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Abstract—Centrifugal pumps are widely used in various 

manufacturing processes, such as power plants, and chemistry. 

However, pump problems are responsible for large amount of 

the maintenance budget. An early detection of such problems 

would provide timely information to take appropriate 

preventive actions. This paper investigates the application of 

Machine Learning Techniques (MLT) in monitoring and 

diagnosing fault in centrifugal pump. In particular, the focus is 

on utilising motor current signals since they can be measured 

remotely for easy and low-cost deployment. Moreover, because 

the signals are usually produced by a nonlinear process and 

contaminated by various noises, it is difficult to obtain accurate 

diagnostic features with conventional signal processing 

methods such as Fourier spectrum and wavelet transforms as 

they rely heavily on standard basis functions and often capture 

limited nonlinear weak fault signatures. Therefore, a data-

driven method: Intrinsic Time-scale Decomposition (ITD) is 

adopted in this study to process motor current signals from 

different pump fault cases. The results indicate that the 

proposed ITD technique is an effective method for extracting 

useful diagnostic information, leading to accurate diagnosis by 

combining the RMS values of the first Proper Rotation 

Component (PRC) with the raw signal RMS values. 

Keywords-Centrifugal Pump; Current Signal Analysis; 

Intrinsic Time-scale Decomposition. 

I.  INTRODUCTION  

Centrifugal pumps are key components of various 
technical processes, like in power generation and chemical 
industries, used for the purpose of manufacturing, heating, 
air-conditioning and cooling of engines. They are used for 
fluid delivery and mostly driven by electrical motors. The 
centrifugal pumps may fail during their operation that can 
lead to an interruption of the manufacturing process; pumps 
problems are responsible for a significant amount of the 
maintenance budget, the damage of centrifugal pumps occurs 
either in the hydraulic or the mechanical parts. Key parts of 
pumps including bearings and impellers are subject to 
different faults which lead to a major retreating of pump 
performances and causes production breakdown. Therefore, 
it is important and necessary for monitoring of these 
machines which has been gradually investigated for 
developing further advanced techniques, to avoid any 
unexpected failure and shutdowns. As a result of both early 
detection and precise diagnosis of incipient faults, this has 
resulted in fast unscheduled maintenance, reduce 
maintenance expenses and extend the lifetime of the 
machines [1]. Numerous monitoring techniques have been 

invested in detecting and diagnosing incipient faults in 
centrifugal pumps through the analysis of vibration, acoustic 
sound, acoustic emission, pressure and temperature, 
however, these techniques require additional sensors to be 
installed on the system which leads to increase in the cost of 
the system [2], also in some cases it may be difficult to 
access the pump to install sensors. Therefore, motor current 
signature analyses can be used as an effective technique for 
fault detection due to the advantages over the popular 
method mentioned above, such as easy installation without 
interference to the machine operation and where the sensors 
are difficult to install because of scanty spaces [3, 4]. 

Sakthivel et al. [5] presented a method that uses decision 
tree algorithm for diagnosis of faults in the centrifugal pump 
where the statistical feature are extracted from vibration 
signals. [6] proposed a vibration based condition monitoring 
using wavelet analysis and classification using Naïve Bayes 
and Bayes net algorithm. Alfayez et al [7] applied acoustic 
emission for detecting incipient cavitation fault in centrifugal 
pump, Al-Braik et al [8] used the low-frequency components 
from Fourier spectrum for detecting van tip fault on 
impellers. 

Stopa et al [9] developed method for detecting the 
phenomenon of cavitation in centrifugal pumps via motor 
current signature analysis, using Torque Signature Analysis. 
Tian et al [3] applied Modulation Signal Bispectrum (MSB) 
for extracting fault from impellers. The current signals from 
the centrifugal pump have resulted from a complicated 
nonlinear process, especially for different fault cases, which 
usually exhibit nonstationary characteristics. Therefore, the 
conventional data processing methods such as Fourier 
spectrum analysis has drawbacks, some of which are 
“spectral leakage”, a phenomenon that occurs when the 
frequency resolution of the current spectrum is not high 
enough [10]. Hence, advanced signal-processing techniques 
and data algorithms are important such as the time-frequency 
analysis methods, including wavelet transforms which are 
often used because they can provide the whole and local 
characteristics of the signals in time and frequency domains 
[11] concurrently. However, these methods generally have 
the deficiency in that they have limited time or frequency 
resolutions which often affect the ability to find small and 
local signatures relating to faults. Moreover, the successful 
application of such methods need to have a rigorous 
understanding of the likely features in the signal which is 
often not possible because of the high complicity of machine 
processes. 
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Recently, a number of data-driven signal processing 
methods have received high attention in analysis complicated 
signals. These methods characterise signals based on the 
instinct features of data along, without using a basis function 
such as that of spectrum and wavelet transforms. Empirical 
Mode Decomposition (EMD) is a typical non-linear signal 
processing method [12]. In this method which a complicated 
signal will be decomposed into finite stationary Intrinsic 
Mode Functions (IMFs) where the features can be extracted 
from the (IMFs), however, there are some inherent 
deficiencies of EMD, such as the end effects, mode mixing 
and the unexplainable negative frequency that cannot be 
ignored [13, 14]. Local Mean Decomposition (LMD) is an 
improved method of EMD, which can decompose 
complicated signal into a number of product functions [15]. 
Nevertheless, LMD technique undergoes from the 
contaminated components, mode mixing and time-
consuming decomposition [16].  

Intrinsic time-scale decomposition (ITD) was proposed 
by Frei and Osorio[17], ITD is developed for analysing the 
non-linear and non-stationary signals, with high 
decomposition efficiency and frequency resolution. It 
decomposes a complex signal into several (PRCs) and a 
monotonic residual. ITD has ability to overcome the 
drawbacks of EMD because of the particular formula of ITD 
and the process of decomposition [16], where the 
information of the signal itself can be used, consequently, the 
end effects and the unexplainable negative frequency can be 
relieved. Furthermore, the ITD method has higher 
computational efficiency than EMD [11]. ITD has been used 
in the field of machinery fault detection and diagnosis. Feng 
et al. [18] have used ITD to decompose planetary gearbox 
vibration signals into mono-components for further 
demodulation and analysis. An et al. [19] applied ITD, for 
fault diagnosis of the bearing of the wind turbine. This study 
analysed and decomposed the vibration signals by ITD 
technique and regarded the frequency centres of the first 
proper rotation component as fault features vector and 
applying the nearest neighbour algorithm to distinguish the 
operation condition of these bearings. In [20] the others 
presented method fault diagnosis of the wind turbine by 
combined ensemble ITD, with wavelet packet transform for 
analysing  vibration signals then the correlation dimension 
was adapted to identify the working conditions and fault 
types of wind turbine gearbox.  

Although ITD show effectiveness of processing vibration 
signals for machine diagnosis, it has not been found in 
analysing motor current signals. Therefore, this study 
focused on analysing the current signals from the centrifugal 
pump by applying this emerging ITD method. 

In addition, there is also a trend to utilise combinations of 
current signal processing and intelligent analysis approach to 
produce more reliable centrifugal pump fault diagnosis, it is 
important to find a meaningful feature extract technique 
which will lead to extracting the most characteristic features 
for enhancing the diagnostic efficiency and leading to 
accurate diagnosis [21]. Therefore, this study focuses on 
analysing the motor current signals from the pump’s 
electrical control system to characterise pump performance 

with different faults under a range of flow rates or operating 
conditions. Specifically, ITD is applied to examine the 
current signals to develop diagnostic features that allow the 
faults to be diagnosed. 

The remainder of this paper is structured as follows. 
Section 2 presents the introduction of ITD, Section 3 
describes the experimental setup and data acquisition, 
Section 4 presents the signal processing results and 
discussion. Finally, Section 5 is the conclusion.  

II. THEORETICAL BACKGROUND 

A. Intrinsic Time Scale Decomposition 

As a new data-driven method, ITD is self-adaptive and 
capable of time-frequency analysis, and has been 
successfully applied for processing the non-linear signals as 
it can decompose a complex signal into the set of PRCs and 
a monotonic residual. The decomposition details of a non-
linear single can be outlined follows [11, 17]: 

For a signal Xt, define a baseline extraction operator L to 
separate the lower frequency baseline signal, the 
instantaneous mean curve of the signal is denoted 

tLX , 

which is shortened to 
tL . Therefore the signal could be 

decomposed as 
t t tX X H  where 

t t tH X L   define as 

the proper rotation component. The algorithm of ITD is 
consists of following key steps [18, 22]:  

1.  Find the extrema point 
tX , and the corresponding 

moment 
k  

for the given signal, where 0,1,2,.....k  , 

and let 
0 0  . 

2. Assume the operators 
tL

 
and 

tH
 
are provided over the 

interval [0, ]k , where the signal
tL exists on the 

interval, then on the range 
1( , ]k k    

between adjacent 

extrema 
kX
 
and 

1kX 
, the piecewise baseline extraction 

operator is  defined as 
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and 0<α<1, usually α is around 0.5. 

3. Base signal Lt is the original signal, then by repeating 
the previous steps continuously the base signal become a 
constant or monotone function, or the function that 
includes fewer than three extremum points. In this case, 
the decomposition will end and the original signal is 
decomposed into PRCs and trend as: 



1

p
i p

t t t

i

X H L


      (3) 

where Xt.is the ith layer of the proper rotation, p

tL  is the 

monotonic baseline signal representing the trend of Xt, and p
 

is the decomposition level. 

B. The Diagnosis Approach for the Centrifugal Pump 

The data-driven ITD was adapted for analysing the 
current signal, because the current signals from the 
centrifugal pump are nonlinear under faulty operations, also 
the diagnostic features are critical procedures in the analysis 
of the current signal, therefore. Root mean square (RMS) is 
calculated which can reflect the current energy and discrete 
characteristics of the signal and it has a useful information 
for the detection and diagnosis of the faults. Then a 
combining the RMS of the raw current signal and the RMS 
from the 1st PRC of ITD are explained and used for diagnosis 
of all the cases. 

III. TEST FACILITY AND DATA ACQUISTION 

The experiment was accomplished based on the test 
facility as illustrated in Fig. 1. The centrifugal pump under 
test can deliver the water flow at 250 l/min under a pressure 
of 10 bar when the driving motor operates at a rated speed of 
2900 rpm. The discharge flow can be regulated by the 
discharge control valve to examine the pump under different 
head and flow rate, allowing its characteristics to be 
examined over its full operating range. 

In this paper, normal condition (baseline) of the 
centrifugal pump and three common faults were investigated, 
as illustrated in Fig. 2, there were two types of faults related 
to the bearing: inner race (IRF), outer race (ORF), and one 
type of multi-fault namely, outer race with blockage impeller 
(ORF&IB). Faults were seeded separately into the 
centrifugal pump. The performance of the centrifugal pump 
was examined with only one fault presents at a time, in 
addition pump performance parameters including flow rate 
discharge head and motor speed were also measured. 

 

Figure 1. Test rig facility. 

Four sets of experiments have been conducted using the 
test rig described above, the pump was operated at different 
flow rates 350, 300, 250, 200, 150, 100 and 50 (l/min) for all 

cases. The Current signals datasets were collected during the 
experimental work by using a high-speed data acquisition 
system which is operating at a 96 kHz sampling rate with 24-
bit data resolution, under the range of flow rates and the 
different faults, these datasets and operating settings will 
help to understand the current characteristics.  

 

 

Figure 2. Types of faults (a) Bearing inner race fault (b) Bearing 

outer race fault, and (c) Impeller fault 

The current signal data for different fault conditions 
including healthy operation BL, IRF, ORF, and ORF&IB, 
for seven different flow rates, were carried out and analysed 
to detect and diagnose the operation of the centrifugal pump.  

IV. RESULTS AND DISCUSSION  

A. Change of Pump Performance 

Fig. 3 shows the pump performance curves for all cases. 
It shows slight pump head drops for the fault cases, visible 
differences between the fault cases. This means that the 
seeded faults have been induced effectively to the system. It 
is also clear that a combined fault ORF&IB reduces more the 
performance of the centrifugal pump, which is expected. 

 

Figure 3. The change of pump performance due to faults 



B. Motor Current Analysis  

First of all, the measured signal was studied in the time 
domain. Fig. 4 show the current signals for all cases at the 
flow rate 351 l/min, it can be found that the values of 
currents are similar for the baseline case and the bearing 
fault, at the same flow rate, however some differences in the 
current value of the combined fault ORF&IB can be noticed.  

 

Figure 4. Phase current in time domain for all cases 

For more accurate comparison, Fig. 5 presents the RMS 
values of the raw signal data. Obviously, the RMS is 
gradually increasing for all cases by increasing the flow rate. 
Particularly, it shows a difference between BL and ORF&IB 
over the flow rates higher than 200 l/min, whereas it is 
unable to separate its BL from other operation condition. 
This shows that the RMS from the raw signal can 
differentiate the large faults but have limited performance to 
separate the small ones. 

 

Figure 5. RMS of current with flow rates 

To get full separation, then the current signal is 
decomposed by ITD to different PRCs, resulting in Fig. 6 
and Fig. 7. They are for healthy pump BL and inner race 
bearing IRF respectively. It can be observed that the current 
signal is adaptively decomposed into five PRCs, which 
consists of major fluctuations of the signal. In particular, the 
1st PRC is of much more fluctuation which can be reflecting 
more on the nonlinear interactions between the mechanical 
load and the electrical process. Especially, the distinctive 
modulations in the 1st PRC are well consistent with the 
operation process explained in [23] for asymmetrical rotor 
faults. 

 

Figure 6. ITD decomposition result for the healthy pump at 350 

l/min 

 
Figure 7. ITD decomposition results for inner race bearing fault at 

350 l/min 

By comparing between the two PRCs, it is hard to find 
clear differences between the baseline and the fault case. 
However, the modulation profiles show observable 
differences in that the main profiles of the modulation looks 
shorter for the fault case. To show accurately the difference 
the RMS values of the 1st PRCs for all cases are calculated 
and presented in Fig. 8. It is clear that the RMS values have a 
useful diagnostic information and leading to separate all 
operation conditions. 

 

Figure 8. Variation of RMS values of the 1st PRC with flow rates 



C. Fault Diagnosis using Motor Current only 

Fig. 9 presents the combination of RMS values of the raw 
data and the RMS of the 1st PRCs. It clearly shows a 
difference between the healthy condition and all fault cases. 
It means that the two types of RMS values are able to 
separate all operating conditions and hence can be based 
pump diagnosis without the needs any other measurements 
such as the pressures and the flow rates. 

 
Figure 9. Fault separation based on static and dynamic features 

from current signals  

V. CONCLUSION 

In this study, a pump diagnostic approach is developed 
based on the ITD analysis of motor current signals. As ITD 
is data-driven signal processing methods, it allows the 
accurate extraction of the modulation features which is due 
to nonlinear dynamic effects of various pump faults. 
Specifically, the study has demonstrated that the 1st PRC 
extracted by ITD can be explained with motor operation 
process in that the high-frequency supply components may 
be altered in a nonlinear modulation way by the dynamic 
oscillations of the faults. The analysis results show that the 
proposed approach performs effectively for differencing 
common pump faults: bearing defects and impeller 
blockages and as well as their combinations in a wide range 
pump operating conditions. 

REFERENCES   

[1] Han, Y. and Y. Song, Condition monitoring 

techniques for electrical equipment-a literature 

survey. IEEE Transactions on Power delivery, 

2003. 18(1): p. 4-13. 

[2] Alwodai, A., Motor Fault Diagnosis Using Higher 

Order Statistical Analysis of Motor Power Supply 

Parameters. 2015, University of Huddersfield. 

[3] Tian, X., et al., The investigation of motor current 

signals from a centrifugal pump for fault diagnosis. 

2014. 

[4] Harihara, P.P. and A.G. Parlos, Fault diagnosis of 

centrifugal pumps using motor electrical signals. 

2012: INTECH Open Access Publisher. 

[5] Sakthivel, N., V. Sugumaran, and S. 

Babudevasenapati, Vibration based fault diagnosis 

of monoblock centrifugal pump using decision tree. 

Expert Systems with Applications, 2010. 37(6): p. 

4040-4049. 

[6] Muralidharan, V. and V. Sugumaran, A 

comparative study of Naïve Bayes classifier and 

Bayes net classifier for fault diagnosis of 

monoblock centrifugal pump using wavelet 

analysis. Applied Soft Computing, 2012. 12(8): p. 

2023-2029. 

[7] Alfayez, L., D. Mba, and G. Dyson, The 

application of acoustic emission for detecting 

incipient cavitation and the best efficiency point of 

a 60kW centrifugal pump: Case study. Ndt & E 

International, 2005. 38(5): p. 354-358. 

[8] Al-Braik, A., et al., Diagnosis of Impeller Faults in 

a Centrifugal Pump Using Vibration Signals. 2014. 

[9] Stopa, M.M., B.J. Cardoso Filho, and C.B. 

Martinez, Incipient detection of cavitation 

phenomenon in centrifugal pumps. IEEE 

Transactions on industry applications, 2014. 50(1): 

p. 120-126. 

[10] Puche-Panadero, R., et al., Improved resolution of 

the MCSA method via Hilbert transform, enabling 

the diagnosis of rotor asymmetries at very low slip. 

IEEE Transactions on Energy Conversion, 2009. 

24(1): p. 52-59. 

[11] Zhang, J.-h. and Y. Liu, Application of complete 

ensemble intrinsic time-scale decomposition and 

least-square SVM optimized using hybrid DE and 

PSO to fault diagnosis of diesel engines. Frontiers 

of Information Technology & Electronic 

Engineering, 2017. 18(2): p. 272-286. 

[12] Rilling, G., P. Flandrin, and P. Goncalves. On 

empirical mode decomposition and its algorithms. 

in IEEE-EURASIP workshop on nonlinear signal 

and image processing. 2003. IEEER. 

[13] Chen, B., et al., A demodulating approach based 

on local mean decomposition and its applications 

in mechanical fault diagnosis. Measurement 

Science and Technology, 2011. 22(5): p. 055704. 

[14] Yu, L., et al., A fault diagnosis approach for diesel 

engine valve train based on improved ITD and 

SDAG-RVM. Measurement Science and 

Technology, 2014. 26(2): p. 025003. 

[15] Smith, J.S., The local mean decomposition and its 

application to EEG perception data. Journal of the 

Royal Society Interface, 2005. 2(5): p. 443-454. 

[16] Li, Y., et al., Rotating machine fault diagnosis 

based on intrinsic characteristic-scale 

decomposition. Mechanism and Machine Theory, 

2015. 94: p. 9-27. 

[17] Frei, M.G. and I. Osorio. Intrinsic time-scale 

decomposition: time–frequency–energy analysis 

and real-time filtering of non-stationary signals. in 

Proceedings of the Royal Society of London A: 



Mathematical, Physical and Engineering Sciences. 

2007. The Royal Society. 

[18] Feng, Z., X. Lin, and M.J. Zuo, Joint amplitude 

and frequency demodulation analysis based on 

intrinsic time-scale decomposition for planetary 

gearbox fault diagnosis. Mechanical Systems and 

Signal Processing, 2016. 72: p. 223-240. 

[19] An, X., et al., Application of the intrinsic time-

scale decomposition method to fault diagnosis of 

wind turbine bearing. Journal of Vibration and 

Control, 2012. 18(2): p. 240-245. 

[20] Hu, A., X. Yan, and L. Xiang, A new wind turbine 

fault diagnosis method based on ensemble intrinsic 

time-scale decomposition and WPT-fractal 

dimension. Renewable Energy, 2015. 83: p. 767-

778. 

[21] Singh, S. and N. Kumar, Combined rotor fault 

diagnosis in rotating machinery using empirical 

mode decomposition. Journal of Mechanical 

Science and Technology, 2014. 28(12): p. 4869-

4876. 

[22] Yang, Y., et al., A roller bearing fault diagnosis 

method based on the improved ITD and 

RRVPMCD. Measurement, 2014. 55: p. 255-264. 

[23] Gu, F., et al., A new method of accurate broken 

rotor bar diagnosis based on modulation signal 

bispectrum analysis of motor current signals. 

Mechanical Systems and Signal Processing, 2015. 

50: p. 400-413. 
 


