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Abstract—This paper investigates the stochastic distribution
tracking problem while the probability density function (PDF)
of the stochastic non-linear system output can be controlled to
desired distribution. To achieve the control objective, a data-
driven approach is proposed in which no information of the
system model is required. The output PDF can be estimated
by kernel density estimation (KDE) based on the collected
system output data. Using the estimated PDF, the probability
states can be obtained by sampling operation which can be
used to re-characterise the PDF of the system output. Thus,
the tracking performance can be achieved by PID control. The
parametric selection of the controller has been analysed following
the identified PDF dynamic model to assure the convergence of
the system output. The effectiveness of the presented algorithm
is illustrated by a numerical example.

Index Terms—Stochastic distribution control, non-Gaussian
systems, probability density function (PDF), data-driven, PID

I. INTRODUCTION

The stochastic distribution control has been developed for
general non-Gaussian systems in late 1990s in which the
system output PDF is considered as an extended system output
to be controlled [1]. Using the concept of distribution control,
the probabilistic decoupling [2], perforamnce enhancement
[3], data-based identification [4], non-Gaussian filtering [5],
operational control [6] and multipath estimation [7] have been
developed recently. Output PDF control is also an important
topic for control application e.g. networked DC motor control
[8].

The PDF reflects the full information of the stochastic signal
in terms of its randomness. To control the shape of the PDF,
the relationship between the PDF and the control signal needs
to be established. Mostly, there are two approaches to model
the dynamics of the system output PDF [9]. 1) Represent of the
PDF via neural network modelling. Following this approach,
the output PDF is de-composited by the base functions with
weighting factors written in a vector, and the dynamics of
the weighting vector can be considered as the states of the
PDF model [10]. In practice, this approach can be used for
paper-making process [11], neural signal transmission [12],
[13], etc. The main problem with this approach is that it is
numerically demanding to train the neural network weights
at each sampling instant, which is difficult for real-time
implementation. 2) Establish direct PDF evolution based on

the system model and the known PDF of the noise [14]. Since
most models in practice is inaccurate and the PDF of the
noise is difficult to obtain, this approach is also inconvenient
for implementation. In other words, the existing results based
on PDF shaping, for example non-Gaussian filtering and fault
diagnosis [15], [16], can be simplified following the presented
framework.

To overcome the above-mentioned modelling problems, a
question is raised as ’would it be possible to develop the
PDF model based on the output data only without using the
system model nor the tedious neural network training?’ This
is discussed in this paper. In particular, a PDF can be approxi-
mated by kernel density estimation (KDE) [17], [18] using the
collected system output data. Fixed points can be sampled in
the continuous estimated PDF function, through which a group
of the associated values can be obtained. These sampled data
can be used to form a vector to represent the PDF. Moreover,
we can further define this vector as the probability density
state (PDS) vector. Following this approach, the PDS vectors
of the target PDF and the actual output PDF can be obtained,
the distance between them is defined as the error of the PDS
vector. The output PDF shaping problem is then formulated as
a typical tracking problem for which many control solutions
are available. In this paper, the widely used PID design has
been adopted due to the simple structure.

The rest of this paper is organised as follows: in Section II,
preliminaries and the data-driven modelling have been given
including the KDE and PDS representation. The main result
on PID control design is presented in Section III. In Section
IV, the stability analysis is given. Numerical simulation results
and conclusions are discussed in Section V and Section VI.

II. PRELIMINARIES AND DATA-DRIVEN MODELLING

A general SISO stochastic non-linear system can be formu-
lated by the following system model:

xk+1 = f (xk, uk) + wk

yk = h (xk) + vk (1)

where x ∈ Rn, y ∈ R1 and u ∈ R1 denote the system
state vector, system output and control input, respectively.
w ∈ Rn and v ∈ R1 stand for the random noises with
arbitrary stochastic distributions. k is the sampling index.



f : Rn×R1 → Rn and h : Rn → R1 are non-linear functions.
The following assumptions are made for the system.

Assumption 1. There exist two positive real numbers L1 and
L2, such that the following inequality holds for any sampling
instant k.

‖f (xk, uk)− f (xk−1, uk−1)‖ ≤ L1 ‖∆xk‖+ L2 ‖∆uk‖

Assumption 2. The function h (·) meets Lipschitz condition
while there exists a real positive number L3, such that

‖h (xk)− h (xk−1)‖ ≤ L3 ‖∆xk‖

As the sampled system output values can be collected along
k, such as y1, y2, . . ., the PDF of the system output y can be
estimated by KDE. In particular, we have

γ̂k (α) =
1

k

k∑
i=1

G (α− yi) (2)

where G (·) denotes the Gaussian kernel function and α stands
for the random variable of the system output y and γ̂k (α)
approximates the PDF of the system output at each sampling
instant k.

The base points in sample space can be pre-specified as
α1, α2, . . . , αm where m ≥ n is a positive integer. Thus, the
PDF can be sampled as

zk =
[
γ̂k (α1) γ̂k (α2) . . . γ̂k (αm)

]T
(3)

where the m-dimensional vector-valued zk is defined as the
probability density state (PDS). Note that zk can equivalently
represent γ̂k (α) if m is selected large enough and the repre-
sentation can be demonstrated by Fig. 1.
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Fig. 1. PDF representation using probability density states which can be
considered as PDF sampling. Note that the interpolation would result in
negative parts of the PDF if the base points are scattered along the sample
space.

Following the same approach, the target PDF γref can also
be approximated by a m-dimensional vector zref . Therefore,

the PDF shaping objective can be described by the following
objective:

lim
k→∞

z̃k → 0 (4)

where the error is defined as z̃ = zref − zk. Note that zk
and zref are measurable and all the PDS vectors for sampling
instant k can be obtained using output data only without the
system model (1).

Remark 1. Since the PDS can be used to restore the PDF,
the base points can be selected following the Shannon’s The-
orem which guarantees the sampled PDS maintains enough
information. Basically, m ≥ n.

III. PID CONTROLLER DESIGN ALGORITHM

To achieve the control objective, the PID design can be
considered as follows:

uk = KP z̃k +KI

k∑
i=1

z̃i +KD (z̃k − z̃k−1) (5)

where KP ∈ Rm, KI ∈ Rm and KD ∈ Rm denote the pro-
portional gain, integral gain and derivative gain, respectively.

Although the PID controller parameters can be tuned fol-
lowing trial and error method, the parametric selection can be
determined by the following systematic design procedure.

Assume that the dynamics of the PDS can be approximately
described using the following linear dynamic model.

zk+1 = Azk +Buk (6)

where A ∈ Rm×m and B ∈ Rm×1 denote the coefficient
matrices. Then the model in (6) can be rewritten as

zk+1 = Θ
[
zTk uk

]T
(7)

where Θ =
[
A B

]
can be identified using least square

algorithm since zi, ui with ∀i < k are known data for sampling
index k.

The PID control input can be re-expressed using the fol-
lowing formula:

uk = K
[
z̃Tk pTk z̃Tk − z̃Tk−1

]T
pk = pk−1 + z̃k (8)

where pk =
k∑

i=1

z̃i and K =
[
KP KI KD

]
.

Denoting z̄ =
[
zTk pTk zTk−1

]T
as the extended PDS

vector, we have

z̄k+1 =
(
Ā+ B̄KC̄

)
z̄k +

[
BKP I 0

]T
zref

zk =
[
I 0 0

]
z̄k (9)

where I denotes the identity matrix and

Ā =

 A 0 0
−I I 0
I 0 0

 , B̄ =

 B
0
0

 , C̄ =

 −I 0 0
0 I 0
−I 0 I


(10)



The gain selection K can be determined by the following
theorem.

Theorem 1. There exists a gain matrix K that makes the
dynamics of the PDS-based linear model (6) stable with
the extended coefficient matrices (9) and (10), such that the
parametric matrix K = W−1Y satisfies the following linear
matrix inequality (LMI):[ −M MĀ+ B̄Y C̄(

MĀ+ B̄Y C̄
)T

(β − 1)M

]
< 0 (11)

where M stands for a symmetric positive definite matrix,
MB̄ = B̄W and β ≥ 0 denotes the decay rate.

Proof. To ensure the stability of the PID design, the following
Lyapunov function candidate can be adopted.

Vk = z̄TkMz̄k (12)

where M denotes the real positive definite symmetric matrix
M > 0.

Based upon the presented Lyapunov function candidate, we
have

Vk+1 − Vk = z̄Tk

((
Ā+ B̄KC̄

)T
M
(
Ā+ B̄KC̄

)
−M

)
z̄k

(13)

We can further consider a decay rate for the Lyapunov
function candidate such that the following inequality holds.

Vk+1 − Vk ≤ −βVk (14)

where 0 ≤ β < 1.
Then the stability condition can be obtained as follows:(
Ā+ B̄KC̄

)T
M
(
Ā+ B̄KC̄

)
− (1− β)M < 0 (15)

To rewritten the inequality into LMI, we can further in-
troduce Y = WK and MB̄ = B̄W , thus the LMI (11) is
obtained using Schur complement and the PID gain can be
selected as K = W−1Y which ends the proof.

As a summary, the control algorithm can be described by
the following block diagram.

Fig. 2. The block diagram of the presented data-driven PDF control via PID.

IV. STABILITY

As the PDF of the system output has been adjusted to the
desired PDF, the system output is bounded in mean-value
sense. In this section, the stability of the stochastic system
output will be analysed without using the result from the
system PDF.

Based on the system model (1) and control law (5), the
following equations will be obtained.

∆xk+1 = f (xk, uk)− f (xk−1, uk−1) + wk − wk−1 (16)

and

∆uk = (KP +KD) (z̃k − z̃k−1)−KD (z̃k−1 − z̃k−2) +KI z̃k
(17)

where ∆xk+1 = xk+1 − xk and ∆uk = uk − uk−1.
Using the assumption of function f (·) in the system model

(1), Eq. (16) results in

‖∆xk+1‖ ≤ L1 ‖∆xk‖+ L2 ‖∆uk‖+ ‖wk − wk−1‖ (18)

Note that there always exist two real number λ and λ̄ such
that the following inequality holds.

λz̃k ≤ z̃k−j − z̃k−j−1 ≤ λ̄z̃k, j = 0, 1, . . . , k − 1 (19)

where λ and λ̄ denote the upper bound and lower bound,
respectively.

Thus, Eq. (17) leads to the following result.

‖∆uk‖ ≤
(
λ̄ (KP +KD)− λKD +KI

)
‖z̃k‖ (20)

As mentioned above, the zk will track the reference with a
non-zero control input, which implies that there always exists a
positive real number σ̄ > 0, such that the following inequality
holds

‖z̃k‖ ≤ σ̄ ‖x̃k‖ (21)

Applying the mathematical expectation operation to Eq. (18)
and substituting Eqs. (20)(21) to Eq. (18), we have

E {‖∆xk+1‖} ≤ ΞE {‖∆xk‖} (22)

where

Ξ =
∥∥L1 + σ̄L2

(
λ̄ (KP +KD)− λKD +KI

)∥∥ ≤ 1 (23)

since E {‖wk − wk−1‖} = 0.
Based on the assumption of function h (·), the system output

y is bounded in mean-norm sense once ∆xk converge to zero
in mean-norm sense.

To summarise the analysis in this section, a theorem can
be given to describe the stability condition of the investigated
stochastic system with PDF tracking design.

Theorem 2. The system output of the stochastic non-linear
system (1) is bounded in mean-norm sense using the PID
control design (5) with the system assumptions 1 and 2, if
the parameters of the controller can be selected to make the
positive coefficient Ξ ≤ 1.



Proof. The proof of this theorem has been illustrated above.

Following the stability analysis, the pseudo-code has been
given to illustrate the procedure of the presented control
algorithm implementation where the operation with ∗ means
optional step. In other words, the algorithm can also be
implemented without ∗ steps.

Algorithm 1 Data-driven PDF control based on PDS and PID
Require: Data collection of system output y
Input: The desired PDF as the target of the control system
Output: The actual PDF of the system output γ(α)

Initialization: Pre-specified the kernel density function, the
dimension of z, the time tc to replace the pre-control input
by PID controller and the ts for operation time.
for k ≤ ts do

Collect the time sampling data set of y
if k ≥ tc then

Estimate the PDF using the collected data y
Calculate the PDS z for k
Calculate the error of the PDS z̃ for k
* Identify the model coefficient matrices A and B
* Obtain the PID parameters by solving LMI
uk = PID

else
uk = pre− selectedsignal

end if
Update the system with uk
k = k + 1

end for
Restore the output PDF using the final PDS and data
interpolation

V. SIMULATION

To evaluate the presented model-free stochastic control al-
gorithm, the following numerical example has been considered
while the system model is given by

xk+1 = xk sin (xk + 0.05)− uk + wk

yk = 0.1xk + vk

where process noise w denotes Gaussian noise with zero mean-
value and variance is equal to 1. Measurement noise v denotes
Gaussian noise with zero mean-value and variance is equal
to 0.1. Due to the non-linearity of the system, the PDF of
the system output y is non-Gaussian although the system is
subjected to Gaussian noises.

The desired PDF can be pre-specified as Gamma dis-
tribution with the parameter a = 1 and b = 2,
while the reference zref = [0.005, 0.2353, 0.1570, 0.0027]
with the base points [-5, -1.667, 1.667, 5] in sample
space of system output. The PID parameters can be se-
lected as KP = diag {1000, 1000, 1000, 1000}, KI =
diag {127, 127, 127, 127} and KD = 0. Thus, the simulation

results have been demonstrated by the following figures. Note
that the controller will be added into the closed-loop system
when k ≥ 100 due to the fact that KDE needs sufficient data
to approximate the output PDF. Also, if the PID parameters
are determined by the PDS-based dynamic model (6), the
sufficient data is also essential to identify the coefficient
matrices.

In particular, Fig. 3 demonstrates the PDS zk at k = 1000
and k = 100. Comparing with the desired PDS zref , it has
been show that the PDS zk goes to zref along k while the
PID control input is given by Fig. 4. The control input is
bounded and converges to a constant. To show the complete
dynamics of the PDS performance, the 3D mesh for PDS
has been indicated by Fig. 5 where zk has been adjusted
dynamically with PID control input. Based on Fig. 5, Fig. 6
show the pseudo PDF of the system output y. Note that there
exist some negative parts which are the errors due to the data
interpolation using Matlab. Moreover, the measurable system
output is shown by Fig. 7 and it is also bounded using the PID
control input which matches the analysis of the stability. The
error vector z̃ is illustrated by Fig. 8 which also implies that
the PDF tracking is achievable as the errors trend to zero along
k. In addition, another 3D mesh of the PDS zk is given using
Fig. 9 as a comparison where the control input has been setup
as uk = 0 and the result shows that the PDF of the investigated
stochastic system output will not be re-shaped without control
input.

Based upon the simulation, it has been shown that all the
operations are simply to implement without training weights
of neural network and PDF evolution. Since the simple control
algorithm does not use any information of the system model,
we can claim that the presented algorithm is pure data-driven
approach sometime we also call it model-free design.

To validate the condition of the PID parametric selection,
the identified model can be obtained following the least square
method with the collected system output data. The coefficient
matrices in Eq. (6) have been estimated as follows:

A =


−1434 −6.43 427 5.3e+ 16
−38024 −216.2 14663 2.1e+ 18
−1346 −7.61 543.2 6.5e+ 16
−2.3e− 11 −1.2e− 13 8e− 12 1032


and

B =
[
−0.43 −14.2 −0.51 0

]T
which further evaluate the selected PID gain matrices.

VI. CONCLUSIONS

In this paper, a data-driven implementable control algorithm
has been developed to achieve probability density function
tracking for general stochastic non-linear systems. Different
from all the existing results such as neural network approach,
direct PDF evolution approach, etc., the presented algorithm
uses probability density state vector to characterise the esti-
mated PDF of the system output in which the kernel density
estimation has been adopted with the collected system output
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Fig. 3. The PDS z of the system output y comparing with k = 100, 1000
and zref .
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Fig. 4. The PID control input for the investigated closed-loop system.
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Fig. 5. The 3D mesh for the PDS z of the system output y while z converges
to zref along k.

data only. Once the fixed base points in sample space have

Fig. 6. The pseudo PDF of the system output y based on the curve-fitting, PDS
and data Interpolation. Note that the PDF should be always positive however
the negative part in the figure come from the error of data interpolation
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Fig. 7. The system output y of the stochastic system while y is bounded
based on the presented data-driven design.
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driven approach.
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Fig. 9. The PDS of the system output y without control input where u = 0
which shows that the shape of the system output PDF will not be changed
along k.

been pre-specified, the dynamics of the system output PDF is
represented by the dynamics of the PDS. Moreover, the target
PDF is reformulated by the reference PDS, then the control
objective has been transformed equivalently as the distance
of the PDS. For the purpose of the practical application, PID
design has been used to eliminate the PDS error and the sim-
ulation results demonstrate the effectiveness of the presented
control algorithm. As a significant component of the control
design, the parametric selection of the PID controller has
been given following the identified PDS-based dynamic linear
model and the stability analysis of the closed-loop stochastic
system is obtained. It has been shown that the presented PID
-form control input is able to achieve the system output PDF
tracking while the system output of the investigated system
can be proofed as a bounded stochastic variable. The main
contribution of this paper can be summarised as developing
a pure data-driven control algorithm for solving the practical
probability density function control problem.
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