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Abstract—Passive target estimation is a widely investigated calculate the set of all the target trajectories compatiita
problem of practical interest. We are concerned specificayl with  the angle measurements in the case where both the target and
an autonomous flight system developed onboard the ONERA 0 ohserver follow a uniform motion. We present in section
ReSSAC unmanned helicopter. This helicopter is equipped h . . . .

a (visible or infrared) camera and so is able to measure azinths I_V a way _to estimate _these ambiguous tr"’_‘JeCtor.'es thanks to a
and elevation angles of a target. The latter is supposed tolfow linear estimator. Section V shows some simulation resuits a

a constant velocity motion. It is well known that observer mst  finally, some conclusions are drawn in section VI.

maneuver in order to insure the observability of the target s$ate.

We are interested in tracking partly the target state when bah [l. PROBLEM STATEMENT

the observer and the target have a constant velocity model ia It is assumed that the target follows a constant velocity

three-dimensional space. We describe the set of all the tregtories del i th di ) | | di te fi del
compatible with the angle measurements and we propose a qlic modeln a three-dimensional space. In a discrete ime mode

method to estimate these trajectories. the target state is defined by

I. INTRODUCTION Xor(ty) = [er(te), dr, yr(te), or, 20 (te), 27 (1)

Passive target estimation is a widely investigated problemThe target evolves as follows
of practical interest. We are concerned specifically with an B
autonomous flight system developed onboard the ONERA Xr(te) = FXr(ts-1) +n(tx) @)
ReSSAC unmanned helicopter [1]. This helicopter is equipp&heren(t;) is a white Gaussian noise process and where the
with a (visible or infrared) camera and so is able to perforgtate transition matrix is defined by
lines of sight of the targets. More generally, we consider a

single moving observer which measures the azimuths and the 1L AT 0 0 0 O
elevation angles of a moving target in a three-dimensional o 1 0 0 0 ©0
space. If all measurements are derived from a single observe p_|0 0 1 AT 0 0
and consist of angles only, it is well known that target state 0O 0 0 1 0 0
observability is warranted only under specific conditionste o 0 0 0 1 AT
observer trajectory. The observer must maneuver in order to o o o 0 0 1]

insure the obser_vability of the target stgte. Op_timal MEBEI \p 2 tx — tr_1 being the sampling period. The noise-free
have been StUd'e.d fOT the purpose of improving the aceuratYimuths and elevation angles satisfy the nonlinear eguati
of the target estimation for bearing-only tracking [2], ,[3] Fig. 1

4 . . . g1
[4]. The aim of the paper is to describe and to estlmafe
the set of all the trajectories (called ambiguous) competib
with the angle measurements in case were both the observer
and the target follow a constant velocity motion. This kind 3)
of problem has been studied in bearings only tracking in a $(t) = arctan
two-dimensional space like in [5]. In the three-dimensiona
context, the ambiguous trajectories can be determined éy th
observer as they depend of three azimuths and two elevatiomvhere
angles. We show how these angles can be quickly estimated. A

r2(t) +r2(t)

possible application is to discriminate among the ambiguou r(t) = (ra(t), 1, (), r:(¢)T =
trajectories in exploiting an a priori knowledge about theyet O T (4)
State. (2(t) = 2o (6), yr(t) = yo(8), 20(8) = 20(1))

The paper is organized as follows. The general framewaikthe vector of the relative positions between the target an
is presented in section Il. Section Il recall the condifonthe observer. First we recall, in a simple way, the necessary
ensuring the observability of the target. In this section weonditions under which the target is observable.



the Proposition 1 are necessary but not sufficient. Indexd, f
example, if the target is stationary and the observer falow
a constant velocity model along the line of sight, the target
is unobservable while the order of the observer dynamics is
greater than the one of the target.
Z We are now interested in showing all the trajectories compat
r ible with the angle measurements when both the observer and
the target have a constant velocity model.

B. Ambiguous trajectories

If both the observer and the target have a constant velocity
model (2), there exists different constant velocity trijeies

\“‘\2\9 @ ; of the target which match with the angle measurements. The
T Target

next proposition establishes the set of all of such trajgeto
called ambiguous trajectories.

Let X,(to) be the initial 6-dimensional state vector of the

- . ,
Fig. 1. Observer geometry. For better legibility the tarigetepresented on o_bs.erver.. Lety, ta,13 b.e three distinct times .anx‘li, 15 be two
the ground distinct times. Let us introduce some notations

T

t = [t1 —to,t2 — to, t3 — to)
I1l. AMBIGUOUS TRAJECTORIES |y

. . th —t
A. Observability conditions B = [ 1 0}

1 th—to
The observability conditions of three-dimensional estima
tions with azimuths and elevation angles have been widely B {1 th—to 0 0 }
L=

studied [6], [7]. The authors analyze the observabilityréhe 0 0 1t —to (7)
in a nonlinear context) in a linear framework, thus allowing
direct utilization of a simplified observability criterionA 1 th—ty O 0
direct application of the following proposition [7] statése By = [O 0 1 th— to}
necessary conditions under which the target state is odislerv
Proposition 1. Letr(t) = (r,(t), ry(t), 7-(t))T be the relative © = [0(t1),0(t2),0(ts)]" ; © = [6(t)), (t5)]"
position vector (4). If the target state is observable then
The vector (0, ®) consists in 3 azimuths and 2 elevation
= (T t)P(t ) :
ro(t) 7 (OB () angles evaluated exactly at the tim@s, t2,t3) and (t;,t5)
ry(t) # a(t) Pa(1) (5) respectively
Proposition 2. Assume that both the observer and the target
7. (t) # at)Ps(t) . follow a constant velocity motion. The ambiguous target tra

eiectories which are compatible with the azimuths and elevat
angles(6(t), ¢(t)) (3) are determined by the following initial
target stateXr(to, ) (1)

where Py (t), P»(t), P3(t) are any polynomials of degree th
order of the target model dynamics and wheté) is an
arbitrary scalar function

The order of the dynamics should be understood as the Mth- Aglt
order of the series expansion in time of the dynamics. For
exampleM = 0 corresponds to a stationary targat, = 1 Xr(to, p) = Xo(to) +p | 1 8
corresponds to a trajectory of constant target. In otherslsyo
the proposition states that the order of the observer dycgami B™'sg.e

must be different of the order of the target dynamics. On the

) .~ wherey is an arbitrary non-zero scalar and where
contrary, if the target and observer have a constant vglocit

model, tané(t1) (t1 —to)tanf(t1) —1
r(t) =r(to) + (¢t — to) *(to) (6) Ao = |tan@(ty) (ty —to)tanf(ty) —1 9)
tan 9(153) (tg — to tan 9 tg —1

)
)
rz(t), 7y (t), r,(t) are polynomials of degree one which is also )
the degree of the target dynamics. So the target state isorot o | B1 ue || tan ¢ ()
servable in this case. Any maneuver of the obseniérX 2) So.s =

enables generally observability. However, the conditiofis | B2 uol|| tan ¢(th) )

(10)



-1
with ug = Aot . The ambiguous trajectories defined by

1 Ag't
(8) are determined by the 5 anglé®, ®) (7) and are set by
a non-zero scalay.. Xr(to, ) = Xo(to) +p | 1
PROOF OF PROPOSITIONR. 1
B~ so,0

An ambiguous trajectory in the three-dimensional spaceFor anyu # 0, X7 (o, 1) generates an ambiguous trajectory
remains ambiguous in they plane. Therefore we analyzewhich produces the set of azimuths and elevation angles
first the xy ambiguous trajectories only taking into accountd(t), ¢(t)) characterized by©, ®) (7). Note that in the case
the azimuths. Fof = 1,2,3 we have where 1 = 0, the ambiguous trajectory match that of the

observer trajectoryXr(t9,0) = X,(to). The function tangent
ry(to) + (ti — to)ry(to) (11) involved in (9) and (10) being of period, it is sufficient to
e (to) + (ti — to)ra(to) consider positive values gf. Negative values produce point
T ] symmetrical trajectories.
Let Y = [ru(to), (o), my(to)]" . Let us define by the |t vemains now to estimate the vect@®, ) when the angle

parametery, = r(to). The whole 4-dimensional state vectoreasurements are noisy. This vector is of course always
[V, u)" in thezy plane is characterized by the three azimuth§pservable.

Indeed, equation (11) gives

tand(t;) =

IV. ESTIMATION OF THE AMBIGUOUS TRAJECTORIES

ti—to We present a quick method to estimate the ambiguous

trajectories using only the angle measurements. The ofaserv

AeY =p | ta—to | = pt (12)  and the target motions still have a constant velocity model.
For that purpose, we have to estimate the ve¢@®r®) (7)

ts —to which determine all the ambiguous trajectories by varying

where Ae is defined in (9) and in (7). Therefore, the set of the paramete. (see proposition 2). A useful method, based

the ambiguous trajectories in the plane is characterized by O the Gauss quadrature, allows us to estimate quickly and
the initial relative following state vector accurately these angles providing that the variation aomi
of the angles is not too large. The 5 ang|€s ®) are evaluated

[r2(t0), 7 (o), 7y (t0), 75 (t0)] " = [nAg" t,M]T (13) by means of a linear combination of the measurements.

These 4-dimensional trajectories are the projections ef th- Description of the method
ambiguous trajectories in the 6-dimensional space. Thus, ilett¢; < --- < t, ben positive reals. Let us denote %
remains now to determine the initial relative heightt,) and the set of real valued functions defined onR such that
the initial relative vertical velocity; (to) which are compatible
with the exact elevation anglegt). It is sufficient to consider Z F2(t) < o0 .
the two elevation angles(t}) and ¢(t,) (7). We have for
i=1,2

12 is endowed with the inner produ¢t -) defined by

r2(to) + (t; — to)r:(to)

[ (£5)2 4y (£)2)'/2

Using the definition ofB (7), the equation (14) yields

tan ¢(t;) =

4 Grg) =3 £ alt) (16)

t=t1

for any f,g € [2. For anyl < m < n, let us denote by,,,
( )2 ( /)2)1/2 ) the Legendre Polynomial of degree such that
(1) + 1y (8] tan ¢(t] ‘
- (to). r=(t0)]” = B~ ’ (W, #7) =0, (17)
(rm(lt’z)Q+ry(1t’2)2)1/2 tang(t,) | for any integer0 < j < m — 1. ¥,, can be computed
. N recursively using the Graham-Schmidt formula [8]. Let us
The relative positions.(t;),,(t1), z(t5) andr,(t5) can be  genete byT; < --- < T, the roots of¥,,. One can prove

deduced from the initial relative state vector (13) in the hat for anyi + j with 1 < 4, j < m, T} is a real such that
plane and from (6). After some calculations, we get N N

T -1
Ir=(to),r+(fo)] nB %o (13) If m =mn, thenT; =t;, foranyl <i:<m =n.
wheresg 4 is defined in (10). Finally, by combining equationsThe roots of ¥,,, can be computed approximately by the
(13) and (15), we get the following family of 6-dimensionalLaguerre algorithm [8].
initial state vectors of the targefr(to, i)

t1 <T; <t, and TZ#TJ



For anyl < i < m, let us introduce®; the Lagrange wheres(t) andv(t) arei.i.d. centered Gaussian noises with
polynomial of degree m-1 such that std oy anf o, respectivelyd(t) and ¢(t) are defined in (3).

1 if t=T, Here, we do not take into account the relation between these
angles and the whole statér(¢) (1). We aim to estimate
the azimuths and elevation angles at tinmes, t2,t3) and
] . (t},t,) respectively using only the angle measurements (23).
We consider now the following measurement model, For this purpose we choos@i, ts,t3) = (T1,Ts, T) and

2(t) = B(t) + &(t) (19) (t1,t5) = (T1,T3) where (T1,T3,Ts) are the roots of the
Legendre polynomial¥,, (17) with m = 3 and where

wheree(t) arei.i.d. centered Gaussian noises with standar(qﬂl/ T}) are the roots of the Legendre polynomib), with
deviation (std)o. 3(t) plays the role of the elevation angles,, _ 9.

or the role of the azimuths (3). Lek be the number

() = (18)

0 if t=T;#£T, .

of observations. We aim to estimate. values of j5(t)
for t = T1,T5,....,T,, with 1 < m < n. The following
proposition exhibits an estimator of the angles, ..., r,,
by means of a linear combination of the measureme(its
(19).

Proposition 3. The following assertions holds.

1) Fori=1,2,...m, the estimators

(20)

are nearly unbiased

where @, is the Lagrange polynomial of degree —1
defined in (18).

2) The covariance matrix of the estimators is diagonal.
Fori,j=1,2,..m, we have

o2

COU(BTmBTj) = di=j e (22)

tn
with (@2 =~ &3 (¢)

t=ty

These suitable properties (21) and (22) are obtained using
the orthogonality of the Lagrange polynomials (18) which
interpolate the roots of the Legendre polynomial [9], [10],

[11]. One can prove that®;||* ~ constantx n, so that the
std of B, is of orderin whenn is large.

The linear estimator (20) is very accurate providing that th
signal has a dynamics order less then, namely, the signal
must behave as a polynomial with a degree lower or equal to

2m — 1.

B. Application to the estimation of the ambiguous trajeiesr

Consequently, the estimations @, ®) (7) are done using
the linear estimator (20).

Estimation of (©, ®)

1) Fori=1,2,3

b, = ﬁ S @i() 20(t) (24)
L —
2) Fori=1,2
brs = ﬁ S (8) 24 (1) (25)

t=t1
The Lagrange polynomialsb;, and @, (18) interpolate
(Th, T2, T3) and (T, T5) respectively.

In the case of the Legendre polynomial with degnee= 3
orm = 2 and whent, = k for 1 < k < n, the roots can be
computed exactly with the following formula.

Roots of the Legendre polynomials

1) Case m=3
n+1 n+1 n+1
le 2 -7, T2: 92 9 T3: 92 +T7
5n(n? — 1) 4n(n? — 4)
Q1% = |03 = ot O||? =
21l = 12l = grao—y 12l = 55—
; _ 3n2-7
with 7 = 55
2) Case m=2
1 1
Tl/:n+ -7, Té:n+ + 7,
/112 ’ /112 n ? (26)
1217 = 1%5]" = 5,
with 7 = /2221

12

The estimators (24) (25) are nearly unbiased providing that

We consider we have noisy azimuths and elevation anglesh - litude of th les | |
(3) measurements according to the model the variation amplitude of the angles is not too large. For

1,2,3andj = 1, 2, the estimators have the following variances
{ 20(t) = 0(t) +e(t) : o3 : o2

2olt) = B(1) + (1) (23) varlr) = @ vren) =R @0



More generally, in the case of any sample time the roots
are easily computed offline with the Laguerre algorithm [8].

x 10"
25

V. NUMERICAL RESULTS 2r

Some simulation results are presented below which
illustrate the ambiguous trajectories and their estinmatio
Both the target and the observer have a constant velocity
model. 1

15-

y (m)

05

Scenario parameters

Positions are expressed in meters and velocities in
meters/second 05 T 2 25

x10*

o Observer initial state Fig. 3. Ambiguous trajectories. Projection on xy plarme: ambiguous
trajectories.o: initial point. —; target trajectory— observer trajectory

Xo(tO) - [:Eo(tO)a i'ou yo(tO)u y.07 Zo(tO)a 2O]T
=10,30,0,0,0,5]"

o Target initial state

Xr(to) = [CCT(to),ibT,yT(to),y'T,ZT(fo),Z'?T]T
— [5000, —10, 5000, 10, 100, 3]"

400~

350

« Measurements 200/

2 (m)
N
g

Sampling period =AT = 1s 0
Number of measurements = n = 100

150

100~

A. lllustration of the ambiguous trajectories

We present in the following figures the target, the observer,
the ambiguous trajectories projected on different plafés. ( o Yom ’ o
3-5) and two 3D representation (Fig. 6-7). These trajeesori
are computed USII’.lg (8) and set byE [0,20]. They prodgce Fig. 4. Ambiguous trajectories. Projection on xz plarme: ambiguous
the same set of azimuths and elevation angles (here n&sg-ftrajectories.o: initial point. — target trajectory— observer trajectory

(Fig. 2).

500

450 -

400 -

2 (m)
N
g

Angles (deo)

Fig. 5. Ambiguous trajectories. Projection on yz plare: ambiguous
Fig. 2. Azimuths ) and elevation angles—) trajectories.o: initial point. — target trajectory— observer trajectory



Fig. 6. 3D view of the ambiguous trajectories: ambiguous trajectories:
initial point. — target trajectory—: observer trajectory

Fig. 7. 3D view of the ambiguous trajectories: ambiguous trajectorie:
initial point. — target trajectory—: observer trajectory

We can see on figure 3 that the target's headihgn the
Xy plane becomes constant asncreases. Indeed, we have

K = arctan (gCT) = arctan ( )

ir
— arctan (a(©))when u — 400
where«(©) is deduced from (8).

To + 1 a(O)
Yo + 11

B. Estimation of the ambiguous trajectories

We present below the performances of the linear estimat
(24)-(25). The azimuths and elevation angles are measu
every second4T = 1s), thus, we have. = 100 pairs of angle
measurements. The std of the measurements @3) ¢y =
o,) are set tol deg and 0.1 deg. One thousand/' = 1000)
of Monte Carlo trials have been done in order to estimate t
RMSE (root-mean-square error) of the five angl€s ®):

E,(f) 2 RMSE = \/E {3_3}2 ~

>[4

=1
(28)

1

N

where ﬁl is a trial of one the angle estimations
01, , 0, , 0, 7, &7 The roots(T1, T», T3) and (77, T;) are
distributed as follows (26)

1 T T T, T; Ts 100

r 00—

We can see in following table the accuracy of the linear
estimators of(©, ®). Note that these good performances are
valid if the variation amplitude of the angles is not too karg
The computing time of these estimators is negligible.

TABLE |
RMSEOF (6, &) (deg)
o Er(br,) | Er(bry) | Er(ry) | Ev(dry) | Er(dry)
1deg 0.18 0.15 0.19 0.14 0.14
0.1deg | 0.02 0.02 0.02 0.01 0.01

We recall that the five angle®, ®) allows us to generate
all the ambiguous trajectories by varying the parameter
(see proposition 2). Suppose we have an a priori knowledge
about some dynamics parameters of the target, like a speed
range or a height range. Then it is possible without maneuver
to estimate all the trajectories of the target satisfying th
constraints using (8) by varying.. In what follows, we
calculate the target trajectories which are compatibleh wit
a vertical speed constraint. For example, if the modulus of
vertical speed of the target is supposed to be small, ptgcise
| 2r |< 0.5m/s, than we get the restricted set of trajectories
(in green colour) presented in figures (8-11). These trajext
are estimated thanks to the linear estimators (24)-(25h wit
0g =0¢p = 0.1 deg (23)

Fig. 8. 3D view of the ambiguous trajectories:. ambiguous trajectories.
o: initial point. — target trajectory—: observer trajectory.— constrained

trajectories
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Fig. 9. Ambiguous trajectories. Projection on xy plame: ambiguous
trajectories.o: initial point. — target trajectory— observer trajectory:
: constrained trajectories
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Fig. 10. Ambiguous trajectories. Projection on xz plame. ambiguous
trajectories.o: initial point. — target trajectory— observer trajectory:
: constrained trajectories
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Fig. 11. Ambiguous trajectories. Projection on yz plame. ambiguous
trajectories.o: initial point. — target trajectory— observer trajectory:
: constrained trajectories

VI. CONCLUSION

The paper proposes a method to calculate the set of all
the ambiguous target trajectories compatible with the engl
measurements in the case of both the observer and the target
follow a constant velocity model in a three-dimensionalcgpa
These trajectories depend on five observable angles. A quick
linear estimator of these angles is presented. Any a priori
information about the target state allows us to discrin@nat
among ambiguous trajectories. In doing this, the observer
can take a decision to maneuver (or not) in order to estimate
accurately the whole 6-dimensional target state.
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