
ar
X

iv
:2

01
0.

03
85

9v
1

 [
cs

.C
R

]
 8

 O
ct

 2
02

0

Partitioned Private User Storages in End-to-End

Encrypted Online Social Networks

Fabian Schillinger[0000−0001−8771−8290] and
Christian Schindelhauer[0000−0002−8320−8581]

Computer Networks and Telematics,
Department of Computer Science,
University of Freiburg, Germany

{schillfa,schindel}@tf.uni-freiburg.de

Abstract. In secure Online Social Networks (OSN), often end-to-end
encryption approaches are used. This ensures the privacy of communi-
cation between the participants. To manage, store, or transfer the cryp-
tographic keys from one device to another one, encrypted private stor-
ages can be used. To gain access to such storages, login credentials, only
known to the user, are needed. Losing these credentials results in a per-
manent loss of cryptographic keys and messages because the storage is
encrypted. We present a scheme to split encrypted user storages into
multiple storages. Each one can be reconstructed with the help of other
participants of the OSN. The more of the storages can be reconstructed,
the higher the chance of successfully reconstructing the complete private
storage is. Therefore, regaining possession of the cryptographic keys used
for communication is increased. We achieve high rates of successful re-
constructions, even if a large fraction of the distributed shares are not
accessible anymore because the shareholders are inactive or malicious.

Keywords: End-to-End Encryption · Online Chat · Online Social
Network · Secret Sharing · Private Storage · Instant Messaging Ser-
vice.

1 Introduction

Online Social Networks (OSN) are very popular and the number of monthly users
for Facebook, one of the largest OSNs is growing each month and has reached
about 2.5 billion monthly users in 2019 [7]. Participants of OSNs can share
content like news articles, personal information, images, and others with friends.
Participants further can communicate through OSNs, using integrated online
chats or messaging programs. Often the communication is not protected between
the users. This allows administrators, attackers, or governmental organizations
to read and intercept the communication. Some online chats are protecting the
communication of their users by implementing different approaches like end-to-
end encryption between the users. WhatsApp is the most popular application,
with around 1.6 billion monthly users in 2019 [11]. Often, the users have to

http://arxiv.org/abs/2010.03859v1

2 F. Schillinger, C. Schindelhauer

provide the correct login credentials, like passwords or personal identification
numbers to use these applications. If the credentials are lost it can be impossible
to retrieve them from the provider, because this would allow undermining the
principles of end-to-end encryption. Recovering the credentials can be achieved
by implementing secret sharing schemes.

Our Contribution

Our contribution consists of an applied secret sharing scheme for end-to-end en-
crypted online social networks (OSN). The approach allows reconstructing login
credentials, even though they are unknown to the server or administrators. To
achieve this we rely on encrypted storages, which are partitioned and can be re-
covered one after another. Each storage contains cryptographic keys for different
parts of the OSN. When a storage is recovered the associated part of the OSN
can be accessed again. We present algorithms to partition storages, distribute
shares for a secret sharing scheme, and to recover the storages. Different ap-
proaches and corresponding variables are evaluated in simulations. We suggest
optimal values for networks with high fluctuation of active users, which means
high numbers of shareholders are inactive and their shares are inaccessible. Fur-
ther, we discuss the implications on security, given an attack model, where an
attacker has full access to the servers of the OSN. The main advantage com-
pared to applied solutions in existing OSNs is that no server or administrator
has to know the login credentials, which is essential for end-to-end encryption.
Our findings can be transferred to cryptocurrency environments, where similar
problems exist.

Organization of the Paper

The paper is structured as follows: In Section 2 related work, regarding encrypted
OSNs and the reconstruction of login credentials for OSNs is listed. In Section 3
the backgrounds on secret sharing schemes and the system model are described.
In Section 4 our approach is discussed in detail. Further, Section 5 gives simula-
tion results when applying our scheme and discusses the security implications.
Finally, Section 6 concludes the work.

2 Related Work

Many different solutions to the problem of private communication are known.
Often end-to-end-encryption is used. Private keys or passphrases are needed and
some of the solutions use private storages for users. Private storages can be used
to save data on servers. This data can be retrieved again, but attackers can not
access the contents. For some of the solutions, no procedure of how to reconstruct
a lost passphrase or private key is shown. Either, because it is not possible or
because it lies outside of the scope of the research.

Partitioned Private User Storages 3

2.1 Related Work without Recovery Procedures

Off-the-record (OTR) [18] is a scheme without a special key recovery method.
Participants a and b generate multiple private keys xa0, xa1, . . . and xb0, xb1,
Using the first keys a common key is generated using a Diffie-Hellmann key
exchange. For every new message, the two next keys are used to find a new key.
Silent Circle Instant Messaging Protocol (SCIMP) [17] is a peer-to-peer approach
to send end-to-end encrypted messages between two peers. SCIMP uses ECDH to
agree on a shared secret. This works as follows: the initiator of a conversation
sends a commitment, which is a hash of a newly created ECDH public key. The
responder answers with a newly generated ECDH public key. Hashes of previously
shared keys are appended to these two messages, if available. Then, both peers
send message authentication codes on a known value. Afterward, the peers can
exchange messages which are then encrypted using a Counter-Mode/CBC-MAC.
Private Facebook Chat (PFC) [19] is a system to provide secure messaging within
the Facebook Chat, by using end-to-end encryption. PFC uses an automated key
escrow system, which manages the encryption keys. The keys are distributed
by a PFC server, which uses the Facebook authentication mechanism. Users,
therefore, do not need an additional password.
In [13] a modified Diffie-Hellman (DH) protocol for instant messaging between
multiple peers is described. When a peer registers at the server it determines
a Diffie-Hellman public key using two secrets from the server and the peer.
When a peer initiates a conversation he creates a random number, on which a
single message is computed and sent to the server. The server then modifies the
message, such that the recipient can perform a DH key exchange using the public
key of the initiator. Messages are encrypted using the established key. As long
as the server does not know the secrets it can not read the encrypted messages.
In [28] an instant messaging service based on Elliptic-Curve cryptography is
described. The general approach of [13] is used, which includes the registration
procedure to generate a public key for a peer, which then is used by other peers
to establish a common secret between peers, using ECDH.
The well-known Signal protocol [15] uses a shared key which is derived by a key
derivation function (KDF) from a KDF chain which itself is derived from another
KDF chain. The inputs to this KDF chain are shared secrets found through a
modified Diffie-Hellman key exchange. The protocol is used in variations in other
applications like OMEMO [25].

2.2 Related Work with Recovery Procedure

Another system using a variation of the Signal protocol is WhatsApp [6]. It allows
to backup messages to a private storage, like Google Drive. When, for example,
the original device for using WhatsApp is lost messages can be retrieved again.
SafeSMS [10] is a tool to exchange end-to-end-encrypted messages through en-
crypted short message service (SMS) messages. Users can create an encrypted
storage on their mobile phone. A possibility to safely store and retrieve the pri-
vate key could be through storing them on the sim card.

4 F. Schillinger, C. Schindelhauer

Threema [27] is an end-to-end encrypted online chat. Threema allows users to
create a so-called Threema Safe, which stores information of the user like the ID,
private key, profile information, and others. The Threema Safe is encrypted using
a password chosen by the user and can be stored on the servers of Threema or a
private server. Therefore, the Threema Safe can be used to retrieve the private
key of a user, but if the password of a user is lost the Threema Safe is useless
itself, because it cannot be decrypted without the password.
Pretty Good Privacy (PGP) [8] is an approach, where both public-key encryption,
as well as, symmetric-key encryption is used for encrypted e-mail communica-
tion. The public key is used for key encryption and signature verification and
the private key is used for key decryption and signature generation. The message
contents are encrypted, using symmetric keys. Some implementations of PGP,
like PGP Desktop by Symantec [26] allow users to create five reconstruction
questions when installing the PGP Software and generating the key pairs. When
a user loses his credentials, the key reconstruction procedure can be used to
reconstruct the credentials, if three of the five questions are answered correctly.

3 Model and Backgrounds

For a better understanding, in the following, the term user describes a person,
which has lost the login credentials for the OSN and wants to recover them.
Recover and reconstruct are used synonymously for the procedure of computing
a secret from shares of a secret sharing scheme. A participant is a member of a
chatroom, which is allowed to read and write messages. The term peer describes
a participant of a chatroom the user is a member of. I.e. in a chatroom with
participants u, p1, and p2, where u is the user, both p1 and p2 are peers of u.
{m}k denotes the ciphertext of message m, encrypted with the key k.

3.1 System Model

In this work, we introduce some enhancements for the end-to-end encryption
scheme for online chats, as proposed in [21]. A user u owns a keypair (eu, du)
for the RSA cryptosystem. eu is distributed via a server and can be used for the
encryption of direct messages to u. Another key pair (vu, su) owned by u is used
for ECDSA signatures. Again, vu is distributed via the server and can be used to
verify signatures of u. Apart from direct messages between peers, chatrooms can
be created. A chatroom can hold arbitrary many participants. Messages sent to a
chatroom c are encrypted with a symmetric AES key kc. The key kc is exchanged
between the participants using (encrypted) direct messages. I.e. in a chatroom
c with peers p, q, r the key kc is sent to all peers as {kc}p, {kc}q, and {kc}r. A
new key k′

c is exchanged between the participants when the participants of c

change. This happens, when a new participant joins or leaves a chatroom. Mes-
sages in the chatrooms are signed, as well. Further, a directed acyclic graph is
created from the sent and received messages. This allows detecting whether an
attacker has deleted messages. All changes in the chatrooms are logged, using

Partitioned Private User Storages 5

SystemMessages. These are special messages in the chatrooms. They are en-
crypted, signed, and included in the acyclic graph to detect tampering, as well.
As long as no attack is detected, these messages are not displayed to the partic-
ipants. A user u has to store their own keys du and su. Further, u can store the
keys ei and vi of every other participant i and all keys kc of the chatrooms c.
Therefore, u has a private Storage. Using the private login password P of u and
a salt value saltS a symmetric key PS = PBKDF2(P + saltS) is derived. Using PS

the Storage is encrypted and stored on the server. Another salt value saltA is
used to authenticate u against the server with PA = PBKDF2(P + saltA). This
allows u to authenticate and to decrypt the Storage using the same password P .
PBKDF2 is used with SHA-256, therefore calculating P from PA and saltA is in-
feasible and PA can be stored on the server for the authentication procedure. On
the other hand, when u loses his password the server can not help in retrieving
PS . All keys in the Storage, then, are inaccessible.

3.2 Secret Sharing Schemes

A secret sharing scheme allows distributing a secret, like a password or a private
key, to multiple peers, called shareholders. Each shareholder receives a share such
that by combining the shares the secret can be recovered. In 1979, Shamir [23]
and Blakley [3] independently came up with the idea of (t, n)-threshold secret
sharing schemes (TS). In a (t, n)-TS n shares are distributed. Any combination
of t′ ≥ t (different) shares can compute the secret. Knowing t′′ < t shares gives
no advantage in computing the secret compared to guessing it. The scheme of
Shamir uses polynomials of degree t−1, where n different points are distributed.
The secret can be revealed by using polynomial interpolation. (t−1)-dimensional
hyperplanes are distributed to the shareholders in the scheme of Blakley. By
combining t of the n hyperplanes the point of intersection is the secret. Other
approaches use Latin squares like the scheme of Cooper [4]. Here, the secret
is a Latin square. Each share is a partial Latin square, such that there exist
combinations of shares where the unions constitute critical sets. Each critical
set can be used to reconstruct the Latin square. Using the Chinese remainder
theorem, other schemes can be constructed. Two approaches are described in [16]
and [1]. The basic idea is that the secret S can be computed by using any set of
at least t previously chosen coprime integers mi, where the smallest product of
any t coprime integers is larger than S and at the same time any set of t − 1 is
smaller. The shares are calculated by si = S mod mi.
In compartmented threshold secret sharing schemes (CTS) the shareholders are
organized in compartments. Each shareholder receives a share to reconstruct
the secret of the corresponding compartment. Every secret of a compartment
is the share of another secret sharing scheme. Therefore, when enough shares
of a compartment are known the compartment’s secret can be calculated. By
combining the compartments’ shares, the secret can be reconstructed. CTS can
be constructed from secret sharing schemes and can contain multiple layers of
compartments. Some CTS are shown in [2, 9, 12, 14, 24].

6 F. Schillinger, C. Schindelhauer

4 Our Approach

As described in Section 3.1, every user u has a private Storage, which is en-
crypted using a key PS . A private password P is used to derive PS . When P

is lost, the stored keys are lost, which results in inaccessible chatrooms. One
of the modifications compared to the existing scheme is that u has not just
a single Storage, but additional StorageParts. In our scheme, the keys for the
chatrooms are moved from the Storage into the StorageParts. StorageParts are
encrypted, as well. The keys for the StorageParts are generated randomly by u,
when they are created. The Storage holds the keys for the StorageParts. Two
secret sharing schemes are used to distribute PS : u generates two random keys
KCTS and KTS . u then calculates SCTS = AES(PS, KCTS) = {PS}KCTS

and
STS = AES(PS, KTS) = {PS}KTS

. A TS is used to distribute shares of STS to all
peers the user knows. An additional CTS is used to distribute shares of SCTS to
all StorageParts. The secret distributed inside a StoragePart is the key, which
is used to encrypt it. I.e. the StorageParts are compartments for a CTS. This
allows reconstructing the StorageParts one by one, and in parallel to reconstruct
the Storage. KCTS and KTS are sent to the server. An overview of a partitioned
Storage is displayed in Figure 1.

Storage

Keys: ¤S, ¤T

UserKeys: vp1
, vp2

, . . . , ep1
, . . .

StorageParts: S, T, . . .

SharesCTS: p1, p2, p3, . . .

SharesTS: p1, p2, p3, . . .

StoragePart S

Chatrooms: . . .

Keys: . . .

µS

StoragePart S1

Chatrooms: . . .

Keys: . . .

µS

StoragePart T

Chatrooms: C, D, . . .

Keys: ¤C ¤D, . . .

µT

Chatroom C

Participants: p1, p2, . . .

Messages: . . .

µC

Chatroom D

Participants: p3, . . .

Messages: . . .

µD

Fig. 1. The Storage holds all keys for the StorageParts. Each StoragePart contains
the keys for chatrooms. Shares for all peers of a user are in the Storage. The shares
can recover either a StoragePart or the Storage. Here, StoragePart S links to another
StoragePart S1, which holds old keys for the same chatrooms.

4.1 Distributing the Shares

The key PS is used to encrypt and decrypt the Storage. PS is derived from
the secret password P of a user u. Therefore, PS has to be distributed using
secret sharing schemes. In the Storage a symmetric key kSP exists for every
StoragePart SP. Two keys KCTS and KTS are generated by u randomly. The

Partitioned Private User Storages 7

two keys are sent to the server. In case u has to recover PS the server helps and
provides KCTS and KTS . u calculates SCTS =AES(PS, KCTS) and STS =AES(PS,
KTS). SCTS and STS , therefore, are both different ciphertexts of PS . STS is
distributed as follows: u creates a list L of all peers it knows. By iterating
through all StorageParts and the contained chatrooms this list can be filled.
A TS then is used to create a share Sp of STS for every peer p ∈ L. Then, Sp

is encrypted using the public key ep of p and signed by u. u, then, sends the
ciphertext and signature to p. p then can verify the signature, decrypt Sp, and
save it to the own Storage.
The other secret SCTS is distributed by first creating a share SSP for every
StoragePart SP, using a TS. In a StoragePart SP, at first, the symmetric key
kSP , used to encrypt and decrypt the StoragePart is encrypted, using the key
KCTS . Then, a list LSP of all peers of the chatrooms in SP is created. Using
another TS, a share SSP,p is calculated for every peer p ∈ LSP . This share, again,
is encrypted with ep, signed by u, and sent as a direct message to p. Therefore,
this TS later allows reconstructing the key for the StoragePart. The distribution
of shares is displayed in Algorithm 1.

Algorithm 1 The algorithm distributes a key to all peers of a user with a secret
sharing scheme. For every StoragePart another secret sharing scheme is used to
distribute this key to the users.

1: procedure createAndDistributeShares()
2: SCTS ←AES(PS, KCTS) ⊲ where KCTS is random and PS is the secret key
3: STS ←AES(PS, KTS) ⊲ where KTS is random
4: L← ∅
5: S ←SecretSharing(SCTS, StorageParts) ⊲ create shares S for StorageParts

6: for all StoragePart SP in Storage do

7: SP.Share ← SSP ⊲ where SSP is a share for SP from S
8: L← L ∪ LSP ⊲ where LSP contains all peers from the chatrooms in SP

9: S ←AES(kSP , KTS) ⊲ where kSP is the symmetric key for SP

10: SkSP
←SecretSharing(S, LSP)

11: for all p ∈ LSP do

12: sendShare(SSP,p, p) ⊲ where SSP,p is the share of p from SkSP

13: SL ←SecretSharing(STS, L) ⊲ create shares S for peers
14: for all p ∈ L do

15: sendShare(Sp, p) ⊲ where Sp is the share of p from SL

16: procedure sendShare(S , p)
17: cS ←RSA(S , ep) ⊲ where ep is the public key of p

18: s←Sign(cS, su) ⊲ where su is the signing key of the user
19: send (cS ,s) to p

8 F. Schillinger, C. Schindelhauer

4.2 Recovering the Storage

When a user u loses his password P he can neither log in to the OSN nor decrypt
the Storage. To access the Storage again the following procedure is used: At first,
the user tells the server to allow him to get an onetime login. This should be
allowed only if the user can provide evidence, that he is the owner of the account.
This can be achieved, for example by sending the user a link via e-mail, which he
can click only if he knows the password to the mailbox. There are different ways
of achieving this, which depend on the OSN, where the chat is used. The server
creates a new ID RIDu of the recovery request and sends it to u. Then, u creates
a new Storage and sends an InitializeRecovery-message containing RIDu to
the server. The server searches for all peers P of u. This can be done because the
lists of participants for all chatrooms are stored on the server in plaintext. P is
sent to u, together with KTS and KCTS . Then, u sends a RecoveryRequest-
message to every peer p ∈ P , again containing RIDu. When p receives such a
message it checks whether a RecoveryConfirmed-message for RIDu, signed
by a participant of the OSN exists. If no such message exists p interrupts the
procedure and checks for the presence of the message regularly. If such a message
exists, all shares for u are searched in the Storage. The shares are encrypted using
the new public key of u and signed by p. Then, p sends a SystemMessage to
all chatrooms, where p and u are participating in. This message contains the
IDs of the RecoveryRequest-message and u. The message is encrypted, using
the latest AES key of the corresponding chatroom. This allows every participant
to see, that u wants to recover the key. When u receives a share, it tries to
recover, either, the corresponding StoragePart, via the CTS or the Storage, via
the TS. When a secret is calculated u has to decrypt it, using the corresponding
key KTS or KCTS . When a StoragePart is recovered u can append it to the
new Storage. This allows u to already communicate in some chatrooms. The
Storage can be recovered by u, when enough shares of the TS are combined,
or when enough StorageParts are recovered by u. When the Storage finally is
recovered, a recoveryFinished-message is sent to all peers. This is useful for
preventing peers that did not send their shares yet, from sending them late.
The previously mentioned RecoveryConfirmed-message is a message created
by any peer p of u. The message is created, when u contacts p over a different
channel. Such a channel can be a verified e-mail, phone, or a meeting in person.
First, u provides a signed message containing RIDu to p. This can be achieved
by displaying a QR code or presenting a human-readable version of the message,
computed in a way like described in [5]. p then verifies the signature, signs the
message, and sends it as a RecoveryConfirmed-message to the server. In this
way, each peer can check whether the recovery request was started by u, and at
the same time, p guarantees the correctness. In Figure 2 the recovery procedure
is shown as a flowchart.

Partitioned Private User Storages 9

user starts recovery procedure

server verifies request

e.g. via e-mail

user creates new Storage

server verifies RIDu server finds all peers for u

user receives peers user sends RecoveryRequest to all peers

peer checks for RecoveryConfirmed-message peer collects all shares for u

user receives shares from peers

user tries to recover StorageParts user tries to recovers Storage

sends RIDu

sends RIDu, InitializeRecovery-message

if verified

sends peers

if confirmed

sends shares

Fig. 2. The user u initializes the recovery procedure. The help of the server and some
of the peers is needed to recover the Storage or multiple StorageParts. The Recov-

eryConfirmed-message can be created by any peer p of u. To create it, both of them
have to meet: u presents a signed message containing RIDu to p. p in return, verifies
it, signs it again, and sends it to the server.

5 Analysis of the Proposed Scheme

When the Storage is split into different parts, on the one hand, the chance of
a successful recovery is increased, but on the other hand, some overhead in the
size is generated. Further, additional attack vectors may be introduced. This is
analyzed in the following.

5.1 Considerations on the Overhead of Disk Space

The StorageParts are linked with their ID, AES key, hash value and share in the
Storage. When saving the Storage as a JSON file, this link is around 320 bytes
per StoragePart, when encrypting with AES this results in around 580 bytes.
For each share, another 30 bytes in plaintext, or 90 bytes in ciphertext are
stored. Each StoragePart has around 370 bytes, when ignoring the list of chats
and chat keys. Therefore, an encrypted StoragePart needs about 610 additional
bytes. The list of chats and chat keys is needed, no matter, whether they are
stored in the Storage or a StoragePart. An additional value, indicating the last
distribution, needs around 180 bytes when encrypted. An average user of an
online chat is in contact with around 70 peers in 60 chatrooms, corresponding
to [20,22]. Splitting up the Storage into four StorageParts results in an overhead

10 F. Schillinger, C. Schindelhauer

of around 4 · (580 + 610) + 70 · 90 − 180 = 10.880 bytes. When considering, that
storing a single key for a chat needs about 380 bytes, when encrypted, this results
in about 22.800 bytes for the same average user. The total overhead, when using
our approach is below 1

2 times the size, the stored keys for this user need. When
more then one key per chat exists the ratio gets smaller. This can happen if the
users of chatrooms change. This overhead is justifiable because the chance to
successfully recover the Storage is increased.

5.2 Discussion of Possible Attacks

A key recovery method can provide additional attack vectors for someone who
wants to access the private messages of a user. An attacker in the system can
be any person with full access to the servers of the OSN. It can be an adminis-
trator, hacker, or a governmental organization agent with full access to all data.
Then, the attacker can read, modify, or delete data on the server. Additionally,
any participant of the OSN can be an attacker, as well. Attacks on the client
machines are not covered by the scheme. In the following, possible attacks are
analyzed in detail.
Compromised Server A compromised server can initiate the recovery proce-
dure. All messages from and to the user u can be intercept and read, because new
keys are generated when the recovery procedure is started. The server knows all
peers of u and can send them the appropriate messages to receive the shares. At
this point the attack fails, because no RecoveryConfirmed-message exists.
The server cannot generate such a message without the help of another partici-
pant, because it has to be signed by u and another participant.
Colluding Participants When participants of the OSN collude they can com-
bine their shares and compute STS , or SCTS . In principle, this could work,
because the list of participants is visible to anybody inside a chatroom. But,
not all peers of a user may be reached, because some of the chatrooms may
be unknown to the colluding participants. If nevertheless, enough of them work
together they still need KTS or KCTS from the server. In practice, this would
mean that, depending on the setting, about 75% of all peers of a user and an
administrator or hacker on the server have to work together.
Stranger Friends In OSN users usually have more and more stranger friends,
which are peers that are not known in person by the user. These stranger friends
may even be malicious. Therefore, collusion is even more likely. But again, at
first enough participants have to collude. At second, all non-stranger friends
can detect and block the recovery process, because the RecoveryConfirmed-
message is incorrect. They can inform the server and the user.
Colluding Participants and Server When an attacker on the server is collud-
ing with multiple participants the chance to successfully reconstruct the Stor-
age while staying concealed is higher. The server knows all peers of a user,
therefore it is easy to contact all peers to gain their shares. If enough of the
peers help, the reconstruction can be hidden by the peers and the server, be-
cause either the correct messages can be deleted, or fake SystemMessages can
be used to replace the critical messages, which are originally used to reveal all

Partitioned Private User Storages 11

malicious recovery procedures. The question is, whether this effort is justified:
First, the server gets to know the communication of the colluding peers, when
the Storage is recovered. Second, when enough peers work together with the
server it is far simpler to just forward all messages of the user, instead of recov-
ering the Storage.
Attack of a Third Party It is ensured, that no stranger starts the recov-
ery procedure. At first, the attacker has to get access to the mailbox to reset
the password for the OSN. Second, the attacker has to fake a RecoveryCon-

firmed-message. To achieve this, the attacker has to have access to another ac-
count, or he has to work together with a peer of the user. On the one hand, the
procedure generates SystemMessages in all chatrooms, which make it trace-
able, who was attacking the user. On the other hand, the chance of a successful
attack can further be reduced, if a RecoveryConfirmed-message has to be
signed by multiple peers.
Stealing the User Login Data There are two different keys PS and PA, both
derived using PBKDF2 from the password P of the user. PA is known to the server.
Therefore, it is known to an attacker, as well, whereas PS is secret. An attacker,
which initializes the recovery procedure can set a new password P ′. This pass-
word then is used to derive P ′

A and P ′

S . Now, the attacker knows P ′

S which does
not help in computing PS . Without the recovered Storage an attacker gained
nothing. The recovery procedure itself is secured against an attacker.
Stealing Messages and Cryptographic Keys An attacker has to recover the
Storage of a user to steal messages or cryptographic keys. The recovery procedure
is secured, and every tampering, modification, or started recovery procedure is
detected through SystemMessages in all chatrooms. SystemMessages are
encrypted and signed, using the correct keys. Further, every deletion of a Sys-

temMessage can be detected, because the message history becomes inconsis-
tent.
Modifying Cryptographic Keys Cryptographic keys can only be modified,
when the Storage is successfully recovered by an attacker. Such an attack can
be revealed.
Altering Communication Data and Metadata Recovering the Storage as
an attacker gives no advantage for deleting or modifying messages. This is not
possible in the described scheme. Adding messages, on the other hand, is possi-
ble, when the attacker knows the keys, just like that, new participants can be
added by an attacker to the chatrooms and old participants can be excluded.
This is visible to all participants and therefore can be prevented or be undone
by honest participants.
Small Rooms or Few Peers When a user is participating in small rooms only
or has few peers, the chance to successfully attack the scheme is high, as each
share becomes more important. Therefore, it has to be considered, whether such
users and their Storages are worth protecting. The meaningfulness of the scheme
is only given to a user if he is part of a certain number of chatrooms and knows
enough peers.

12 F. Schillinger, C. Schindelhauer

5.3 Advantages of Partitioned Storages

In [20,22] two studies about the usage of WhatsApp were performed. The usage
behavior from these studies was used to perform simulations about the advan-
tages of partitioned storages. According to the studies, an average user of an
online chat has contact with around 70 peers, in about 60 different chats. About
71.5% of the chats are between 2 peers, 11.4% are between 3 to 5 peers, 6.9%
are between 6 to 10 peers, and the remaining chats contain 11 peers or more.
Peers can be in multiple chats, which explains the fact, that the number of peers
and chats does not differ that much. These statistics were applied to different
simulations to find advantages, disadvantages, and optimal values when imple-
menting our approach.
For most simulations, a target threshold rate of ttarget = 0.7 was used. I.e. the
threshold rate of the Storage and StorageParts satisfy the equation:
tstorage · tstoragePart = ttarget. This means that a low fraction of 70% or more of
the shareholders should be able to reconstruct the Storage. This fraction was
chosen, because update procedures ensure, that only active peers receive shares.
This leads to a low amount of inactive peers. It is far more common for users to
forget their passwords when they are not using the services for a while. There-
fore, a large number of peers could be inactive in the meanwhile. No research was
found that allowed us to estimate a better value. To generate appropriate simu-
lations, therefore, 70% of the peers are marked as inactive, using a uniformly dis-
tributed random number generator. Inactive peers cannot help in reconstructing
the secret. For all simulations, the reconstruction rates are calculated. A recon-
struction rate of r = 0.9 means that in 90% of the simulations the Storage and
all StoragePart can be reconstructed from the available shares. Further, partly
reconstruction rates were calculated. I.e. a 75%-reconstruction rate gives the rate
of simulations where between 50% and 75% of the StorageParts can be recon-
structed. In some simulations, a reconstruction rate ra = r + r75% + r50% + r25%

is used, so any instance where at least 25% of the StorageParts were successfully
reconstructed are counted.
Is it Beneficial to Consider Unique Peers? One of the questions is, whether
it is beneficial to share the secret with unique peers in a StorageParts, versus
distributing shares to peers for every occurrence in the chats in the StoragePart.
I.e. should a peer p, who is a participant in two chatrooms c1 and c2, where both
chatrooms are saved in the same StoragePart, receive one unique share sp or
two different shares sp,c1

and sp,c2
? Figure 3 shows the results of simulations for

scenarios where the number of StorageParts varies between 1 and 8. For a single
StoragePart a significant advantage, when considering unique peers, is visible.
For all other numbers of StorageParts, the advantage turns out lower but is still
there. Therefore, considering unique peers brings slight advantages. For one sin-
gle StoragePart, the reconstruction rate rt increases from 0.59 to 0.67. For two
StorageParts the increase is from 0.81 to 0.82.
Can the Recoverability be Improved with the Additional TS? In Fig-
ure 4 the impact on the reconstruction rates when using a unique share per
peer for the Storage is shown. I.E. two different secret sharing schemes TS and

Partitioned Private User Storages 13

1 2 3 4 5 6 7 8

0.6

0.8

1

StorageParts

re
co

n
st

ru
ct

io
n

ra
te

Non-unique Peers

Unique Peers

Fig. 3. The rate of total and partly reconstructible Storages, when distributing single
shares to unique peers instead of multiple shares per peer, is higher for low numbers
of StorageParts. The difference decreases with additional StorageParts.

CTS are used. Every first bar shows the reconstruction rates when peers receive
additional shares for reconstructing the Storage (TS), the second bar shows the
reconstruction rates, without this additional share (CTS only). For every num-
ber of StorageParts, a significant increase in r is visible. At the same time, the
combined partly reconstruction rates decrease. It is visible, that the introduction
of additional shares, improves the scheme significantly. For a single StoragePart,
an increase from 0.59 to 0.66 was measured. For two StorageParts, the increase
for full recoverability is from 0.34 to 0.69, r50% drops from 0.48 to 0.18. For four
StorageParts, the full recoverability increases from 0.1 to 0.66, r75% drops from
0.3 to 0.06, r50% drops from 0.36 to 0.14, and r25% drops from 0.2 to 0.11.

C
T

S
on

ly
C

T
S

an
d

T
S

Full reconstructible

75% reconstructible

50% reconstructible

25% reconstructible1 2 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

StorageParts

re
co

n
st

ru
ct

io
n

ra
te

s

Fig. 4. Adding a share per peer, for the Storage increases the reconstruction rates,
while the rate of partly reconstructible Storages decreases.

Should a (p, p)-Threshold Scheme be Used? A target threshold rate of
ttarget = 0.7 allows to vary the threshold rates tstorage and tstoragePart, as long as
the product of both equals ttarget. Therefore, to find the optimal value for both
threshold rates the simulations shown in Figure 5 were performed. For three dif-
ferent numbers of StorageParts, it was simulated, which value q ∈ {p, p−1, p−2}
should optimally be used for the (p, q)-threshold scheme to reconstruct the Stor-
age from the StorageParts. The left bars show the results for q = p, the middle

14 F. Schillinger, C. Schindelhauer

bars show the results for q = p−1, and the right bars show the results of q = p−2.
Clearly visible is, that r stays nearly equal with varying q, whereas the partly
reconstruction rates drop significantly. This result seems likely, because decreas-
ing tstorage results in an increasing tstoragePart, which results in less reconstructed
StorageParts, whereas the Storages still can be reconstructed using the TS, as
seen in Figure 4. Therefore, using a (p, p)-TS seems optimal.

p

p

p

p−1

p

p−2

p

p

p

p−1

p

p−2

p

p

p

p−1

p

p−2

0.6

0.8

1

total threshold

re
co

n
st

ru
ct

io
n

ra
te

s

Full reconstructible

75% reconstructible

50% reconstructible

25% reconstructible

8 StorageParts 12 StorageParts 16 StorageParts

Fig. 5. The rates for full recovery stays nearly the same when decreasing the threshold
for the reconstruction of the Storage. The rates for 75% and 50% recoveries decrease
in most combinations.

What is a Good Threshold Value? In Figure 6 the results of simulations
with target threshold values ttarget = 0.9 and ttarget = 0.7 and different numbers
of StorageParts are shown. The overall behavior of the scheme stays the same
for different target threshold values, with slightly higher reconstruction rates for
ttarget = 0.9. The reconstruction rates r, for ttarget = 0.9 are 0.73 for a single
StoragePart, 0.75 for two StorageParts, and 0.72 for four StorageParts. r50% is
at 0.16 for two StorageParts, and at 0.12 for four StorageParts. For four Stor-
ageParts, r75% is 0.06. For ttarget = 0.7 the values are slightly lower.
How many Partitions are Optimal? Either two or four StorageParts are
optimal, according to the simulation results shown in Figure 4. When using two
StorageParts the rate r is slightly higher, compared to four StorageParts. But,
taking in to account the partial reconstruction rates especially for 75% partial
reconstruction, four StorageParts seem to perform better. When looking at the
higher target threshold of ttarget = 0.9, as shown in Figure 6, the difference be-
tween both total reconstruction rates is even less. Therefore, if the overhead in
disk space and communication messages can be neglected four StorageParts are
the best choice.

Partitioned Private User Storages 15

1 2 4 8 12
0.6

0.7

0.8

0.9

1

StorageParts

re
co

n
st

ru
ct

io
n

ra
te

s

target threshold ttarget = 0.9

1 2 4 8 12
0.6

0.7

0.8

0.9

1

StorageParts

re
co

n
st

ru
ct

io
n

ra
te

s

target threshold ttarget = 0.7

Full reconstructible

75% reconstructible

50% reconstructible

25% reconstructible

Fig. 6. Comparisons of different amounts of StorageParts p show that good values are
p = 2 and p = 4. Especially when considering lower values ttarget the amount of full or
75% partial reconstructible Storages decreases with larger p.

6 Conclusion

We have introduced a novel approach to partition encrypted private user stor-
ages, which are used in end-to-end encrypted OSNs. The partitions consist of
collections of chatrooms. Each peer in each chatroom receives multiple shares
for a compartmented secret sharing scheme and an additional threshold secret
sharing scheme. The shares can be used to reconstruct the partitions of the user
storage, which then can be used to reconstruct the complete user storage. The
user storage can be recovered through a TS, as well, using another set of shares.
We performed simulations to find the optimal threshold values and the optimal
number of partitions. Using these values, a high probability to reconstruct either
the complete user storage or as many parts and chats of it is achieved. This is
especially interesting when high numbers of shares are inaccessible because par-
ticipants become inactive or leave the OSN. Further, different attack scenarios
on the scheme were analyzed.

Acknowledgments

The authors acknowledge the financial support by the Federal Ministry of Edu-
cation and Research of Germany in the framework of SoNaTe (project number
16SV7405).

References

1. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE transac-
tions on information theory 29(2), 208–210 (1983)

2. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In:
Proceedings on Advances in cryptology. pp. 27–35. Springer-Verlag (1990)

3. Blakley, G.R., et al.: Safeguarding cryptographic keys. In: Proceedings of the na-
tional computer conference. vol. 48 (1979)

16 F. Schillinger, C. Schindelhauer

4. Cooper, J., Donovan, D., Seberry, J.: Secret sharing schemes arising from latin
squares. Bulletin of the Institute of Combinatorics and its Applications 12 (1994)

5. Dechand, S., Schürmann, D., Busse, K., Acar, Y., Fahl, S., Smith, M.: An empir-
ical study of textual key-fingerprint representations. In: 25th {USENIX} Security
Symposium ({USENIX} Security 16). pp. 193–208 (2016)

6. Evans, J.: Whatsapp partners with open whispersystems to
end-to-end encrypt billions of messages a day (Nov 2014),
https://techcrunch.com/2014/11/18/end-to-end-for-everyone/

7. Facebook Inc.: Facebook Q3 2019 Results (Oct 2019),
https://s21.q4cdn.com/399680738/files/doc_financials/2019/q3/Q3-2019-Earnings-Presentation.pdf

8. Finney, H., Donnerhacke, L., Callas, J., Thayer, R.L., Shaw, D.: OpenPGP
Message Format. RFC 4880 (Nov 2007). https://doi.org/10.17487/RFC4880,
https://rfc-editor.org/rfc/rfc4880.txt

9. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Secret sharing in multilevel and com-
partmented groups. In: Australasian Conference on Information Security and Pri-
vacy. pp. 367–378. Springer (1998)

10. Hassinen, M.: SafeSMS - end-to-end encryption for SMS. In: Proceedings of the
8th International Conference on Telecommunications, 2005. ConTEL 2005. vol. 2,
pp. 359–365 (June 2005). https://doi.org/10.1109/CONTEL.2005.185905

11. Hootsuite & We Are Social: Digital 2019 Q4 Global Digital Statshot (2019),
https://datareportal.com/reports/digital-2019-q4-global-digital-statshot

12. Iftene, S.: Compartmented secret sharing based on the chinese remainder theorem.
IACR Cryptology ePrint Archive 2005, 408 (2005)

13. Kikuchi, H., Tada, M., Nakanishi, S.: Secure instant messaging protocol preserv-
ing confidentiality against administrator. In: 18th International Conference on Ad-
vanced Information Networking and Applications, 2004. AINA 2004. vol. 2, pp.
27–30. IEEE (2004)

14. Lin, C., Harn, L., Ye, D.: Ideal perfect multilevel threshold secret sharing scheme.
In: 2009 Fifth International Conference on Information Assurance and Security.
vol. 2, pp. 118–121. IEEE (2009)

15. Marlinspike, M.: The Double Ratchet Algorithm (Nov 2016),
https://signal.org/docs/specifications/doubleratchet/

16. Mignotte, M.: How to share a secret. In: Workshop on Cryptography. pp. 371–375.
Springer (1982)

17. Moscaritolo, V., Belvin, G., Zimmermann, P.: Silent circle instant messaging pro-
tocol protocol specification. Online, White Paper (2012)

18. OTR Development Team: Off-the-Record Messaging Protocol version 3,
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html

19. Robison, C., Ruoti, S., van der Horst, T.W., Seamons, K.E.: Private facebook chat.
In: 2012 International Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing. pp. 451–460. IEEE (2012)

20. Rosenfeld, A., Sina, S., Sarne, D., Avidov, O., Kraus, S.: A study of whatsapp
usage patterns and prediction models without message content. arXiv preprint
arXiv:1802.03393 (2018)

21. Schillinger, F., Schindelhauer, C.: End-to-end encryption schemes for online social
networks. In: International Conference on Security, Privacy and Anonymity in
Computation, Communication and Storage. pp. 133–146. Springer (2019)

22. Seufert, M., Schwind, A., Hoßfeld, T., Tran-Gia, P.: Analysis of group-based com-
munication in whatsapp. In: International Conference on Mobile Networks and
Management. pp. 225–238. Springer (2015)

https://techcrunch.com/2014/11/18/end-to-end-for-everyone/
https://s21.q4cdn.com/399680738/files/doc_financials/2019/q3/Q3-2019-Earnings-Presentation.pdf
https://doi.org/10.17487/RFC4880
https://rfc-editor.org/rfc/rfc4880.txt
https://doi.org/10.1109/CONTEL.2005.185905
https://datareportal.com/reports/digital-2019-q4-global-digital-statshot
https://signal.org/docs/specifications/doubleratchet/
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html

Partitioned Private User Storages 17

23. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

24. Simmons, G.J.: How to (really) share a secret. In: Conference on the Theory and
Application of Cryptography. pp. 390–448. Springer (1988)

25. Straub, A.: XEP-0384: OMEMO encryption (1999-2018),
https://xmpp.org/extensions/xep-0384.html

26. Symantec: Key Reconstruction - PGP Desktop (Feb 2011),
https://www.symantec.com/docs/TECH149043

27. Threema: Threema Cryptography Whitepaper (Jan 2019),
https://threema.ch/press-files/cryptography_whitepaper.pdf

28. Yang, C.H., Kuo, T.Y., Ahn, T., Lee, C.P.: Design and implementation of a se-
cure instant messaging service based on elliptic-curve cryptography. Journal of
Computers 18(4), 31–38 (2008)

https://xmpp.org/extensions/xep-0384.html
https://www.symantec.com/docs/TECH149043
https://threema.ch/press-files/cryptography_whitepaper.pdf

	Partitioned Private User Storages in End-to-End Encrypted Online Social Networks

