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Abstract—With the help of immersion lithography and 
multiple patterning, photolithography has been the key 
technology over the last decade in manufacturing of ICs, 
microchips and MEMS devices. Continuous rapid shrinking 
of feature size made the authorities to seek alternative 
patterning methods that can go beyond classic photographic 
limits. Some promising techniques have been proposed as 
next generation lithography and further technological 
progress are required to make them significant and reliable 
to meet the current demand. EUVL is considered as the 
main candidate for sub-10 nm manufacturing because of its 
process simplicity and reduced operating cost. Remarkable 
progress in EUVL has been made and the tools will be 
available for commercial operation soon. EBL, FIB and X-
ray lithography are used for patterning in R&D, mask/mold 
fabrication and low volume chip design. DSA have already 
been realized in lab and further effort will be needed to 
make it as NGL solution. NIL has emerged attractively due 
to its simple process-steps, high-throughput, high-resolution 
and low cost and become one of the commercial platforms 
for nanofabrication. 
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I.  INTRODUCTION 

Photolithography has been the dominant method of 
patterning nanoscale features for the microelectronics 
industries since the commencement of the ICs. Resolution 
Enhancement Technologies (RET) and Immersion method 
enable the photolithography with patterning beyond its 
intrinsic resolution limit. RET improves the quality of an 
image. It generally includes phase shift mask, optical 
proximity correction (OPC), modified or off-axis 
illumination (OAI), and multiple patterning. Although, 
they have extended the capability of the lithography 
process, these methods experience some restrictions too. 
Phase shift method has some limitations on 
implementation of mask due to phase termination 
problems and mask fabrication difficulties. The OPC 
technique introduces layout restrictions and prohibitive 
costs to make the corrected masks, while OAI presents 
complexity to the illumination source in the wafer stepper 
and to the mask design. 

Multiple patterning is the main technique for current 
sub-20 nm volume manufacturing, which enables to print 
the patterns that are smaller than the single exposure 
lithographic resolution limit using multiple process steps. 
There are many different techniques to implement 
multiple patterning including litho-etch-litho-etch (LELE), 
self-aligned double patterning (SADP) and self-aligned 
quadruple patterning (SAQP). However, more and more 
masks will be required for finer process nodes, resulting in 
prohibitively expensive manufacturing cost and it requires 

much tighter overlay control than single patterning [1]. 
193nm immersion lithography (193i) has given influential 
boost to the further development of microelectronics and 
the 22-nm and 14-nm nodes are currently manufactured 
with multipatterning immersion ArF lithography [2]. 
However, this technique brings enormous process 
challenges like leaching, immersion defects and the filling 
methods of a purified medium. Despite the challenges, it 
has been the mainstream lithographic technique used in 
manufacturing industries since last decade.  

As reported by the International Technology Roadmap 
for Semiconductors 2015 (ITRS2015) that new type of 
logic devices (Gate-all-around structures) have already 
been introduced [3]. This report also demonstrates the 
development of many new types of memory devices that 
can be the possible alternatives in the future. However, 
lithography techniques with sub-10 nm nodes patterning is 
demanded by the industry and these new devices will push 
patterning to manufacture even smaller nanostructures. 
This rapid shrinking of feature size intensely enhances the 
design complexity and introduces various manufacturing 
challenges. As the conventional photolithography has 
approached its ultimate limits, considerable efforts have 
been devoted to next generation lithography (NGL) 
techniques by various research laboratories and industries 
around the globe. This paper introduces the NGL 
techniques namely Extreme Ultraviolet Lithography 
(EUVL), Electron Beam Lithography (EBL), Focused Ion 
Beam Lithography (FIBL), Nanoimprint Lithography 
(NIL), Directed Self Assembly (DSA) and X-Ray 
Lithography (XRL). They have the potential as the 
replacement to conventional photolithography. 

II. EXTREME ULTRAVIOLET LITHOGRAPHY 

Due to wavelength limitations, current attentions are 
directed toward developing EUV lithography. In the last 
decade researchers put extensive interest in EUVL as a 
“next wavelength” replacement for 193-nm dense-UV 
lithography [4]. EUVL utilizes 13.5 nm photons that is 
obtained typically from a plasma source. EUV light is 
then collected by an optical element called a ‘collector’. 
Light from the collector is focused into the illumination 
optics which is formed of multilayer-coated normal 
incidence mirrors as well as grazing incidence mirrors. 
Then it illuminates the EUV mask. The reflected image of 
the EUV mask arrives into a projection optic (consist of 
six or more multilayer mirrors) with a demagnification. 
Finally, the image is focused onto a substrate coated with 
a photoresist. Figure 1 shows a schematic of an EUVL 
exposure system [5]. 

Over the last few years, considerable progress has 
been made to adopt EUVL in high-volume manufacturing 
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Figure 1. Schematic of an EUVL system [5] 

 
Figure 2. Schematic illustration of XRL 

 

(HVM). Most remarkably, there have been substantial 
developments to exposure throughput, reliability, variance 
control and patterning materials for the high resolution 
required [6-7]. Currently, EUVL is projected to use in 
manufacturing at the 7 nm node or beyond [8]. ASML, a 
leading company involved in the development of EUVL 
tools, revealed that more than 15,000 wafers had been 
exposed on its NXE:3300B EUV system in four weeks’ 
duration [9]. In terms of production timescales for EUVL, 
ASML predicts it will go into production in 2018 [3]. The 
source power, masks and resist materials still have critical 
issues for mass production. For the future technology at 
the 5 nm node and beyond, sources powers of 500-1000 
W at a reduced operational cost per wafer may be required 
[10]. Laser Produced Plasma (LPP) and Discharge 
Produced Plasma (DPP) are two main techniques to 
produce EUV sources [11]. Hakaru Mizoguchi, et al. 
reported that more than 250 W LPP-EUV powers could be 
generated by using plasma generation schemes [12]. 
Another approach by using FEL (free-electron lasers), 
many tens of kilowatts power can be produced [13]. 
Mitsubishi electric has successfully explored a higher 
average power CO2 laser more than 20 kW at output 
power [14]. Now they are developing new high power 
HVM LPP-EUV source with more than 25 kW CO2 driver 
laser system. New approaches for power sources are being 
still investigated [15-16]. 

A key factor for the realization of EUV lithography is 
the choice of EUV resist that is capable of resolving sub-
20 nm half pitch with high sensitivity, high resolution, low 
line edge roughness (LER), low line width roughness 
(LWR) and better contact hole critical dimension 
uniformity (CDU). Despite some limitations, chemically 
amplified resists (CAR) have effectively achieved the 
scaling requirements of the semiconductor industry [17]. 
Some researchers have reported the development of the 
metal containing photoresist that has high sensitivity 
performance which will be very helpful for the low energy 
power source to realize EUV lithography [18-19]. Some 
other new techniques including nanoparticle photoresists 
with high sensitivity have been reported [20-22]. Some 
approaches have been presented to achieve high resolution 
around hp10 nm [23]. Lately at the 2016 SPIE Advanced 
Lithography conference, a good amount of papers was 
presented demonstrating the substantial research on 
Photosensitized Chemically Amplified Resist [24-28]. 
Over the last few years some organization like CNSE of 
SUNY Polytech associated with SUNY Polytech 
SEMATECH have supported the investigation of EUV 
resist materials and various EUV resists evaluation [29-
31]. Mask blank defects limits the applicability of EUVL. 
However, extensive researches are still needed to improve 
mask materials, fabrication processes, defect inspection 
and disposition metrology and mask protection. To 
specify, pellicle and mask inspection are two critical 
matters to improve overall process defectivity. 
Improvement on EUV pellicle has been reported in 
ITRS2015 report [3]. In support of EUVL roadmap, 
micro-field exposure tools (13.5 nm, 0.5 NA R&D) have 
been developed by Zygo Corporation [32]. According to 
ITRS2015 report, ASML is going to produce a 0.55 NA 
EUV scanner with different magnification in both x and y 
directions and it could be available to use in 

manufacturing in 2021 [3]. However, the accomplishment 
of EUVL as part of the integrated patterning techniques 
remains a critical issue and therefore the workability of 
EUVL as a patterning technique continues to accelerate. 

III. X-RAY LITHOGRAPHY 

X-ray lithography utilizes x-rays (wavelength of 0.4 
nm to 4 nm), usually produced by a synchrotron source, to 
expose a resist-coated substrate. It uses the proximity 
printing process where the mask (consists of a thin 
membrane and a patterned absorber on top of it) is taken 
in close proximity to the target substrate. The X-ray with 
high energy hits a thin layer of resist through a mask. 
Now, the X-ray can only pass through the region with no 
coating as the absorber coating does not allow the X-ray 
to pass through it. Consequently, the pattern is etched into 
the substrate. A chemical solvent is used to remove the 
damaged material, which results in a negative relief 
replica of the mask pattern. Finally, the photo resist is 
being removed to achieve the desired pattern. The 
schematic for this technique is shown in Figure 2.  

XRL has some advantages such as the capability of 
patterning to nanometer scale, minimizing scattering and 
maximizing resist absorption and image contrast. Despite 
the high-resolution capabilities, XRL techniques were 
proved unsuccessful to provide an economically attractive 
lithographic process due to some difficulties. One of them 
was to find the right combination of materials and 
wavelength. Wrapping of absorber material due to internal 
stresses is an issue to mitigate. Furthermore, the most 
critical point is the failure to furnish suitable masks as 
these masks had to be unity magnification and the 
requirement of creating the mask from adequately x-ray 
absorbing materials. Again, the requirement of thick 
absorber layers and membranous nature of the substrate 
made XRL unpopular in nanofabrication arena. 



 
Figure 3. The process steps of EBL and FIBL system [33] 

 

IV. MASKLESS LITHOGRAPHY 

Electron beam and focused ion beam lithography are 
maskless techniques that are widely used in nanostructure 
patterning and IC fabrications with unique advantages of 
high resolution, high density, high sensitivity and high 
reliability. EBL uses an accelerated electron beam to 
dramatically modify the solubility of a resist material 
during a subsequent development step. The electron beam 
is focused on the resist and then scanned on the surface of 
the resist with the diameter as small as a couple of 
nanometers in a dot by dot fashion. Then the patterns can 
be transferred to the substrate material by etching like 
other lithographic methods. 

Similarly, FIBL involves the exposure by an 
accelerated ion beam to directly hit a metallic film on the 
substrate. When high speed ions hit the sample surface, 
energy is transmitted to atoms on the surface, which leads 
to five possible reactions: 1) sputtering of neutral ionized 
and excited surface atoms, 2) electron emission, 3) 
displacement of atoms in the solid, 4) emission of 
photons, and 5) chemical reactions. Based on these 
phenomenon, FIBL systems are also employed for 
depositing materials such as tungsten, platinum, and 
carbon via ion beam induced deposition and the 
implantation that can modify a material surface. Figure 3 
shows the process steps of EBL and FIBL system [33].  

However, both methods suffer from low throughput 
that limits their applications within research and 
mask/mold fabrication. To increase the system 
throughput, multiple e-beam direct write (MEBDW) 
lithography concepts have been pursued with nanometer 
resolution, using >10,000 e-beams writing in parallel [34]. 
To make direct write practicable for wafers significant 
developments in productivity will be required. In recent 
years, some progresses have been reported including 
MAPPER (a 5kV raster wafer writer with a source, 
multiple lenses and multiple spots per lens) [35], IMS (50 
kV raster mask writer, single source, many spots in single 
lens field) [36] and multibeam wafer writer [37]. These 

are the promising solutions in exposure cost reduction for 
20-nm half-pitch and beyond. The development of a unit 
with a 10-wafer per hour throughput using 13,260 beams 
targeted at several layers for the 14-nm, 10-nm, and 7-nm 
logic nodes has been demonstrated in Mapper 
Lithography’s published roadmap [35]. Electron 
microscopes equipped with pattern generator modules 
enables nanoscale patterning within desired areas. The 
Nanometer Pattern Generation System (NPGS) is one of 
the popular SEM (Scanning Electron Microscope) 
lithography system which provides a powerful, versatile 
and user friendly system for doing advanced EBL or ion 
beam lithography using a commercial SEM, Scanning 
Transmission Electron Microscope or Helium Ion 
microscope [38]. According to ITRS roadmap, the key 
challenges for these maskless technologies is to build a 
pilot tool for patterning entire wafers with chip like 
patterns and overlay control. The earliest insertion of such 
kind of technology is expected in 2021 and the target 
would be the ‘5 nm’ logic node [3]. 

V. NANOIMPRINT LITHOGRAPHY 

Nanoimprint lithography is an advanced 
nanofabrication method that is capable of high-throughput 
patterning of nanostructures with high resolution (down to 
the 5 nm regime). Because of the low cost, reduced 
process steps and high fidelity, NIL became an attractive 
technique for a wide range of applications. Nanoimprint 
lithography methods can be classified into four categories: 
thermal-NIL, UV-NIL, laser assisted NIL and 
electrochemical nanoimprints. The basic steps of NIL 
process is shown in Figure 4. 

In thermal NIL, a fine film of a thermoplastic polymer 
(imprint resist) is deposited first by spin coating onto the 
substrate. The next step is to press the prefabricated mold 
with the substrate together under a certain pressure. 
Subsequent heating is used above the polymer's glass 
transition point to achieve the softened polymeric film. In 
the post thermal cooling process, the substrate is cooled 
down and mold is removed from it, while keeping the 
pattern resist on the substrate. Finally, an etching process 
is used to remove the resist residual layer. Youn et al. 
described a thermal roller NIL approach where the stamp 
is connected with two moveable springs through the 
pullers [39]. Replicating of ultra-precision micron scale 
structures can be achieved with this thermal roller 
imprinting process at the scan speed of 0.1–10 mm/s. 

UV-NIL is a room temperature and low pressure 
imprint technique which involves coating of the sample 
surface with a UV-curable liquid resist. The resist material 
is exposed to the UV light and the subsequent 
solidification of the resist under UV radiation. Afterward, 
an optically transparent mold is pressed into the substrate 
to extract the patterns. An advantage of using transparent 
mold is to offer the possibility for easy optical and high-
precision alignment. This benefit is employed in step-and-
flash imprint lithography (S-FIL), an advanced version of 
UV-NIL, which can nanopattern the whole wafer in a 
reduced processing time. In S-FIL the imprint material 
(low viscosity, photocurable monomer) is dispensed 
dropwise on the substrate. 



 
Figure 4. Basic NIL process steps 

 
Figure 5. Schematic illustration of DSA processes [54] 

The laser assisted direct imprint (LADI) is a resistless 
technique that does not require etching. With this 
technique, a single excimer laser pulse is exposed through 
the transparent quartz mold to melt a thin surface layer of 
silicon substrate. Then, the resulting liquid layer is 
embossed by the quartz mold. Finally, the mold is released 
after the substrate has cooled down. Various 
nanostructures with sub-10 nm resolution could be 
imprinted into silicon wafer using LADI with the 
embossing time below 250 ns. The capability of high 
resolution and high speed patterning, make the LADI as a 
promising technique for a variety of applications and it 
can be extended to other materials (polysilicon, Ge, and 
dielectrics) and processing techniques. Similarly, laser-
assisted nanoimprint lithography (LAN) utilizes a single 
excimer laser pulse to melt the polymer. Then a fused 
quartz mold is used to pattern the nanostructures. This 
technique can be used in patterning various polymer films 
on a Si or quartz substrate with high fidelity over the 
entire mold area. Using LAN technique, the imprinting 
time could be less than 500 ns. The heating and expansion 
of the substrate and mold can also be reduced significantly 
so that better overlay alignment between the two can be 
achieved. 

Electrochemical nanoimprinting is a resistless 
approach that uses a mold fabricated from a superionic 
conductor. In this process, a voltage is applied between 
the mold and the target substrate. Once the surfaces of the 
mold are in contact with the substrate, a current flows 
between them. The strong electric flux from the protrusive 
parts of the mold to the substrate results anodic oxidation 
of the substrate surface corresponding to the protrusive 
parts of the mold with the moisture present between the 
mold and the substrate. Subsequently, the substrate is 
etched to achieve the nanostructures like other methods.  

NIL is the extremely simple process and offers a 
promising low cost alternative lithography technology 
with some other advantages such as high resolution, CDU 
and smaller LER. Nevertheless, some challenges have 
prohibited NIL from being adopted on a larger scale such 
as defectivity, contamination, throughput and overlay 
issues. Recently, significant improvement in the defect 
reduction on templates have been reported [40-42]. It has 
been revealed that overall process defectivity has been 
lessened by two orders of magnitude to 9 defects per cm2 
[43]. Another key issue of NIL that should be realized is 
nano-defect management (NDM) technology which 
includes defect inspection of templates and imprinted 
wafer, the resist material innovation and the defect 
mitigation. These problems can be mitigated through 
intensive collaboration with various providers. Moreover, 
substantial studies are required on post etching resist 
defects and resist pattern etching resistance under sub-20 
nm node [44]. Overlay improved by a factor of eight in 
several years and better than 5 nm 3 σ have been 
demonstrated [45]. One of the major influences of NIL 
technology is the capability of large area printing. Large 
area patterning with high density and high fidelity have 
been reported in the earlier reports [46-47]. It has been 
reported that throughput per imprint station improved 
fivefold to 10 wafers per hour [43]. For high resolution 
large area patterning, roll-type UV-NIL process with a 

flexible transparent thin stamp has been proposed [48]. 
Last few years significant development of a high-speed 
and large-area roll-to-roll (RTR) and roll-to-plate (RTP) 
NIL apparatus for large area patterning of flexible 
substrates have been demonstrated [49-52]. The effect of 
the imprinting parameters such as temperature, loading 
force, aspect ratio and imprinting velocity on formability 
need to be realized. In addition, it is necessary to optimize 
the etching process carefully for high resolution replica 
fabrication. To accelerate this technology adoption, 
recently CEA-Leti and EV Group initiated a new program 
called INSPIRE to diversify the NIL applications beyond 
semiconductors [53]. Canon also designs nanoimprint 
lithography tools by collaborating with other vendors and 
the end users [45]. Nevertheless, NIL could offer its 3-D 
patterning capability for the advancement of 3-D chip 
technology. Because of its flexibility and ability to 
combine with other techniques, it has created huge 
opportunities for the future lithographic techniques for 
many others potential applications. 

VI. DIRECTED SELF ASSEMBLY 

There are two type of DSA processes: ‘epitaxial self-
assembly’ (Chemo-epitaxy) and ‘graphoepitaxy’.  In 
epitaxial self-assembly, dense chemical patterns are 
employed to direct block co-polymer (BCP) self-
assembly. Highly ordered nanopatterns can be achieved if 
the period of the surface chemical pattern is proportionate 
with the equilibrium period of the BCP self-assembled 
nanostructure. Graphoepitaxy guides patterning by 
topographical geometry for DSA. The selective wetting of 
a BCP component at the trench side walls enforces the 
lateral ordering of the self-assembled BCP nanodomains 
along the trenches. Thus, it improves the pattern density 
by subdividing the topographical pre-pattern. Figure 5 
presents the schematic illustration of the two processes 
[54]. 



Pattern defects is one of the critical issues to adopt 
DSA technology on semiconductor manufacturing. 
Missing and bridge hole are the typical defect types of 
DSA holes in physical guide. Researchers are also 
focusing on recognizing the factors that are responsible for 
the assembly defects (dislocations and line-period 
bridges). H. Pathangi, et al. presented the 14 nm half-pitch 
DSA line/space patterning into the Si substrate with 
reduced defectivity [55]. Moreover, to improve pattern 
quality, some experiments have been performed on 
various etch mask materials and etch process conditions 
[56]. LER is another challenge of DSA line patterns. For 
HVM industries the LER number should be about 10% of 
the target critical dimension (CD). Some methods have 
been proposed to improve the LER generated by PS-b-
PMMA BCP [57]. Another issue of DSA of BCPs is the 
pattern density. Some pattern density enhancement 
approaches have been proposed including ‘thermal flow 
process’, ‘lift-off process,’ and ‘pattern trimming process’ 
[58-62]. By utilizing a low-topography resist prepattern ~5 
teradot/in2 dot arrays with long-range order have been 
demonstrated [56]. Highly ordered patterns using PS-b-
PDMS have been reported in some publications [63-64].  

DSA can also integrates bottom-up self-assembly with 
top-down conventional lithography. The probable 
integration of DSA with ArF immersion photolithography 
for 16 nm line/space DRAM process scheduled in 2018 
[65]. S. Morita et al. described a low-cost lithography 
process for making sub-15 nm pattern using DSA on 
nano-imprinting guide [66]. Development of several new 
processes have been reported such as CHIPS flow [67], 
LiNe process [68], SMARTTM process [69] and COOL 
process [70]. Recently, several application fields for DSA 
other than semiconductor device process such as 
flexible/transferable DSA technology utilizing chemically 
modified graphene (CMG) has been demonstrated [71-
72]. However, further research will be required on perfect 
defect control, effective pattern transfer and 
nonplanar/flexible nanopatterning to make DSA capable 
of various commercial device manufacturing as a next-
generation lithography solution. 

VII. CONCLUSION 

For many years, nanolithography technology has 
contributed to the advance in the nanomanufacturing 
industry and is influencing the future of nanoscience and 
technology. Through this article, an overall view of the 
potential next generation lithography techniques has been 
provided. Despite of the huge laboratory and commercial 
success, they are still suffering from various challenges 
and some of the key challenges have been discussed in 
this article. Finally, it can be said that the advancement in 
nanofabrication techniques is leading to technology 
revolutions in a broad area of applications. 
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