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Abstract— An new scalarisation criterion is proposed for 

optimal experiment design (OED) of input intensity so as to 

obtain the most informative experimental data for parameter 

estimation with reduced parameter correlations. This 

criterion is a linear combination of logarithm function of the 

A-optimality and the modified E (ME)-optimality. It can be 

used to improve the estimation quality from the A-optimal 

design, and to reduce parameter correlations from the ME-

optimal design. The proposed algorithm has been examined 

through simulation study of an enzyme reaction system 

model. The results are compared with A-optimal design, ME-

optimal design, and other designs with a focus on reducing 

parameter correlations such as the C- and the CE- designs.  

Keywords - parameter estimation; optimal experimental 

design (OED); optimal input design; reduction of parameter 

correlation 

I.  INTRODUCTION  

Optimal experimental design (OED) is a useful and 
efficient technique for systematically building 
mathematical models. OED has great advantages in 
situations where conducting experiments is resource and 
time consuming. The idea of OED was first introduced by 
Fisher in 1937 [1], then developed by many other 
researchers [2-4]. Most works on OED only consider the 
relationships between input and output, which is referred to 
as the “black-box” design. Another type of design uses 
underlying physics of the system or process to propose one 
or several models, then the OED is used to support model 
discrimination and parameter estimation. The latter is 
called “model-based OED.” 

As discussed above, one crucial part in building 
mathematical model is estimating the unknown parameters 
in the model. It is usually called parameter estimation (PE) 
problem or model fitting problem. One typical approach to 
solve PE problem is the Least square estimation (LSE) 
which is based on the assumption of measurement error 
being normally distributed, and if this assumption cannot 
be satisfied then other parameter estimation structure such 
as guaranteed parameter estimation will be adopted [5]. The 
quality of estimation in the context of LSE is often 
evaluated statistically using the Student t-value for each 
parameter [6]. However, for multi-parameter models, high 
correlations between parameter pairs will result in very low 
t-values which may lead to inappropriate analysis with the 
estimation significance [7]. Therefore, joint confidence 
regions are often employed in multi-parameter models to 
assess the statistically quality of parameter estimation. 

Commonly, ellipsoids will be used to (over-)approximate 
joint confidence regions, while other type of over-
approximation method such as orthotope, zonotope also 
can be used [8]. 

In this paper, OED are used mainly for the purpose of 
designing the most informative data which can improve the 
estimation precision of parameters. Information contained 
in data is measured using Fisher information matrix (FIM). 
Since the joint-confidence ellipsoid can be approximately 
calculated using the inverse of FIM, we can modify the 
joint-confidence ellipsoid by a optimisation problem with 
the objective function being the scalar function of FIM. 
Therefore, OED problem can be formed as an optimisation 
problem and its objective function is a scalarisation 
criterion of FIM. Standard alphabet criterion including A-
optimality, D-optimality and E-optimality, but none of 
them can deal with the correlations between  parameter 
pairs, and more often, increase the correlations [9].  

Reference [10] has brought out a modified E (ME)-
optimal criterion which uses the condition number (ration 
between the maximum eigenvalue and minimum 
eigenvalue) as the objective function. This criterion is used 
to reduce the correlations between parameter pairs by 
works such as [11]. However, as pointed in many works 
including [12], [13] and [14], this criterion has many 
drawbacks. First of all, since it only aims at reshaping the 
joint-confidence ellipsoids to make them as spherical as 
possible, it may result in very large volumes to those 
ellipsoids. Secondly, the conditional number is normally 
discontinuous which will cause convergence problems in 
gradient based optimisation methods. Thirdly, this criterion 
has the limitation that is only useful to two parameter 
models.  

In order to tackle the first problem in ME-optimality, 
we introduce an improvement in this paper by combining 
the A-optimality with the ME-optimality together to ensure 
a satisfactory estimation precision while reducing the 
correlations between parameters. This criterion will be 
applied in an enzyme reaction system which is introduced 
in [15]. 

Other criteria aiming at reducing parameter correlations 
including the C-optimality criterion and the C-optimality 
criterion with the  constraints on  eigenvalues (which will 
be called the CE-optimality criterion in this paper) are 
proposed in [12]. C-optimality criterion uses the sum of 
square values of all correlation coefficients as the objective 
function, but it also has the problem that it does not take 
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information content into consideration which will cause 
large confidence interval. CE-optimality criterion design 
which uses the same objective function as the C-optimality 
criterion but added a constraint that the maximum 
eigenvalue of FIM should be larger than a certain threshold 
to ensure the information contained in the data. However, 
how to choose the threshold value becomes a big problem. 
Improperly choosing the threshold value will cause poorly 
design results which still has large confidence interval. 
Those methods will also be conducted in this paper as 
comparisons to our method. 

The remaining of the paper is organised as follows. In 
Section II, the methodology for parameter estimation and 
OED, as well as our proposed criterion  will be presented. 
A case study is introduced in Section III, for which the 
performance using the standard design criteria and the new 
criterion will be compared. Besides, comparison between 
the new criterion and other designs for correlation 
reduction will be discussed. Conclusions are given in 
Section IV. 

II. METHODOLOGY 

A. Parameter Esitmation and Optimal Experimental 

Design 

In model-based OED, the model is often described by a 
series of nonlinear ordinary differential equations (ODEs): 

𝑿̇(𝑡) = 𝒇(𝑿(𝑡), 𝜽),  𝑿(𝑡0) = 𝑿0     (1) 

 𝒀(𝑡) = ℎ(𝑿(𝑡), 𝜽) + 𝝃(𝑡)   (2) 

where 𝑿 = [𝑥1, 𝑥2, ⋯ 𝑥𝑛]𝑇  is a 𝑛 × 1  vector of state 
variables, 𝒇 (∙) is a set of state transition functions of the 
system dynamics which are assumed to be continuous and 

first-order differentiable, 𝜽 = [𝜃1, 𝜃2, ⋯ 𝜃𝑝]
𝑇

 is a 𝑝 × 1 

vector of parameters, 𝒀 = [𝑦1, 𝑦2 , ⋯ 𝑦𝑚]𝑇  is a 𝑚 × 1 
vector of measureable outputs, ℎ  is normally a selection 
function and 𝝃 is a vector of measurement errors which is 
assumed to be i.i.d. zero mean Guassian noise. 

Parameters in (1) and (2) can be estimated using least-
square estimation: 

𝜽̂ = 𝑎𝑟𝑔 min
𝜃∈Θ

∑ (𝒀(𝑡𝑙) − 𝒀̂(𝑡𝑙))
𝑇

∙ 𝑸−1 ∙ (𝒀(𝑡𝑙) −𝑁
𝑙=1

𝒀̂(𝑡𝑙)) (3) 

where 𝒀(𝑡𝑙) is the measurement data in time 𝑡𝑙, 𝒀̂(𝑡𝑙) is the 
model prediction, 𝑁 is the total number of sampling time 
and 𝑸 is the measurement error covariance matrix. 

As discussed before, the statistical quality of 
estimations is assessed by joint-confidence ellipsoid. This 
region can be calculated approximately using the first order 
Taylor series approximation to the expected function [6]: 

(𝜽 − 𝜽̂)
𝑻

∙ 𝑭 ∙ (𝜽 − 𝜽̂) ≤ 𝑝 ∙ 𝐹𝑑𝑖𝑠𝑡(𝑝, 𝑁 − 𝑝, 𝛼) (4) 

 𝑭 = ∑ 𝑺𝑇(𝑡𝑙) ∙ 𝑸−1 ∙ 𝑺(𝑡𝑙)
𝑁
𝑖=1   (5) 

where 𝑭  is the Fisher information matrix, 𝐹𝑑𝑖𝑠𝑡   is the 
Fisher distribution, 𝛼 is the level of probability which is 
often chosen as 95% or 99% and 𝑺 is the local sensitivity 

matrix with elements 𝑠𝑖𝑗 =
𝜕𝑥𝑖

𝜕𝜃𝑗
. 

Before conducting the OED, we should define the 
design vector 𝝋. Variables which can be manipulated by 
the experimenter and optimised during the OED procedure 
should be selected to the design vector according to the 
purpose of design. For example, sampling time, system 
input, system initial condition and measurement set 
selection are all can be selected as design vector. 

Then, the OED can be formed as: 

 𝝋∗ = 𝑎𝑟𝑔 min
𝝋∈𝚽

𝑔(𝑭)  (6) 

where 𝑔  is a scaler function that can reflect certain 
metrics of the FIM. Standard criteria including D-, A-, E-
optimality are devised to maximise the determinant, trace 
and minimum eigenvalue of FIM respectively. 
Geometrically, they are minimising the volume, enclosing 
box and major axis of joint-confidence ellipsoids, 
respectively. 

B. Parameter Correlations 

The estimation accuracy is often assessed by standard 
statistical tests such as Student t-test. However, t-test is 
based on the hypotheses that samples are statistically 
independent and this hypothesis will be severely damaged 
by the high correlations among the samples. This means 
only in the situation that parameters are uncorrelated, 
parameters can be estimated using confidence interval and 
statistical test individually and reliably [12]. 

Moreover, the correlations between parameter pairs 
have many problems in parameter estimation and OED 
procedure. First of all, the search for optimal design point 
can be badly hampered since the correlation will cause an 
elongated valley surface in objective function [18]. 
Besides, the effect of one parameter will be counteract by 
another due to the high correlation between them. 

Therefore, in order to make a confident conclusion on 
the estimation of parameters, we need to acquire data 
samples with most information and least correlations. 

Correlations between parameters can be assessed by 
correlation matrix 𝑪 , the coefficients of which can be 
calculated approximately by the coefficients of variance-
covariance matrix 𝑽 .  According to [16] and [17], the 
variance-covariance matrix can be estimated using FIM: 

 𝑽 ≈ 𝑭−𝟏    (7) 

Then the coefficients of the correlation matrix 𝑪 can 
be calculated by: 

 𝑐𝑖𝑗 =
𝑉𝑖𝑗

√𝑉𝑖𝑖∙√𝑉𝑗𝑗
   (8) 

C. Our Proposed Optimality Design 

Since standard criteria do not consider the correlations 
between parameters, the ME-optimality is developed, 
which minimises the conditional number of the FIM. 

 𝝋∗ = 𝑎𝑟𝑔 min
𝝋∈𝚽

𝑚𝑎𝑥𝑒𝑖𝑔𝑒𝑛(𝑭)

𝑚𝑖𝑛𝑒𝑖𝑔𝑒𝑛(𝑭)
  (9) 

Geometrically, this criterion can be interpreted as 
making the joint-confidence ellipsoid as spherical as 
possible. 

 



In order to overcome the limit that the ME-optimality 

may cause very large volume of joint-confidence ellipsoid, 

we proposed a criterion that combines the A-optimality 

with the ME-optimality linearly. This means we not only 

want to reduce the parameter pair correlations but also 

want to restrict the ellipsoid in a small enclosing box. This 

criterion can be described as: 

𝝋∗ = 𝑎𝑟𝑔 min
𝝋∈𝚽

(𝛽 ∙ log(𝑡𝑟𝑎𝑐𝑒(𝑭−1)) + (1 − 𝛽) ∙

log (
𝑚𝑎𝑥𝑒𝑖𝑔𝑒𝑛(𝑭)

𝑚𝑖𝑛𝑒𝑖𝑔𝑒𝑛(𝑭)
))    (10) 

This proposed criterion will be examined on an 

enzyme reaction system. Also, the C-optimality criterion 

and the CE-optimality criterion [12] will be applied, in 

order to compare the results with our proposed method on 

the reduction of parameter estimation quality and 

correlations.  These two methods will be introduced briefly 

here. 

1. C-optimality design:  

 𝝋∗ = 𝑎𝑟𝑔 min
𝝋∈𝚽

∑ ∑ 𝑐𝑖𝑗
2𝑝

𝑗=2
𝑝−1
𝑖=1 (𝜽̂, 𝝋)  

 (11) 

2. CE-optimality design: 

𝝋∗ = 𝑎𝑟𝑔 min
𝝋∈𝚽

∑ ∑ 𝑐𝑖𝑗
2𝑝

𝑗=2
𝑝−1
𝑖=1 (𝜽̂, 𝝋)  

 𝑠. 𝑡.  𝜆𝑖 − 𝜆𝑖
0 > 𝜀𝑖

𝜆  

 (12) 

where 𝑐𝑖𝑗  is the 𝑖𝑗-th element of the correlation matrix C, 

 𝜆𝑖 is an eigenvalue of the FIM 𝑭 and 𝜀𝑖
𝜆 is the threshold 

for  𝜆𝑖. 

III. CASE STUDY 

In this section, our proposed criterion will be tested 
using an enzyme reaction system which is proposed by 
[15]. First of all, the proposed criterion will be used in OED 
procedure and the results will be compared with the A-
optimality and the ME-optimality designs. Then the C-
optimality criterion and the CE-optimality criterion will be 
applied in the OED procedure to choose the best initial 
input values. The ability to reduce correlations between 
parameter pairs will be compared with the proposed 
criterion.  

The model description and the nominal value of 
parameters are given in the appendix. According to [15], 
the initial concentrations of 𝑆, 𝑁, 𝐸, which will be written 
as 𝑆0, 𝑁0, 𝐸0 , are chosen as the controllable factor and are 
selected as the design vector 𝝋. Parameters 𝑘2 , 𝑘−3  and 
𝑘−5 are determined as the three most important parameters 
through the sensitivity analysis. These three parameters 
will be selected for the OED. 

A. Optimal Input Design Using the proposed design 

Since our proposed criterion is the combination of the 
A-optimality and the ME-optimality, OED will be 
conducted using the A-, the ME- and the proposed criterion, 
and their parameter estimation quality will be compared. 
The standard deviation is chosen to be 0.1 in this case study 
when simulating the measurement data.  

In the proposed criterion we simply select 0.5 to be the 
value of 𝛽. The optimal design vector that obtained using 
the active-set method from those three criteria are shown in 
Table 1. 

Table. 1 Optimal input intensities with the A-, the ME- and the 
proposed ME design 

Design criterion 𝐸0 𝑆0 𝑁0 

A-optimality 3.5023e-6 0.3982 1 

ME-optimality 1.5e-6 0.0018 0.0762 

Proposed 
optimality 

1.5e-6 0.0250 0.1069 

Unit: mol/L 

Using those designed values, we can generate 
experimental data and then estimate parameters 𝑘2,  𝑘−3, 
and 𝑘−5. The estimation quality is presented using joint-
confidence ellipse which is shown in Fig.1-Fig.3. 

 

Figure 1. Joint-confidence region for  𝑘2 and 𝑘−3 using the A-, the 

ME- and the proposed design criteria 

 

Figure 2. Joint-confidence region for 𝑘2 and 𝑘−5 using the A-, the 
ME- and the proposed design criteria 



Figure 3. Joint-confidence region for 𝑘−3 and 𝑘−5 using the A-, the ME- 
and the proposed design criteria 

It shows that the confidence interval using ME-
optimality is too large to make valuable conclusion on the 
estimation of parameters. Using the ME-optimality design, 
the reduction of parameter pair correlation sacrifices the 
parameter estimation precision. 

Then, we check the parameter correlations for those 
three designs: 

 

Figure 4. Correlations between selected parameter pairs with the 
proposed design 

 

Figure 5. Correlations between selected parameter pairs with the A 
design 

 

Figure 6. Correlations between selected parameter pairs with the ME 
design 

It can be seen that, compare to ME-optimal, the 
proposed criterion has largely reduced the confidence 
interval for all three parameters and preserved the low-
correlations between parameter pairs [𝑘2 ,  𝑘−3] and [𝑘2 , 
 𝑘−5 ]. The proposed criterion is actually a compromise 
between improving parameter estimation precise which is 
obtained by A-optimality and reducing correlations which 
is obtained by ME-optimality. 

B. Comparesion with Other Correlatin Reduction 

Designs 

This section we will conduct other designs which aim 
at reducing correlations between parameters including the 
C-optimality criterion design and the CE-optimality 
criterion design. The designed results are shown in Table 2. 

Table. 2 Optimal input intensities with C- and CE- designs 

 𝐸0 𝑆0 𝑁0 

C-optimality 
criterion 

1.5e-6 0.01 1 

CE-optimality 
criterion 

3.1724e-6 0.0535 1 

Unit: mol/L 

      Joint-confidence region calculated using designed 
values are shown in Fig. 7-Fig.9. 

 

Figure 7. Joint-confidence region for 𝑘2 and 𝑘−3 with the proposed 
design, the C-optimality design and the CE-optimality design 



 

Figure 8. Joint-confidence region for 𝑘2 and 𝑘−5 with the proposed 
design, the C-optimality design and the CE-optimality design 

 

Figure 9. Joint-confidence region for 𝑘−3 and 𝑘−5 with the proposed 
design, the C-optimality design and the CE-optimality design 

From the figure above we can see that the C-optimality 
criterion design has the best effect on reducing the 
correlation between parameters, but it has a larger joint-
confidence region than the proposed design. However, if a 
constraint is added to the C-optimality criterion design to 
ensure the information content, which is the idea of CE-
optimality criterion design, the effect of reducing parameter 
correlation is not obvious. The correlations between 
parameters are shown in Fig. 10 and Fig. 11. 

 

Figure 10. Correlations between selected parameter pairs with the C-
optimality criterion design 

 

Figure 11. Correlations between selected parameter pairs with the 
CE-optimality criterion 

      From the results above, we can see that when the 
threshold for the CE-optimality design is set to be the same 
as our proposed criterion, the correlation coefficients is 
larger than the proposed criterion. This means our criterion 
has a better performance for the balance between the 
information content and parameter correlations. 

IV. CONCLUSION AND FUTRUE WORK 

In this paper, a new criterion has been proposed which 

linearly combines the A-optimality criterion and the ME-

optimality together to acquire the experimental data with 

satisfactory estimation information and parameter pair 

correlation reduction. This new criterion has two 

advantages: 1. It greatly improves the performance of the 

ME-optimality which often causes convergence problem 

in gradient-based numerical optimisation approach. 2. It 

largely reduces the correlations between parameters 

compared to standard alphabetical criteria such as the A-

optimal criterion. It also has better performance than other 

designs which are mainly designed for correlation 

reduction. However, reducing confidence interval and 

reducing correlations are always contradictory and trade-

off is always needed during the design. 

Since the proposed criterion in this paper is only 

applied to a simulation model, it should be tested on 

models with actual measurement data. Besides, since this 

proposed criterion combines the improvement of 

parameter estimation quality and the reduction of 

correlations between parameter pairs, it is actually a multi-

objective design. Multi-objective design will be a 

promising and interesting field in the future work. 
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APPENDIX 

The following ODEs are derived for the enzyme 
reaction system following the mass-balance principle. 

              
𝑑𝐸

𝑑𝑡
= −𝑘1 ∙ 𝐸 ∙ 𝑆 + 𝑘−1 ∙ 𝐸𝑆 + 𝑘4 ∙ 𝐸𝑄 

−𝑘−4 ∙ 𝐸 ∙ 𝑄 + 𝑘6 ∙ 𝐸𝑅                (A1) 

       
𝑑𝐸𝑆

𝑑𝑡
= 𝑘1 ∙ 𝐸 ∙ 𝑆 − 𝑘−1 ∙ 𝐸𝑆 − 𝑘2 ∙ 𝐸𝑆 

+𝑘−2 ∙ 𝐸∗ ∙ 𝑃   (A2) 

      
𝑑𝐸∗

𝑑𝑡
= 𝑘2 ∙ 𝐸𝑆 − 𝑘−2 ∙ 𝐸∗ ∙ 𝑃 − 𝑘3 ∙ 𝐸∗ ∙ 𝑁 + 𝑘−3  

∙ 𝐸𝑄 − 𝑘5 ∙ 𝑊 ∙ 𝐸∗ + 𝑘−5 ∙ 𝐸𝑅 (A3) 

      
𝑑𝐸𝑄

𝑑𝑡
= 𝑘3 ∙ 𝐸∗ ∙ 𝑁 − 𝑘−3 ∙ 𝐸𝑄 − 𝑘4 ∙ 𝐸𝑄   

+𝑘−4 ∙ 𝐸 ∙ 𝑄   (A4) 

  
𝑑𝐸𝑅

𝑑𝑡
= 𝑘5 ∙ 𝑊 ∙ 𝐸∗ − 𝑘−5 ∙ 𝐸𝑅 − 𝑘6 ∙ 𝐸𝑅          (A5) 

𝑑𝑆

𝑑𝑡
= −𝑘1 ∙ 𝐸 ∙ 𝑆 + 𝑘−1 ∙ 𝐸𝑆  (A6) 

𝑑𝑃

𝑑𝑡
= 𝑘2 ∙ 𝐸𝑠 − 𝑘−2 ∙ 𝐸∗ ∙ 𝑃   (A7) 

𝑑𝑁

𝑑𝑡
= −𝑘3 ∙ 𝐸∗ ∙ 𝑁 + 𝑘−3 ∙ 𝐸𝑄  (A8) 

𝑑𝑄

𝑑𝑡
= 𝑘4 ∙ 𝐸𝑄 + 𝑘−4 ∙ 𝐸 ∙ 𝑄   (A9) 

  
𝑑𝑅

𝑑𝑡
= 𝑘6 ∙ 𝐸𝑅                  (A10) 

where 𝑘1, 𝑘−1, 𝑘2, ⋯ , 𝑘6 are reaction rates, S, Q, P, N and 
R are donor substrate, desired product, leaving group 
product, nucleophile and hydrolysis respectively and are 
measurable. E, ES, E*, EQ and ER are different form of 
enzymes and are difficult to measure since concentrations 
of them are very low. W is water and is constant. 

The initial concentration of 𝑆, 𝑁, 𝐸 , which will be 
written as 𝑆0, 𝑁0, 𝐸0  are chosen as the controllable factor 
and are selected to the design vector 𝝋. The design space is 
𝑆0 ∈  [0,1],  𝑁0 ∈ [0,1],  𝐸0 ∈ [1.5𝑒 − 6,1.5𝑒 − 4]and the 
nominal values for design vector are 𝑆0 = 0.8, 𝑁0 =
0.9, 𝐸0 = 1.5𝑒 − 5 (unit: mol/L). Concentration of other 
states are zeros. The nominal value of parameters 
𝑘1, 𝑘−1, 𝑘2 ⋯ 𝑘6 are shown in Table A1. 

Table A1. Nominal parameter values  

Kinetic 
parameters 

Nominal values Units 

𝑘1 1e5 𝑚𝑜𝑙−1 ∙ 𝐿 ∙ 𝑠−1 

𝑘−1 1e3 𝑠−1 

𝑘2 100 𝑠−1 

𝑘−2 1e4 𝑚𝑜𝑙−1 ∙ 𝐿 ∙ 𝑠−1 

𝑘3 5e4 𝑚𝑜𝑙−1 ∙ 𝐿 ∙ 𝑠−1 

𝑘−3 200 𝑠−1 

𝑘4 1e3 𝑠−1 

𝑘−4 2e4 𝑚𝑜𝑙−1 ∙ 𝐿 ∙ 𝑠−1 

𝑘5 5e3 𝑠−1 

𝑘−5 100 𝑠−1 

𝑘6 500 𝑠−1 

 


