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Abstract—Passive target estimation is a widely investigated
problem of practical interest. We are concerned specifically with
an autonomous flight system developed onboard the ONERA
ReSSAC unmanned helicopter. This helicopter is equipped with
a (visible or infrared) camera and so is able to measure azimuths
and elevation angles of a target. The latter is supposed to follow
a constant velocity motion. It is well known that observer must
maneuver in order to insure the observability of the target state.
We are interested in tracking partly the target state when both
the observer and the target have a constant velocity model ina
three-dimensional space. We describe the set of all the trajectories
compatible with the angle measurements and we propose a quick
method to estimate these trajectories.

I. I NTRODUCTION

Passive target estimation is a widely investigated problem
of practical interest. We are concerned specifically with an
autonomous flight system developed onboard the ONERA
ReSSAC unmanned helicopter [1]. This helicopter is equipped
with a (visible or infrared) camera and so is able to perform
lines of sight of the targets. More generally, we consider a
single moving observer which measures the azimuths and the
elevation angles of a moving target in a three-dimensional
space. If all measurements are derived from a single observer
and consist of angles only, it is well known that target state
observability is warranted only under specific conditions on the
observer trajectory. The observer must maneuver in order to
insure the observability of the target state. Optimal maneuvers
have been studied for the purpose of improving the accuracy
of the target estimation for bearing-only tracking [2], [3],
[4]. The aim of the paper is to describe and to estimate
the set of all the trajectories (called ambiguous) compatible
with the angle measurements in case were both the observer
and the target follow a constant velocity motion. This kind
of problem has been studied in bearings only tracking in a
two-dimensional space like in [5]. In the three-dimensional
context, the ambiguous trajectories can be determined by the
observer as they depend of three azimuths and two elevation
angles. We show how these angles can be quickly estimated. A
possible application is to discriminate among the ambiguous
trajectories in exploiting an a priori knowledge about the target
state.
The paper is organized as follows. The general framework
is presented in section II. Section III recall the conditions
ensuring the observability of the target. In this section we

calculate the set of all the target trajectories compatiblewith
the angle measurements in the case where both the target and
the observer follow a uniform motion. We present in section
IV a way to estimate these ambiguous trajectories thanks to a
linear estimator. Section V shows some simulation results and
finally, some conclusions are drawn in section VI.

II. PROBLEM STATEMENT

It is assumed that the target follows a constant velocity
model in a three-dimensional space. In a discrete time model,
the target state is defined by

XT (tk) = [xT (tk), ẋT , yT (tk), ẏT , zT (tk), żT ]
T (1)

The target evolves as follows

XT (tk) = FXT (tk−1) + η(tk) (2)

whereη(tk) is a white Gaussian noise process and where the
state transition matrix is defined by

F =

















1 ∆T 0 0 0 0
0 1 0 0 0 0
0 0 1 ∆T 0 0
0 0 0 1 0 0
0 0 0 0 1 ∆T
0 0 0 0 0 1

















∆T , tk − tk−1 being the sampling period. The noise-free
azimuths and elevation angles satisfy the nonlinear equation
(Fig. 1)























θ(t) = arctan

[

ry(t)

rx(t)

]

φ(t) = arctan





rz(t)
√

r2x(t) + r2y(t)





(3)

where

r(t) = (rx(t), ry(t), rz(t))
T =

(xT (t)− xo(t), yT (t)− yo(t), zT (t)− zo(t))
T

(4)

is the vector of the relative positions between the target and
the observer. First we recall, in a simple way, the necessary
conditions under which the target is observable.
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Fig. 1. Observer geometry. For better legibility the targetis represented on
the ground

III. A MBIGUOUS TRAJECTORIES

A. Observability conditions

The observability conditions of three-dimensional estima-
tions with azimuths and elevation angles have been widely
studied [6], [7]. The authors analyze the observability (here
in a nonlinear context) in a linear framework, thus allowing
direct utilization of a simplified observability criterion. A
direct application of the following proposition [7] statesthe
necessary conditions under which the target state is observable.

Proposition 1. Letr(t) = (rx(t), ry(t), rz(t))
T be the relative

position vector (4). If the target state is observable then






















rx(t) 6= α(t)P1(t)

ry(t) 6= α(t)P2(t)

rz(t) 6= α(t)P3(t) .

(5)

whereP1(t), P2(t), P3(t) are any polynomials of degree the
order of the target model dynamics and whereα(t) is an
arbitrary scalar function

The order of the dynamics should be understood as the Mth-
order of the series expansion in time of the dynamics. For
exampleM = 0 corresponds to a stationary target,M = 1
corresponds to a trajectory of constant target. In others words,
the proposition states that the order of the observer dynamics
must be different of the order of the target dynamics. On the
contrary, if the target and observer have a constant velocity
model,

r(t) = r(t0) + (t− t0) ṙ(t0) (6)

rx(t), ry(t), rz(t) are polynomials of degree one which is also
the degree of the target dynamics. So the target state is not ob-
servable in this case. Any maneuver of the observer (M ≥ 2)
enables generally observability. However, the conditionsof

the Proposition 1 are necessary but not sufficient. Indeed, for
example, if the target is stationary and the observer follows
a constant velocity model along the line of sight, the target
is unobservable while the order of the observer dynamics is
greater than the one of the target.
We are now interested in showing all the trajectories compat-
ible with the angle measurements when both the observer and
the target have a constant velocity model.

B. Ambiguous trajectories

If both the observer and the target have a constant velocity
model (2), there exists different constant velocity trajectories
of the target which match with the angle measurements. The
next proposition establishes the set of all of such trajectories
called ambiguous trajectories.

Let Xo(t0) be the initial 6-dimensional state vector of the
observer. Lett1, t2, t3 be three distinct times andt′1, t

′
2 be two

distinct times. Let us introduce some notations






















































































t = [t1 − t0, t2 − t0, t3 − t0]
T

B =

[

1 t′1 − t0
1 t′2 − t0

]

B1 =

[

1 t′1 − t0 0 0
0 0 1 t′1 − t0

]

B2 =

[

1 t′2 − t0 0 0
0 0 1 t′2 − t0

]

Θ = [θ(t1), θ(t2), θ(t3)]
T
; Φ = [φ(t′1), φ(t

′
2)]

T

(7)

The vector (Θ,Φ) consists in 3 azimuths and 2 elevation
angles evaluated exactly at the times(t1, t2, t3) and (t′1, t

′
2)

respectively.

Proposition 2. Assume that both the observer and the target
follow a constant velocity motion. The ambiguous target tra-
jectories which are compatible with the azimuths and elevation
angles(θ(t), φ(t)) (3) are determined by the following initial
target stateXT (t0, µ) (1)

XT (t0, µ) = Xo(t0) + µ













A−1

Θ
t

1

B−1 sΘ,Φ













(8)

whereµ is an arbitrary non-zero scalar and where

AΘ =





tan θ(t1) (t1 − t0) tan θ(t1) −1
tan θ(t2) (t2 − t0) tan θ(t2) −1
tan θ(t3) (t3 − t0) tan θ(t3) −1



 (9)

sΘ,Φ =





‖B1 uΘ‖ tanφ(t
′
1)

‖B2 uΘ‖ tanφ(t
′
2)



 (10)



with uΘ =

(

A−1

Θ
t

1

)

. The ambiguous trajectories defined by

(8) are determined by the 5 angles(Θ,Φ) (7) and are set by
a non-zero scalarµ.

PROOF OF PROPOSITION2.

An ambiguous trajectory in the three-dimensional space
remains ambiguous in thexy plane. Therefore we analyze
first the xy ambiguous trajectories only taking into account
the azimuths. Fori = 1, 2, 3 we have

tan θ(ti) =
ry(t0) + (ti − t0)rẏ(t0)

rx(t0) + (ti − t0)rẋ(t0)
(11)

Let Y = [rx(t0), rẋ(t0), ry(t0)]
T . Let us define byµ the

parameter:µ = rẏ(t0). The whole 4-dimensional state vector
[Y, µ]T in thexy plane is characterized by the three azimuths.
Indeed, equation (11) gives

AΘY = µ













t1 − t0

t2 − t0

t3 − t0













= µ t (12)

whereAΘ is defined in (9) andt in (7). Therefore, the set of
the ambiguous trajectories in thexy plane is characterized by
the initial relative following state vector

[rx(t0), rẋ(t0), ry(t0), rẏ(t0)]
T
=

[

µA−1

Θ
t, µ

]T
(13)

These 4-dimensional trajectories are the projections of the
ambiguous trajectories in the 6-dimensional space. Thus, it
remains now to determine the initial relative heightrz(t0) and
the initial relative vertical velocityrż(t0) which are compatible
with the exact elevation anglesφ(t). It is sufficient to consider
the two elevation anglesφ(t′1) and φ(t′2) (7). We have for
i = 1, 2

tanφ(t′i) =
rz(t0) + (t′i − t0)rż(t0)

[rx(t′i)
2 + ry(t′i)

2]
1/2

(14)

Using the definition ofB (7), the equation (14) yields

[rz(t0), rż(t0)]
T
= B−1







(

rx(t
′
1)

2 + ry(t
′
1)

2
)1/2

tanφ(t′1)

(

rx(t
′
2)

2 + ry(t
′
2)

2
)1/2

tanφ(t′2)







The relative positionsrx(t′1), ry(t
′
1), rx(t

′
2) andry(t′2) can be

deduced from the initial relative state vector (13) in thexy
plane and from (6). After some calculations, we get

[rz(t0), rż(t0)]
T
= µB−1 sΘ,Φ (15)

wheresΘ,Φ is defined in (10). Finally, by combining equations
(13) and (15), we get the following family of 6-dimensional
initial state vectors of the targetXT (t0, µ)

XT (t0, µ) = Xo(t0) + µ













A−1

Θ
t

1

B−1 sΘ,Φ













For anyµ 6= 0, XT (t0, µ) generates an ambiguous trajectory
which produces the set of azimuths and elevation angles
(θ(t), φ(t)) characterized by(Θ,Φ) (7). Note that in the case
where µ = 0, the ambiguous trajectory match that of the
observer trajectory:XT (t0, 0) = Xo(t0). The function tangent
involved in (9) and (10) being of periodπ, it is sufficient to
consider positive values ofµ. Negative values produce point
symmetrical trajectories.
It remains now to estimate the vector(Θ,Φ) when the angle
measurements are noisy. This vector is of course always
observable.

IV. ESTIMATION OF THE AMBIGUOUS TRAJECTORIES

We present a quick method to estimate the ambiguous
trajectories using only the angle measurements. The observer
and the target motions still have a constant velocity model.
For that purpose, we have to estimate the vector(Θ,Φ) (7)
which determine all the ambiguous trajectories by varying
the parameterµ (see proposition 2). A useful method, based
on the Gauss quadrature, allows us to estimate quickly and
accurately these angles providing that the variation amplitude
of the angles is not too large. The 5 angles(Θ,Φ) are evaluated
by means of a linear combination of the measurements.

A. Description of the method

Let t1 < · · · < tn be n positive reals. Let us denote byl2

the set of real valued functionsf defined onR such that

tn
∑

t=t1

f2(t) < ∞ .

l2 is endowed with the inner product〈·, ·〉 defined by

〈f, g〉 =

tn
∑

t=t1

f(t) g(t) , (16)

for any f, g ∈ l2. For any1 ≤ m ≤ n, let us denote byΨm,
the Legendre Polynomial of degreem such that

〈Ψm, tj〉 = 0 , (17)

for any integer0 ≤ j ≤ m − 1. Ψm can be computed
recursively using the Graham-Schmidt formula [8]. Let us
denote byT1 ≤ · · · ≤ Tm the roots ofΨm. One can prove
that for anyi 6= j with 1 ≤ i, j ≤ m, Ti is a real such that

t1 ≤ Ti ≤ tn and Ti 6= Tj .

If m = n, thenTi = ti, for any1 ≤ i ≤ m = n.
The roots ofΨm can be computed approximately by the
Laguerre algorithm [8].



For any 1 ≤ i ≤ m, let us introduceΦi the Lagrange
polynomial of degree m-1 such that

Φi(t) =







1 if t = Ti

0 if t = Tj 6= Ti .
(18)

We consider now the following measurement model,

z(t) = β(t) + ε(t) (19)

whereε(t) are i.i.d. centered Gaussian noises with standard
deviation (std)σ. β(t) plays the role of the elevation angles
or the role of the azimuths (3). Letn be the number
of observations. We aim to estimatem values of β(t)
for t = T1, T2, ..., Tm with 1 < m < n. The following
proposition exhibits an estimator of the anglesβT1

, ..., βTm

by means of a linear combination of the measurementsz(t)
(19).

Proposition 3. The following assertions holds.

1) For i = 1, 2, ...m, the estimators

β̂Ti
=

1

‖Φi‖2

tn
∑

t=t1

Φi(t) z(t) (20)

are nearly unbiased

E(β̂Ti
) ≈ βTi

(21)

whereΦi is the Lagrange polynomial of degreem −1
defined in (18).

2) The covariance matrix of the estimators is diagonal.
For i, j = 1, 2, ...m, we have

cov(β̂Ti
, β̂Tj

) = δi=j
σ2

‖Φi‖2
(22)

with ‖Φi‖
2 =

tn
∑

t=t1

Φ2

i (t)

These suitable properties (21) and (22) are obtained using
the orthogonality of the Lagrange polynomials (18) which
interpolate the roots of the Legendre polynomial [9], [10],
[11]. One can prove that‖Φi‖

2 ∼ constant× n, so that the
std of β̂Ti

is of order σ√
n

whenn is large.
The linear estimator (20) is very accurate providing that the
signal has a dynamics order less then2m, namely, the signal
must behave as a polynomial with a degree lower or equal to
2m− 1.

B. Application to the estimation of the ambiguous trajectories

We consider we haven noisy azimuths and elevation angles
(3) measurements according to the model

{

zθ(t) = θ(t) + ε(t)

zφ(t) = φ(t) + ν(t)
(23)

whereε(t) andν(t) are i.i.d. centered Gaussian noises with
std σθ anf σφ respectively.θ(t) and φ(t) are defined in (3).
Here, we do not take into account the relation between these
angles and the whole stateXT (t) (1). We aim to estimate
the azimuths and elevation angles at times(t1, t2, t3) and
(t′1, t

′
2) respectively using only the angle measurements (23).

For this purpose we choose(t1, t2, t3) = (T1, T2, T3) and
(t′1, t

′
2) = (T ′

1, T
′
2) where (T1, T2, T3) are the roots of the

Legendre polynomialΨm (17) with m = 3 and where
(T ′

1, T
′
2) are the roots of the Legendre polynomialΨm with

m = 2.

Consequently, the estimations of(Θ,Φ) (7) are done using
the linear estimator (20).

Estimation of (Θ,Φ)

1) For i = 1, 2, 3

θ̂Ti
=

1

‖Φi‖2

tn
∑

t=t1

Φi(t) zθ(t) (24)

2) For i = 1, 2

φ̂T ′

i
=

1

‖Φ′
i‖

2

tn
∑

t=t1

Φ′
i(t) zφ(t) (25)

The Lagrange polynomialsΦi and Φ′
i (18) interpolate

(T1, T2, T3) and(T ′
1, T

′
2) respectively.

In the case of the Legendre polynomial with degreem = 3
or m = 2 and whentk = k for 1 ≤ k ≤ n, the roots can be
computed exactly with the following formula.

Roots of the Legendre polynomials

1) Case m=3

T1 =
n+ 1

2
− τ , T2 =

n+ 1

2
, T3 =

n+ 1

2
+ τ ,

‖Φ1‖
2 = ‖Φ3‖

2 =
5n(n2 − 1)

6(3n2 − 7)
, ‖Φ2‖

2 =
4n(n2 − 4)

3n2 − 7

with τ =
√

3n2−7

20

2) Case m=2

T ′
1 =

n+ 1

2
− τ , T ′

2 =
n+ 1

2
+ τ ,

‖Φ′
1‖

2 = ‖Φ′
2‖

2 =
n

2
,

(26)

with τ =
√

n2−1

12

The estimators (24) (25) are nearly unbiased providing that
the variation amplitude of the angles is not too large. Fori =
1, 2, 3 andj = 1, 2, the estimators have the following variances

var(θ̂Ti
) =

σ2

θ

‖Φi‖2
, var(φ̂T ′

j
) =

σ2

φ

‖Φ′
j‖

2
(27)



More generally, in the case of any sample timetk, the roots
are easily computed offline with the Laguerre algorithm [8].

V. NUMERICAL RESULTS

Some simulation results are presented below which
illustrate the ambiguous trajectories and their estimations.
Both the target and the observer have a constant velocity
model.

Scenario parameters

Positions are expressed in meters and velocities in
meters/second

• Observer initial state

Xo(t0) = [xo(t0), ẋo, yo(t0), ẏo, zo(t0), żo]
T

= [0, 30, 0, 0, 0, 5]T

• Target initial state

XT (t0) = [xT (t0), ẋT , yT (t0), ẏT , zT (t0), żT ]
T

= [5000,−10, 5000, 10, 100, 3]T

• Measurements

Sampling period =∆T = 1s
Number of measurements = n = 100

A. Illustration of the ambiguous trajectories

We present in the following figures the target, the observer,
the ambiguous trajectories projected on different planes (Fig.
3-5) and two 3D representation (Fig. 6-7). These trajectories
are computed using (8) and set byµ ∈ [0, 20]. They produce
the same set of azimuths and elevation angles (here noise-free)
(Fig. 2).
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Fig. 2. Azimuths (–) and elevation angles (–)
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Fig. 3. Ambiguous trajectories. Projection on xy plane.–: ambiguous
trajectories.o: initial point. –: target trajectory.–: observer trajectory
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Fig. 4. Ambiguous trajectories. Projection on xz plane.–: ambiguous
trajectories.o: initial point. –: target trajectory.–: observer trajectory
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Fig. 5. Ambiguous trajectories. Projection on yz plane.–: ambiguous
trajectories.o: initial point. –: target trajectory.–: observer trajectory
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Fig. 6. 3D view of the ambiguous trajectories.–: ambiguous trajectories.o:
initial point. –: target trajectory.–: observer trajectory
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Fig. 7. 3D view of the ambiguous trajectories.–: ambiguous trajectories.o:
initial point. –: target trajectory.–: observer trajectory

We can see on figure 3 that the target’s headingK on the
xy plane becomes constant asµ increases. Indeed, we have

K = arctan

(

ẋT

ẏT

)

= arctan

(

ẋo + µα(Θ)

ẏo + µ

)

→ arctan (α(Θ))when µ → +∞

whereα(Θ) is deduced from (8).

B. Estimation of the ambiguous trajectories

We present below the performances of the linear estimators
(24)-(25). The azimuths and elevation angles are measured
every second (∆T = 1s), thus, we haven = 100 pairs of angle
measurements. The std of the measurements (23) (σ = σθ =
σφ) are set to1 deg and 0.1 deg. One thousand (N = 1000)
of Monte Carlo trials have been done in order to estimate the
RMSE (root-mean-square error) of the five angles(Θ,Φ):

Er(β̂) , RMSE =

√

E

[

β̂ − β
]2

≈

√

√

√

√

1

N

N
∑

i=1

[

β̂i − β
]2

(28)

where β̂i is a trial of one the angle estimations
θ̂iT1

, θ̂iT2
, θ̂iT3

, φ̂i
T ′

1

, φ̂i
T ′

2

. The roots(T1, T2, T3) and(T ′
1, T

′
2) are

distributed as follows (26)

b b b b b b b
1 T1 T ′

1 T2 T ′
2 T3 100

We can see in following table the accuracy of the linear
estimators of(Θ,Φ). Note that these good performances are
valid if the variation amplitude of the angles is not too large
The computing time of these estimators is negligible.

TABLE I
RMSEOF (Θ̂, Φ̂) (deg)

σ Er(θ̂T1
) Er(θ̂T2

) Er(θ̂T3
) Er(φ̂T ′

1

) Er(φ̂T ′

2

)

1 deg 0.18 0.15 0.19 0.14 0.14

0.1 deg 0.02 0.02 0.02 0.01 0.01

We recall that the five angles(Θ,Φ) allows us to generate
all the ambiguous trajectories by varying the parameterµ
(see proposition 2). Suppose we have an a priori knowledge
about some dynamics parameters of the target, like a speed
range or a height range. Then it is possible without maneuver
to estimate all the trajectories of the target satisfying the
constraints using (8) by varyingµ. In what follows, we
calculate the target trajectories which are compatible with
a vertical speed constraint. For example, if the modulus of
vertical speed of the target is supposed to be small, precisely
| żT |< 0.5m/s, than we get the restricted set of trajectories
(in green colour) presented in figures (8-11). These trajectories
are estimated thanks to the linear estimators (24)-(25) with
σθ = σφ = 0.1 deg (23).
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Fig. 8. 3D view of the ambiguous trajectories.–: ambiguous trajectories.
o: initial point. –: target trajectory.–: observer trajectory.–: constrained
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Fig. 9. Ambiguous trajectories. Projection on xy plane.–: ambiguous
trajectories.o: initial point. –: target trajectory.–: observer trajectory.–
: constrained trajectories
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Fig. 10. Ambiguous trajectories. Projection on xz plane.–: ambiguous
trajectories.o: initial point. –: target trajectory.–: observer trajectory.–
: constrained trajectories
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Fig. 11. Ambiguous trajectories. Projection on yz plane.–: ambiguous
trajectories.o: initial point. –: target trajectory.–: observer trajectory.–
: constrained trajectories

VI. CONCLUSION

The paper proposes a method to calculate the set of all
the ambiguous target trajectories compatible with the angle
measurements in the case of both the observer and the target
follow a constant velocity model in a three-dimensional space.
These trajectories depend on five observable angles. A quick
linear estimator of these angles is presented. Any a priori
information about the target state allows us to discriminate
among ambiguous trajectories. In doing this, the observer
can take a decision to maneuver (or not) in order to estimate
accurately the whole 6-dimensional target state.
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