACHINE LEARNING
A. What is interpretability?

The past few years have seen a boom in ML interpretabil-
ity research [10]. Despite this increased research activity,
interpretability still does not have an agreed-upon (formal
or informal) definition. Researchers tend to use their own
intuitions to decide what interpretability means, or what an
explanation should look like [11]. Papers that ostensibly ad-
dress interpretability therefore tackle a diverse set of different
problems.

Lipton proposed a taxonomy for interpretability to help
address this issue [12]. This provides a vocabulary to assist in
the comparison and evaluation of interpretable ML research.
He proposed two high-level categories: techniques to improve
model transparency (which “connotes some sense of under-
standing the mechanism by which the model works” [12]),
and methods for providing post-hoc explanations for model
decisions. Transparency is further divided into simulatability
(whether a human can feasibly reproduce the model output
given its input and knowledge of the model internals), decom-
posability (whether the model components and parameters are
intuitively explicable), and algorithmic transparency (whether
we understand why and how the learning algorithm works).
Post-hoc interpretability is divided into fext explanation (the
model provides a textual description of why it made a par-
ticular decision), visualization (displaying what the model has
learned visually), localization (explaining what a decision de-
pends on in the vicinity of a particular input), and explanation
by example (showing examples in the training data the model
considers closest to the current input). Lipton’s taxonomy is
both intuitive and useful, and we have adopted it to help
structure our prior work in this area [10], [13].

Doshi-Velez and Kim provided further insights into the no-
tion of interpretability, arguing that “the need for interpretabil-
ity stems from an incompleteness in the problem formalization,
creating a fundamental barrier to optimization and evaluation”



[14]. They provide a complementary taxonomy to that of [12],
focusing on how interpretability can be evaluated. We discuss
the evaluation of model interpretability in the next section.

B. Metrics for interpretability

The performance of an ML model on some task is defined
using a set of standard metrics. For example, classifiers can
be judged on their ability to generalize by measuring their
accuracy when classifying held-out test data. We can then
estimate that the classifier will perform with that level of
accuracy when deployed (assuming no distributional shift).
No metrics are currently agreed upon for assessing a model’s
interpretability. This is unsurprising given the lack of a com-
mon definition of interpretability, but developing metrics and
standardized tests can stimulate research progress by providing
quantitative comparison points for different approaches, in a
similar way to how large standardized datasets such as MNIST
[15], CIFARI0/CIFAR100 [16], and ImageNet [17] spurred
progress in computer vision research.

Doshi-Velez and Kim’s “taxonomy of interpretability evalu-
ation” [14] may help towards the definition of interpretability
metrics. They take a human-centric approach to evaluation,
defining tasks that measure human performance or judgments,
either directly or indirectly:

o Application-grounded evaluation: evaluate model inter-
pretability by assessing whether, and by how much, it
improves human performance on the application task.
This is the most difficult kind of assessment to conduct.

o Human-grounded evaluation: evaluate model inter-
pretability using a simplified task, such as a binary
forced-choice experiment (where users are asked to
choose the better of two model explanations). This kind
of assessment is easier to set-up and may be performed
by non-experts, widening the pool of potential partici-
pants. However, it provides a context-free measure of
interpretability, which may not transfer to a particular
application.

o Functionally-grounded evaluation: evaluate model inter-
pretability against a formal definition that acts as a proxy
for human-based assessment. This kind of assessment
is the easiest and cheapest to conduct, but relies on
the availability of a useful, appropriate definition to test
against.

The approaches suggested in [14] for performing relevant
functionally-grounded evaluation rely on using formal inter-
pretability definitions inferred from the results of previous
human-subject experiments, so some element of human judg-
ment is still built in to the evaluation. This is consistent with
the authors’ definition of interpretability: “the ability to explain
or to present in understandable terms to a human.” Dhurand-
har et al. generalize this view by proposing a definition of
interpretability that does not depend on human judgment, and
so lends itself to formal evaluation via metrics [18]. They
define interpretability relative to a target model (TM). This
model could be a human, but crucially does not have to be.
They call this §-interpretability: a model is J-interpretable

if it “can somehow convey information to the TM that will
lead to improving its performance ... for the task at hand”
[18]. More formally, if, after receiving information I from
procedure P;, the expected error of the TM is less than or
equal to 6 times the TM’s expected error prior to receiving
I, then P; is J-interpretable. § thus becomes a metric of
interpretability. A § of 1 implies that the procedure P; adds
nothing to the interpretability of the model it is attempting to
explain to the TM, and interpretability improves as § — 0.
Using the taxonomy in [14], this is a kind of application-
grounded evaluation if the TM is a human, and if we can
formally define an error function on the human’s task.

Defining interpretability in relation to non-humans could be
extremely useful in any multi-agent setting, but particularly in
the context of CSU in the IoBT. In this case, communication
between agents from different coalition partners occurs under
information flow constraints. These include structural aspects,
such as data storage capacity and network coverage, band-
width, and stability, as well as policy constraints that govern
what data is allowed to be exchanged. An agent may pass
information to another agent via a J-interpretable process that
conforms to coalition policies, and/or reduces data transfer re-
quirements compared with directly transmitting training data.
The effectiveness of knowledge-sharing between differently
structured models — even models that perform different tasks
— can be quantified and compared using J-interpretability,
stimulating progress in this challenging research area. J-
interpretability has the potential to provide a new approach
for sensor and resource management as well.

C. Interpretability and uncertainty

Intuitively, a model’s uncertainty in its output seems an
important quantity, both for the model users (to make decisions
based on its output), and for model trainers (to understand how
well the model has characterized the problem space). In the
former case, an analyst might make quite different actions
depending on whether the model was certain or uncertain
in its output (we could quantify whether sharing uncertainty
information leads to better actions using the framework of
d-interpretability described above). In the latter case, high
uncertainty in the output for a particular input region indicates
to the model trainer that the system should be trained with
more data points close to this input region. Kapoor et al. use
this approach to improve classifier performance when only a
small amount of training data is available [19].

In classification tasks, most models provide a numerical out-
put between 0 and 1 for each known class, and a classification
is made by selecting the class with the highest output. These
values can be interpreted as the model’s level of confidence
that the input belongs to each class. However, for this interpre-
tation to hold true, the model must be appropriately calibrated:
the confidence scores should reflect the true likelihoods that
the model is correct. For example, if a model predicted class
A for 100 examples with confidence 0.8, we expect 80 of
those classifications to be correct [20]. While some classes of
model generally produce well-calibrated output probabilities



[21], recent work has shown that modern NN architectures
with many/wide layers are generally poorly calibrated, tending
towards over-confidence [20]. This has serious implications
for the interpretation of confidence scores from such models:
they do not mean what we intuitively think they mean. Simple
methods are shown to improve DNN calibration [20], and
should be implemented and the model calibration tested before
presenting confidence scores to users.

Confidence scores provide the probability of class member-
ship, given an input and the learned model. This still leaves
us to account for uncertainty in the input data and uncertainty
in the model parameters, both of which might be useful for
improving model interpretability. If we know a model has
only had access to highly uncertain data, or has only been
trained on a small amount of data so is unsure of its parameter
estimates, our interpretation of the model’s output will likely
be different than if we knew the model had been trained on
large quantities of high quality data. Many popular ML models
do not provide this information, including modern DNNs.
Probabilistic methods such as Gaussian processes (GPs) are
an obvious exception [22]. A GP learns a distribution over
functions conditioned on the training data, and estimates the
distribution mean and variance at a given test point. The
variance naturally decreases around the training data, leaving
high variance (i.e. high uncertainty) in regions of input space
far away from the training data.

We illustrate this graphically in Fig. 2. We generated non-
linearly separable data for a 2-class classification problem and
trained three models using 200 training points: a shallow NN
with 1 hidden layer made up of 2 tanh units, a DNN with
3 hidden layers made up of 32, 16 and 8 rectified linear
units respectively, and a Gaussian process classifier with radial
basis function kernel. Each model is approximately as accurate
as the other on held-out test data (accuracy 0.9), but they
exhibit different confidence scores over the input space (the
black-white gradient). The shallow NN has a region of low
confidence (shaded grey) that appears unrelated to the actual
data distribution — rather it is an artifact of the network archi-
tecture, and disappears as we increase the number of hidden
units. The DNN outputs high confidence scores across input
space, except very close to the decision boundary, while the
GP’s confidence varies from high to low over the input space
depending on the distance from the training data. Because
the GP also estimates variance, we can specify a confidence
interval on its output and define decision boundaries on each
side of this interval (see dashed lines in Fig. 2). Inputs that
are assigned different labels by these two decision boundaries
can then be rejected as belonging to an unknown class, or
highlighted for further inspection by a human. We will return
to this idea in section VI.

Even if a model provides confidence scores and uncertainty
estimates, it is not immediately clear how best to present
those values to humans as we are generally poor at reasoning
with probabilities and randomness. Examples of the negative
impacts of this trait are provided in [23], which describes
how even highly trained medical professionals are liable to

reason irrationally about probabilistic intervention outcomes.
Suitable presentation of uncertainty information that genuinely
improves model interpretability is therefore an important line
of research.

IV. ADVERSARIAL EXAMPLES
A. What are adversarial examples?

Adversarial ML is the study of attacks on, and defenses for,
ML systems. Such attacks are possible whenever an opponent
has access to a model’s input data. The field originally arose in
the area of spam email filtering [24]-[26]: as spam classifiers
became more successful at identifying junk emails, spammers
started to change their email contents to include words or
images that made them more likely to be classified as non-
spam. More recently, concern has arisen regarding the potential
to fool even highly accurate non-linear classifiers like DNNs.
This concern follows from results on image classifiers showing
that tiny alterations to the input images — often imperceptible
to humans — can lead to incorrect classifications [5] [27] (such
images are now often called “adversarial examples”). These
results have serious implications for safety-critical systems that
rely on ML.

Several different kinds of attack are possible on ML models,
which Huang et al. [7] classify along three axes:

o Influence: the attack could manipulate the training data (a
causative attack), or it could probe a trained model (an
exploratory attack)

o Security violation: the attack could cause the system to
wrongly classify an input (an integrity violation), could
render the system useless or unavailable (an availability
violation), or could obtain private information from the
model (a privacy violation)

o Specificity: the attack could could be targeted towards a
specific subset of inputs, or indiscriminate — designed to
degrade performance on a wide range of inputs

This taxonomy provides a useful vocabulary for describing
and grouping different adversarial ML studies. For instance,
a denial-of-service attack on the infrastructure running a
classifier is an exploratory attack causing an indiscriminate
availability violation, while adversarial examples for image
classifiers (as described above) can be causative (see e.g. [28]
but are more usually exploratory attacks that cause integrity
violations and can be targeted or indiscriminate. The recent
explosion in research on adversarial examples in particular
has led Yuan et al. to augment Huang et al.’s terminology,
developing an additional taxonomy just for this subset of
attacks [6].

Classifiers are not the only models susceptible to adver-
sarial examples. Kos et al. demonstrate attacks on generative
models that use perturbed inputs to manipulate the learned
latent space, causing the model to produce poor quality input
reconstructions [29]. Lin et al. demonstrate two attacks against
reinforcement learning: strategically timed attacks that reduce
an agent’s reward using a low number of perturbations, and
enchanting attacks that lure an agent towards a specified target



Fig. 2. Confidence and uncertainty information provided by different classifiers. Left: training data for a binary classification problem. Dark circles are in class
1, light triangles in class 2. Middle-left: shallow, narrow NN output after training, with decision boundary indicated as solid cyan line. Black/white gradient
indicates output confidence score over input space (solid black: 100% likely to be class 1, solid white: 100% likely to be class 2). Middle-right: deep, wide
NN output after training. Right: Gaussian process output after training. Dashed lines show decision boundaries estimated using the 95% confidence range for
the output mean, calculated using the output variance of the Gaussian process over the input space.

state [30]. While attacks against other kinds of models are
important to consider, we will focus the remainder of our
discussion on adversarial examples for classifiers, as these
have been the most widely studied.

B. Adversarial examples in the real world

Despite a plethora of proposed attacks using adversarial
examples, it remains unclear how practical many of them
would be to implement against real-world ML systems. Early
work on email spam detection was motivated by actual
spam attacks; however, adversarial examples against image
classifiers were discovered while studying the sensitivity of
DNNGs to input perturbations, not their vulnerability to attacks
[5], [26], so the practicality of the attacks is often not a
consideration. Additionally, while spammers work with purely
digital information that can be arbitrarily manipulated before
being sent, many classifiers identify items that exist in the
physical world via a digital representation of that item, such
as a camera image or audio recording. Often the only way
to implement an attack against a model will be to alter the
item in the physical world, as the adversary will not have
access to the model’s digital input directly. Understanding the
susceptibility of different ML systems to physical adversarial
examples is thus particularly pertinent for the IoBT, where
many ML models receive data from a wide variety of physical
Sensors.

Recent work has shown the success of adversarial exam-
ples in real-world computer vision systems. Evtimov et al.
developed a method of fooling traffic sign classifiers, as might
be implemented in self-driving vehicles, using either life-
size printouts of adversarially perturbed signs, or by applying
graffiti-like modifications to existing signs [31]. Their attacks
fooled traffic sign classifiers even when using frames extracted
from videos in drive-by tests at different speeds. A related at-
tack against traffic sign classifiers was developed by Sitawarin
et al., though their approach perturbs circular advertisements
and logos to be wrongly identified as traffic signs [32].

Brown et al. take another approach, generating a circular
2D image (an ‘“adversarial patch”) that can be printed and

attached to physical objects to trick classifiers [33]. The
generated image is highly salient for a particular class, and
is likely to fool a classifier even if it only takes up a small
percentage of the total image, and even when disguised to
look innocuous to humans. This approach does not attempt
to minimize the image perturbation, but only considers the
possibility of implementing the attack in the physical world.
The patch is also tested for transferability, and shown to work
reasonably effectively on classifiers it was not optimized to
deceive. Athalye et al. demonstrate another impressive attack
using 3D-printed objects with an adversarial texture applied,
successfully fooling a classifier with pictures of the objects
taken from a wide variety of angles, poses, and different
lighting conditions [34].

Despite these worrying possibilities, there is some evidence
that real-world attacks might be more difficult to implement
against object detection models, as opposed to classifiers.
Lu et al. showed that the technique described in [31] did
not trick standard object detectors despite fooling classifiers,
demonstrating that testing attacks on classifiers as proxies for
object detection models is not valid in general [35]. Physi-
cally implementing robust attacks against object detectors is
theoretically more difficult, as they need to be effective in the
face of a broad range of parametric distortions [35]. We also
note that, during (limited and preliminary) testing of publicly
available image classification API demos (Google Vision [36],
IBM Watson Visual Recognition [37], Microsoft Computer
Vision [38]), we found it difficult to fool the default demo
classifiers using the adversarial patch from [33] unless we
covered a significant portion of the image, suggesting that the
transferability of the attack may be limited. Further research
is needed into the real-world feasibility of attacks, especially
in domains other than vision such as audio/speech recognition
[39].

C. Adversarial examples in the coalition context

The military coalition setting described above provides new
avenues for attacks on ML systems (denoted by the star-
headed, purple arrows in Fig. 1). Agents in the IoBT collect



data through a variety of sensors using different modalities
(e.g. visible light, infrared, sound, vibration). Agents may
share their data or model parameters to improve their collective
performance, which opens them up to causative (aka poison-
ing) attacks if the shared information is tainted by adversarial
perturbations. Tainted information may come from a malicious
agent masquerading as a friendly one or from a friendly agent
that has been compromised in some way (e.g. by malware).

New attacks or defenses may be possible by using multi-
modal data to build models. Incorrect classification on per-
turbed inputs in one modality may be mitigated against by
considering multiple modalities simultaneously. However, as
is known from prior work on data/decision fusion, it is by no
means assured that the use of multimodal data will always
result in improved classification, and indeed attacks may be
possible that rely on a model’s use of multi-modal data
specifically.

It is also conceivable that new attacks might exist in this
setting — for example, using a causative attack on one agent’s
model such that their performance is not affected, but when
they exchange knowledge with a second agent, that second
agent’s performance is degraded. One compromised agent
could thus be used to poison many further agents, without
itself noticing that it was compromised.

In addition to new attacks, new defenses against adversarial
examples may arise that take advantage of the coalition’s
distributed architecture. For example, ensemble effects could
be exploited to add robustness against adversaries. Distributed
adversarial learning is, to our knowledge, only just beginning
to be explored [40], [41], [42], so these and other related
questions remain open.

V. USING ADVERSARIAL EXAMPLES TO IMPROVE
INTERPRETABILITY

The existence of adversarial examples is understandably
concerning, particularly in cases where ML is heavily relied
upon. However, when these model failures do occur, it may
be possible to use what we learn from them to improve
model interpretability. Examining a system’s failures can often
be more enlightening than studying its successes; looking at
examples of failure could lead to an improved understanding
of how a model works and why it fails, or at the very least
give a better idea of its weaknesses and improve the ability
to predict when it will fail. Indeed, the original study on
adversarial examples for DNNs generated such examples to
improve understanding of how DNNs responded to small input
perturbations [5].

Exploring examples of when humans make mistakes as a
way of better understanding how the brain works is a common
approach in cognitive neuroscience, and various methods have
been developed. Ritter et al. evaluated whether some of these
methods can be applied to ML research [43]. In particular,
they chose an analysis which is used to explain how children
learn word labels for objects, and they applied this analysis
to DNNs. They found that DNNs demonstrated a bias to
categorizing objects by shape rather than by colour. This same

bias has also been observed in humans. This work “leads the
way to the study of artificial cognitive psycology” [43], and
provides a case for using the study of “adversarial” examples
in human behaviour (for example, visual illusions) to broaden
how we study adversarial examples and interpretability in
DNNs. However, this approach is limited to explaining ML
models designed to replicate human capabilities.

Using adversarial examples to improve understanding of
DNNs was studied more directly in [44], which uses gen-
erated adversarial images to explore internal representations
of DNNs. In one experiment, for example, they show that
high-level neurons that ostensibly represent high level concepts
present in the training data also respond strongly to an array
of different image contents in adversarially perturbed images.
Additionally, they find that the high-level feature representa-
tions of adversarial images are detectably different from those
of unperturbed images. Their findings from this method contra-
dict previous conclusions about these internal representations,
which demonstrates that using adversarial examples in the
context of interpretability can lead to new understanding. They
use this knowledge to develop an adversarial training method
that improves the consistency of representations between real
and adversarial images. They argue that their approach im-
proves the interpretability of the trained DNN, as the network’s
representations are more closely aligned to high-level concepts
due to the adversarial training.

Ross and Doshi-Velez developed a method to defend against
adversarial examples that also has the effect of improving
the DNN'’s interpretability [45]. They train DNNs with input
gradient regularization, which reduces the amount that small
changes in input can alter the network’s output. Their method
is effective against a wide variety of different attacks, but also
has a side-effect: attacks designed specifically to fool DNNs
trained with input gradient regularization are more likely to
be rated as reasonable by humans than other attacks. In other
words, such networks are still vulnerable, but the adversarial
examples must appear more similar to the adversarial target
class for them to be fooled.

VI. IMPROVING INTERPRETABILITY TO DEFEND AGAINST
ADVERSARIAL EXAMPLES

Adversarial examples are typically generated by adding
bounded noise over the entire input such that the perturbation
is imperceptible to the human observer. The effect of the
added noise is magnified as the input is projected onto the
latent spaces, corresponding to the hidden layers in the model,
leading to incorrect classification at the output layer. This
motivates our hypothesis that interpretability, i.e., semantic
visibility into the representations of the hidden layer, can
inform the presence of adversarial perturbations in the input
data.

To validate the hypothesis, we performed some simple
experiments combining adversarial examples and state-of-the-
art interpretability techniques. Saliency mapping methods are
used to explain image classifier outputs in terms of their input
pixels [46]-[48], but have not been designed with adversarial



examples in mind. We tested the robustness and sensitivity
of these techniques (in particular deep Taylor decomposition
[49]) to adversarial examples. We trained a convolutional
NN for classification of the MNIST handwritten digit dataset
[15]. We then perturbed the images by adding bounded noise
generated by Carlini and Wagner’s method [50] with different
perturbation measurements (o —norm, lo —norm, loo —norm)
to create adversarial examples. These examples were then used
to generate heat maps using the deep Taylor decomposition
technique [49]. Some examples from these initial experiments
are shown in Fig. 3.
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Fig. 3. Three types of adversarial perturbation on an MNIST digit. The origi-
nal digit is a 7 (top-right). Top row: Carlini g, middle row: Carlini /2, bottom
row: Carlini /o, with corresponding deep Taylor decomposition heatmaps as
explanations. Left-most and center-left columns show digits perturbed to be
classified as a 6, and corresponding deep Taylor decomposition explanations,
respectively. Center-right and right-most columns show digits perturbed to be
classified as an 8, and corresponding deep Taylor decomposition explanations,
respectively.

We observed that, besides the heat maps being quite dif-
fused, there are no clear, specific anomalies that can be used
to detect an attack. In other words, while the saliency map does
change for each kind of attack, it does not appear to provide
reliable visible markers differentiating between normal and
adversarial examples. This could be because current saliency
map generation techniques are not sensitive enough to detect
the presence of the diffused noise in the adversarial examples,
especially when focused solely at the input layer. In future,
we would like to design interpretability techniques that could
intercept the activation of neurons at the hidden layers of the
network to detect representational anomalies indicative of ad-
versarial examples. Visualizing the features that are being used
by the NN for the decision, could identify irregularities and
hence identify an attack. Furthermore, current interpretability
techniques are not resilient to adversarial examples and need

to be hardened to handle such attacks [51].

Finally, uncertainty information may be used to help defend
against attacks. If an adversarially perturbed image is far away
from the training data in feature space, as seems likely given
the findings in [44], then the classifier’s output uncertainty
will be relatively high. Referring back to figure 2, an attack
would likely push a data point across the decision boundary,
but probably not past the 95% confidence decision boundary of
the other class. Data points in this region would be classified
differently by the decision boundaries on either side of the
95% confidence interval over the GP’s output mean, and
this discrepancy could be used as a rejection criterion, or to
flag the data to a human for further inspection. These data
points may not be adversarial — they could be outliers, or
be from a class that the classifier was not trained on, so
this approach should improve the general robustness of the
classifier. This style of approach was explored for GPs in [52],
Bayesian DNNs in [53] and hybrid DNN-GPs (a DNN with
a GP instead of the standard softmax as the output layer) in
[54]. In all three articles, the authors showed that the model
output uncertainty for adversarial examples was higher than for
unperturbed inputs. This indicates that models able to represent
their own uncertainty are promising candidates for defending
against adversarial examples.

VII. CONCLUSION

In this paper, we have described the problems of ML model
interpretability and susceptibility to adversarial examples, why
these problems are particularly pertinent for future military
coalition operations, and why exploring the links between the
two areas might prove fruitful for solving the problems posed
in each. Some pioneering studies have begun to investigate
these links, but we anticipate many further insights remain to
be gleaned from the joint exploration of these problems.
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