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Abstract—Multipath is known to be one of the dominant 

error sources in high accuracy positioning systems, and 
multipath estimation is crucial for multipath mitigation. 
Most existing multipath estimation algorithms usually 
consider the cases of single mutlipath with Gaussian noise. 
However, non-Gaussian noises and two-multipath are often 
encountered in many practical environments. In this paper, 
a new algorithm is proposed to cope with the multipath 
estimation problem of the latter. First, the multipath 
estimation problem is transferred into a constrained 
optimization problem using the central error entropy 
criterion (CEEC) as its objective function. The second-order 
moment of the estimation error and the prior information 
are taken as constraints to reduce the mean of the 
estimation error. Then, a modified ε-constrained rank-based 
differential evolution (εRDE) algorithm is explored to solve 
the optimization problem. The proposed algorithm has been 
compared with the particle filter algorithm using a two-
multipath case study example with non-Gaussian noises. 
The results suggest the proposed algorithm has improved 
the multipath estimation accuracy. 

Keywords-multipath estimation; optimization; central 
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I.  INTRODUCTION  
Multipath, the replica of direct signal, caused by the 

reflection of buildings, hills and other obstacles, is one of 
the dominant error sources for high accuracy positioning 
systems due to the irrelevancy between different instants 
and the occurrence uncertainty along the observation 
period. Many multipath estimation algorithms have been 
studied to eliminate the positioning error caused by 
multipath. Extended Kalman filter (EKF) is a useful 
algorithm for multipath estimation in Gaussian noises [1]. 
However, it cannot be effectively used to cope with 
multipath estimation problem with non-Gaussian noises. 
Alternatively, particle filter (PF) algorithm has been 
applied for multipath estimation in non-Gaussian noise 
environment [2]. PF methods use the sequential 
importance sampling to characterize the posterior 
probability density function (PDF) of multipath 
parameters. It involves the approximation of the posterior 
PDF by a set of random samples taken from an 
importance density function. The selection of the density 
function is critical for PF’s performance and the optimal 
one is usually hard to find in most cases. Furthermore, the 
problem of particle degeneracy also affects the PF’s 
application in multipath estimation. Besides, only single 

multipath is considered in previous works [3-5], although 
two-multipath case is also a typical scenario in practice.  

In this paper, two-multipath case is taken into 
consideration as a complementary to previous work [5]. 
The multipath estimation problem is formulated as an 
optimization problem utilizing the central error entropy 
criterion (CEEC) instead of the mean square error (MSE) 
as the objective function to minimize the randomness of 
the estimation error. One limitation of the optimization 
strategy in [5] is that it is sensitive to the initial state 
value and the initial filter gain. In view of this, an 
alternative optimization method is proposed in this work. 
Meanwhile, the second-order moment of the estimation 
error and the prior information of multipath parameters 
are considered as the constraints to reduce the mean of 
estimation error. Then, a ε-constrained rank-based 
differential evolution (εRDE) algorithm is modified to 
solve the optimization problem.   

The remaining of this paper is organized as follows. In 
section II the multipath signal model and the system 
model are described. The optimization problem of two-
multipath estimation is formulated in section III. The 
multipath estimation algorithm based on a modified εRDE 
algorithm is proposed to solve the aforementioned 
optimization problem in Section IV. Some simulation 
studies are presented to show the effectiveness of the 
proposed algorithm for two-multipath estimation with 
non-Gaussian noises in section V. Conclusions and the 
future work are discussed in Section VI. 

II. PROBLEM FORMULATION  

A. Signal Description 
In the presence of multipath, the received signal for 

GNSS can be modeled as an 1M  path model composed 
of a direct path signal,  dr t , and M reflected signals, 

 mr t , plus noise. Then, the corresponding base-band 
signal in in-phase channel at time i can be modeled as  
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where ( )c  denotes the C/A code of GNSS signal with 
the value ( )c  =1 or -1. α0 is the amplitude of the direct 
signal, αm is the amplitude of the m-th multipath, l0 is the 
time delay of the direct signal, lm is the m-th multipath 
time delay relative to the direct signal, θ0 is the direct 
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signal phase, θm is the m-th multipath phase delay relative 
to the direct signal, and  n i is the noise at time i. It is 
supposed that the received signal can be determined by 
the signal parameters, i.e., the amplitude, the time delay 
and the phase delay. 

In theory, there can be an infinite number of 
multipath signals present at any given time. In practice, 
however, there is rarely more than one or two dominate 
multipath signals present at any time [3]. In this work, 
two-multipath case is considered in this paper, i.e. M= 2.  

B. System Model 
The structure of signal tracking in GNSS is shown in 

Fig.1. The correlator output vector,
T1 2, , , S

k k k ky y y   y  , 

can be obtained by correlating the received signal  r i  
with the local C/A code 

vector      
T
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ˆ ˆ ˆ= , ,k k k Si l c i l d c i l d      c + d  , 

0,
ˆ

kl is the local estimation of 0,kl , which can be obtained 

from the capture stage. Here,  T1 2, , , Sd d dd  , sd  
( 1,2, ,s S  ) is the correlator spacing between the s-th 
code and the punctual code, and S is the correlator 
number. 0sd   corresponds to the early code, 0sd   
corresponds to the late code and 0sd   refers to the 
punctual code.  

Define 
T
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as the multipath parameters vector.  kx can be estimated 
according to ky  if enough correlator outputs are available. 
Then, the multipath part can be restructured according to 

kx , and the direct signal can be obtained by subtracting 
the multipath part from the received signal. After further 
processing, the estimated time delay, 0, 1

ˆ
kl  , can be 

calculated so as to tune the local code generator to make 
sure the punctual code synchronizes the received signal.  

 
Figure 1. Structure of signal tracking 

The output of the s-th correlator in Fig.1 is  
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where 0, 0,
ˆ

k k kl l   .  l0,k  and lm,k are the direct signal 
time delay and the m-th multipath time delay relative to 
the direct signal at the k-th correlation, respectively. K is 
the sample number in one observation period, pGT . pT is 
the period of C/A code, G is an integer. nk denotes the 
correlation noise. 1G  is used in this paper, which 
indicates that the observation interval between k-th 
correlation and  1k  -th correlation is 1 ms for GPS 
C/A code. 0,kA  and ,m kA   are the composite amplitudes 
of the direct signal and the multipath at the k-th 
correlation, respectively, and  0, 0, 0,cosk k kA   , 

 , , 0, ,cosm k m k k m kA     . For simplicity, k is used to 

represent the k-th correlation hereafter.  R   is the ideal 
autocorrelation function,  
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     From (2), it can be seen that the parameters to be 
estimated at time k are grouped to 

T
0, 1, , 0, 1, ,, , , , , , , ,k k k M k k k M kA A A l l l   x  

 
Assume kx  is not changed during the correlation period 
and is only related to previous state 1kx . Then, the 
system model can be formulated as a first-order Markov 
process [1]. 

        1k k k x A x w                              (3)  

 k k k y B x v                               (4) 

where 1D
k

x  denotes the state vectors, D=2(M+1). 
( )A  is the system matrix depending on the state vector 

kx . wk is the system noise assumed to be Gaussian 
distributed with the zero mean and the covariance matrix 
Q. ky  is the observing vector with 

T1 2, , , S
k k k ky y y   y   and s

ky is obtained according to 

(2). ( )B  is the measurement matrix depending on kx , 

kv  is the measurement noise with the zero mean and it is 
supposed to be non-Gaussian distributed.  

The main purpose of this paper is to recursively 
estimate kx  based on the observing vector ky . The 
statistics of state estimation error, ˆk k k e y y , are used to 
describe the estimation performance, where ke  is the 
input to performance index function and  ˆˆk k B xy , ˆkx  
is the filter result of kx . 

III. CONSTRAINED MULTIPATH ESTIMATION 
PROBLEM 

In this section, the multipath estimation problem is 
transferred into a constrained optimization problem. 



 

A.  Objective Function Design 
Since the concept of entropy is proposed by Shannon 

[6], there are many kinds of entropy are proposed for 
different purposes. Among these criteria, CEEC is 
proposed as a compromise between the minimum error 
entropy criterion (MEEC) and the maximum correntropy 
criterion (MCC) to overcome the problem of MEEC 
being shift-invariant and MCC being a local measure. 
The objective function of CEEC can be formulated as   

 CEEC, MCC, MEEC,1k k kJ J J                     (5) 
where JMCC,k is the objective function of MCC, and 
JMEEC,k is the objective function of MEEC, λ is a 
weighting constant ranging from 0 to 1. It is obvious that 
the CEEC is simplified into MEEC when λ=0 and MCC 
when λ=1. 

Now, we will preview some basic knowledge of 
MEEC and MCC. MEEC estimation aims to minimize 
the entropy of the estimation error, and hence decreases 
the uncertainty in estimation error. The Renyi’s entropy 
is adopted because of its easy calculation. Assume a 
random variable e with PDF f(e), the second-order 
Renyi’s entropy is defined by [7]  

   2
2 logH f d  e e e                          (6) 

     The kernel density estimation (KDE) is used as a data-
driven method in this paper. Given a set of i.i.d. 
data  1

N
i ie drawn from the distribution, the KDE of the 

PDF is 
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where N is the number of sample, Σ is the kernel 
parameter,   iG Σ e e  is a multi-dimension Gaussian 
function with the form as follows. 
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In this paper, Σ is assumed to be a diagonal matrix with 
the   s-th diagonal element being the variance 2

s  for es in 
e. The kernel parameter is a free parameter that must be 
chosen by the user.  

Therefore, using KDE, the Renyi’s quadratic entropy 
can be formulated as following [6], 
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where  

     
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V(e) is called the information potential (IP) of variable e 
and 2 2Σ Σ . Thus, minimizing the Renyi’s entropy 

H2(e) is equivalent to maximizing the IP V(e) owing to 
the monotonic increasing property of the log(·) function. 
In order to reduce the calculation complexity, the 
instantaneous information potential Vk(e) instead of V(e) 
is used as the objective function, i.e., 
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Given 1 2, , Se e e  are independent of each other, 
together with the characteristics of the multidimensional 
Gaussian PDF, we can obtain Vk(e) by applying the 
Parzen window technique to the objective function of 
MEEC.  
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where W is the length of the Parzen window, 
     2 21 2 exp 2e e      is a Gaussian kernel 

function. Thus, JMEEC,k needs to be maximized in order to 
minimize the randomness of estimation error.  

However, the MEE criterion is shift-invariant. 
Therefore, the MCC is integrated into MEEC to 
overcome this shortcoming. With Gaussian kernel, 
correntropy is a localized similarity measure between two 
random variables. Correntropy is a robust adaptation 
criterion in presence of non-Gaussian impulsive noise [8].  

For MCC, the objective is to maximize the following 
index, 

 
1MCC,k kJ E G   Σ e                            (13) 

Σ1 is the kernel parameter of JMCC,k. In practical 
applications, one often uses the following empirical 
correntropy instead, 
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JMCC,k in (14) is used as the objective function for MCC. 
The limitation of MCC lies that it is a local criterion 
because it only cares about the local part of error PDF 
falling within the kernel bandwidth. Thus, the kernel size 
has to be chosen carefully. 

Then, the objective function under CEEC is 
formulated as 
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The maximum problem can be transformed into a 
minimum optimization problem by the following formula. 
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In this way, the objective function is constructed by 
(16). 



 

B. Constrained Conditions 
In order to remove the mean error of the estimation 

result, the second-order moment of estimation error is 
expected to be zero, i.e.,

   T 0E e e                              (17)
 and it is calculated by the following statistical 

information,  
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where ( )E   means an expectation operator.  
To solve the optimization problem with equality 

constraint (17), a common strategy is to convert the 
equality constraint into an inequality constraint by setting 
a very small threshold. Thus, (17) can be transformed into 
an inequality constraint 

    T

1

1 k

i i
i k W

threshold
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where threshold  is a small positive number, such as 
510threshold  . 

Meanwhile, according to the physical characteristic of 
multipath that the multipath signal is normally weaker 
than the direct signal since some signal power is lost due 
to reflection, which means the multipath amplitude is 
smaller than the direct signal amplitude. i.e., 

, 0,m k k                                    (20) 
with m=1, 2, …, M 

Without the loss of generality, the assumption that the 
first multipath has the smallest relative time delay and the 
second multipath has a longer time delay compared with 
the first one and so on is taken. Accordingly, 

, 1,m k m kll                                  (21) 
with 1m M  .  

C. Boundary Conditions 
The boundary conditions are given according to the 

physical characteristics of multipath. Normalize the direct 
signal amplitude and the multipath amplitude, then α0, k 
and αm, k will be less than or equal to 1. The estimation 
error in acquisition process is usually less than 0.5Tc, 
so c c0.5 0.5kT T   . The multipath signal arrives after 
the direct signal for the reason that it must travel a longer 
distance over the propagation path, so the multipath time 
delay is longer than the direct signal time delay, i.e. lm≥0. 
The short multipath with time delay 0≤lm<2Tc is only 
considered since the multipath with longer time delay can 
be ignored due to the autocorrelation properties of C/A 
code. Accordingly, the boundary consideration can be 
given as 

0,0 1k 
 
                               (22) 

,0 1m k 
 
                               (23) 

0.5 0.5kc cT T                            (24) 

,0 2m k cTl                                 (25) 
Thus far the multipath estimation problem has been 

converted into a constrained optimization problem with 

the objective function (16), the constrained conditions (17), 
(20), and (21) and the boundary conditions (22) -(25). In 
this optimization problem, the dimension of the estimation 
parameters is 2(M+1), the number of equality constraint is 
one, the number of non-equality constraints is 2M. 

IV. MULTIPATH ESTIMATION BASED ON MODIFIED 
εRDE ALGORITHM 

In this paper, a modified εRDE algorithm is explored 
to find the optimal solution of the constructed 
optimization problem for its global search ability. εRDE 
algorithm, which is especially suitable for the constrained 
optimization problem with equality constrained 
conditions, is proposed by Takahama T, Sakai S [9]. 

In ε-constrained methods, the constraint violation 
( ) x  can be given by the following formulas [9]. 

 ( ) max 0, ( ) ( )
qq

i j
i j

g h   x x x           (26) 

where q is a positive integer, q=1 is chosen in this paper, 
 means the absolute operation,  denotes the 2-norm 

operation. The main idea of ε-constrained method is to 
sort the individuals based on a ε-level comparison 
strategy. The ε -level comparison defines a rank Rb for a 
given individual by comparing the pair (f(x), ( ) x ) of the 
given individual and that of other individuals. The rank of 
an individual is used to calculate its corresponding scale 
factor Fp and crossover rate CRp for differential individual. 
The details of Fp and Cp can be found in [9]. 

The flowchart of the proposed algorithm is given in 
Fig.2 and the flowchart of the modified εRDE algorithm is 
shown in Fig.3. In Fig.2, it is noted that the best individual 
is chosen as the estimation results ˆkx  at each iteration. 

 
Figure 2. The flowchart of proposed algorithm 

The reason of modification to εRDE algorithm lies 
that the original algorithm is not designed for iteration 
estimation and it is only used to search for an optimal 
solution to a given function. Therefore, we make a 
change to the ε-level updating strategy to guarantee it is 



 

suitable for iterative estimation, which can be expressed 
as 

      con
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with ε(1) is the sum of the constraint violation degree of 
the top a-th individual and a=0.2Np is chosen in this paper. 
Tcon and cp are constants.  

For (27), in the initial iteration stage a larger 
constraint violation is allowed. The individuals after 
evolution will approach the global optimum but not 
converge exactly to one point.  

 
Figure 3. The flowchart of the modified εRDE algorithm 

In order to reduce the complexity of εRDE algorithm, 
the case of φ1=φ2 is not taken into consideration due to 
the fact that it is of very small probability for φ1=φ2 in 
practical applications. As a result, the ε rank comparison 
defined in [9] can be simplified as follows.  
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V. SIMULATION ANALYSES 

A C/A signal of GPS is simulated assuming a 
scenario composed of a direct signal and two multipaths. 
The multipaths are in-phase, which is the worst possible 
case, which means , ,m k m kA  , m=0, 1, 2. The multipath 
parameters are supposed to be unchanged during 
observation period. The system noise is assumed to be 
Gaussian noise with the mean being zero and the 
covariance matrix Q=diag(0.001*ones(1, 2(M+1)). The 
correlator number should be larger than or equal to the 
state dimension number, i.e., S≥D. In this simulation, set 
S=9 (ds=0.7Tc, 0.5Tc, 0.3Tc, 0.1Tc, 0, -0.1Tc, -0.3Tc, -0.5Tc, 
-0.7Tc). The true values are set as A0=0.9, A1=0.6, A2=0.3, 
l0=100Tc, l1=0.2Tc, l2=0.6Tc. Ts=Tc/10, 0 c

ˆ 100.2l T . Our 
goal is to estimate A0, A1, A2, l0, l1, l2. 
    The non-Gaussian measurement noise with Gaussian 
mixture PDF f=λ1N(μ1, 2

1 )+λ2N(μ2, 2
2 ) is constructed for 

simulation, where N(μ, σ2) is a Gaussian distribution with 
the mean μ and variance σ2. λ1 and λ2 are the weights 
corresponding to the first Gaussian individual and the 
second Gaussian individual with λ1 +λ2=1. The simulation 
parameters are given in Table.1.  

TABLE.1  
SIMULATION SETTING UNDER NON-GAUSSIAN NOISE 

parameter CRmin CRmax Fmin Fmax D Np EFmax 

value 0.85 0.95 0.6 0.95 6 60 200 
parameter cp Tcon Ai,min Ai,max γmin γmax li,min 

value 5 100 0 1 -0.5 0.5 0 

parameter li,max W 2
1  2

2  Thres- 
hold λ1 λ2 

value 2 100 0.04 0.019 10-5 0.9 0.1 
parameter μ1 μ2 2

1  2
2  λ   

value 0 0 10 100 0.67   

 
Figure 4. The estimation results for two multipaths 



 

 
Figure 5. The error PDFs of the proposed algorithm 

The comparisons between the proposed algorithm 
and a standard PF algorithm are shown in Fig.4. The 
same initial population is used for the proposed 
algorithm and PF. It can be seen the proposed algorithm 
has a better estimation accuracy and smaller randomness. 
To further inspect the performance of the proposed 
algorithm, the error PDF of the proposed algorithm is 
shown in Fig.5. We can observe that the error PDF of the 
proposed algorithm becomes more and more 
concentrated around zero mean as the iteration proceeds, 
which indicates the estimation error becomes narrower 
and the randomness of estimation error becomes smaller. 

VI CONCLUSION 

In this paper, a modified εRDE algorithm is proposed 

to solve the two-multipath estimation problem in non-
Gaussian noise. Compared with the previous work on 
multipath estimation, the contributions of this paper are 
two folds: (1) two- multipath case is considered; (2) the 
multipath problem is solved as an optimization problem 
with CEEC as its objective, the second-order moment of 
estimation error and the prior information being 
considered as the constraints. A εRDE algorithm is 
modified to solve the formulated problem. The 
simulation results verified the effectiveness of the 
proposed algorithm for two-multipath estimation. At the 
current stage, only the static multipath is considered and 
the proposed algorithm appears to be more time 
consuming compared with the PF algorithm. These 
issues will be further investigated in the future work. 
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