
Network Recovery from Massive Failures under
Uncertain Knowledge of Damages

Diman Zad Tootaghaj†, Hana Khamfroush†, Novella Bartolini∗

Stefano Ciavarella∗, Seamus Hayes†, Thomas La Porta†
†The Pennsylvania State University (USA), ∗Sapienza University (Italy)

{dxz149, hkham, sih5349, tlp}@cse.psu.edu, {bartolini, ciavarella}@di.uniroma1.it

Abstract—This paper addresses progressive network recovery
under uncertain knowledge of damages. We formulate the prob-
lem as a mixed integer linear programming (MILP), and show
that it is NP-Hard. We propose an iterative stochastic recovery
algorithm (ISR) to recover the network in a progressive manner
to satisfy the critical services. At each optimization step, we
make a decision to repair a part of the network and gather
more information iteratively, until critical services are completely
restored. Three different algorithms are used to find a feasible
set and determine which node to repair, namely, 1) an iterative
shortest path algorithm (ISR-SRT), 2) an approximate branch
and bound (ISR-BB) and 3) an iterative multi-commodity LP
relaxation (ISR-MULT). Further, we have modified the state-of-
the-art iterative split and prune (ISP) algorithm to incorporate
the uncertain failures. Our results show that ISR-BB and ISR-
MULT outperform the state-of-the-art ”progressive ISP” algo-
rithm while we can configure our choice of trade-off between the
execution time, number of repairs (cost) and the demand loss.
We show that our recovery algorithm, on average, can reduce
the total number of repairs by a factor of about 3 with respect
to ISP, while satisfying all critical demands.

I. INTRODUCTION

Large-scale failures in communication networks due to natural
disasters or malicious attacks can severely affect critical com-
munications and threaten lives of people in that area. In 2005,
Hurricane Katrina led to outage of over 2.5 million lines in the
BellSouth (now AT&T) network [1]. In the absence of a proper
communication infrastructure, rescue operation becomes ex-
tremely difficult. Progressive and timely network recovery is
therefore, a key to minimizing losses and facilitating rescue
missions. Many prior works on failure detection and recovery
assume full knowledge of failures and use a deterministic
approach for the recovery phase, e.g., [2, 3]. In real-world
scenarios however, the failure pattern might be unknown or
only partially known. Therefore, classic recovery approaches
may not work, as they should. To this end, we focus on
network recovery assuming partial and uncertain knowledge
of the failure pattern.

We propose a multi-stage stochastic recovery algorithm,
that uses three optimization techniques to repair a part of
the network at each iteration assuming partial knowledge
of failures until critical services are restored. To clarify the
discussion, we consider different states of network compo-
nents. Depending on the available knowledge, we consider

the network to be partitioned in three areas: 1) a green area
where all nodes/edges are known to be working, 2) a red area
where the status of nodes/edges is known to be failed, and
3) a gray area where the status of nodes/edges is unknown.
We improve the knowledge of the network state by installing
monitors on top of the repaired nodes at each iteration. A
monitor is a piece of software, which can be installed on a
working node to discover the reachable nodes. Monitor nodes
provide additional information about the status of the network,
which can be used to revise and improve the recovery plan.
The contributions of this work are the following:
• We tackle for the first time, the problem of network recovery

after massive disruption under uncertainty of the exact
location of the disrupted nodes/links.

• We formulate the minimum expected recovery (MINER)
problem as a mixed integer linear programming and show
that it is NP-Hard. MINER aims at satisfying the critical
demand flows while minimizing the proposed expected
recovery cost (ERC) function under network capacity con-
straints.

• We propose a multi-stage iterative stochastic recovery (ISR)
algorithm, that is presented in three different versions
(depending on the optimization algorithm that is used),
namely, Iterative shortest path (ISR-SRT), Iterative Branch
and Bound (ISR-BB), and iterative multi-commodity LP
relaxation (ISR-MULT) to find a feasible solution and solve
the MINER problem.

• To compare with previous works, we modified a previously
proposed algorithm called iterative split and prune (ISP) [3]
to work under uncertainty. We refer to the modified variant
of ISP as progressive ISP, as it allows a progressive approach
with incremental discovery at each iteration. We show that
since ISP is not designed to consider uncertain failures and
makes routing decisions at each iteration step, it may lead to
incorrect routing decisions due to uncertainty which leads
to higher repair cost compared to our algorithms.

II. BACKGROUND AND MOTIVATION

A. Background

Large-scale network failure detection and recovery has been
studied when full knowledge of the failure pattern is availableISBN 978-3-901882-94-4 c© 2017 IFIP

in the system [4, 5, 6, 7, 8, 9]. To the best of our knowledge,
network recovery has not been extensively studied under
uncertainty. Wang et al. studied progressive network recovery
for large-scale failures. They proposed a progressive recovery
approach to maximize the weighted sum of total flow over the
entire steps of recovery [2]. While both Wang et al.’s work and
our work aim to design a progressive recovery approach, the
objective is different. In [2], the objective is maximizing the
throughput over time, whereas we aim to minimize the total
cost of repair under link capacity constraints, which is closer
to the work of Bartolini et al. [3]. In addition, both [2] and
[3], assume that full knowledge of failure is available in the
system while our work does not make this assumption.

The problem of minimizing the recovery cost to satisfy
multiple demand flows under network capacity or quality
of service constraint has been proven to be NP-hard and
several heuristics have been proposed in the literature to reduce
the complexity. Bartolini et al. propose a polynomial-time
heuristic to break the problem into smaller sub-problems using
iterative split and prune [3]. While this approach performs very
close to the optimal when full knowledge of network failure
is available, its performance has not been investigated under
uncertain failure patterns.

We propose a progressive version of ISP in Section V
and show that the lack of detailed information regarding
the status of the network components causes a considerable
amount of additional repairs with respect to the ideal case
of complete knowledge. Then, we show that by running our
multi-stage recovery approach, we can reduce the total number
of repairs compared to progressive ISP and avoid unnecessary
repairs. Furthermore, we show that single-stage optimization
techniques or iterative algorithms, which do not update the
initial beliefs, do not perform well for uncertain failures. This
is due to the fact that, a small mistake at the beginning of the
single-stage optimization algorithms propagates through the
following steps and no corrective actions can be taken.

We design a novel iterative algorithm to have an approx-
imate solution to the problem of network recovery under
uncertainty of the status of network components. Unlike previ-
ous algorithms, our approach provides an iterative monitoring
activity, which allows more informed decisions and corrective
actions as long as more information becomes available.

B. Motivation

In this section, we show the gap between optimal recovery
and ISP [3] when we do not have perfect information.

Consider a network in which a large-scale failure has
occurred. Due to the failures, the state of the entire network
is not visible to the network manager. Instead, the network
manager knows that some nodes and links have failed, some
continue to work, and the fate of others is uncertain, meaning
that their state is only known with some probability. If we
use an algorithm like ISP to determine the required repairs,
it is likely that mistakes will be made due to the uncertain
knowledge. ISP determines all the required repairs in one-
shot, and once the algorithm is run, all repairs are determined.

TABLE I: Number of repaired nodes/edges in optimal and
ISP with full information compared to ISP with gray area and
uncertain-info, and progressive ISP.

Network
Name

OPT full-info ISP full-info ISP uncertain-info Progressive
ISP

BellCanada 28 34.23 79 45.39
Deltacom 36.94 43.26 112 55.5
KDL 55.2 63.2 165.65 83.55

Therefore, it does not have an opportunity to learn the state
of the uncertain nodes. We performed a set of simulations on
three network topologies which are described in Section VI
to illustrate the gap in performance between ISP with full
knowledge vs. uncertain knowledge. We first give the full
information of the failure pattern to the system and solve the
optimal NP-Hard recovery with full knowledge (OPT full-info)
and the state-of-the-art ISP with full knowledge (ISP full-info).
Next, we assume that the state of all the network components
is uncertain, with an estimated failure distribution (uncertain-
info), and run the state-of-the-art ISP algorithm where the
cost of repair for each node/edge is proportional to its failure
probability.

Table I shows the average total number of repairs for
the three algorithms on the three topologies for 10 random
selection of source/destination pairs and disruption of network
elements. As is shown, ISP with full information performs
relatively close to the optimal in each case, while ISP with
uncertain information requires more than three times the
number of repairs performed by the optimal in some cases.

We then modified ISP, as described in Section V, to run it-
eratively, where in each iteration a repair is made. Information
about network state is then gathered concerning the status of
the portions of the network now visible due to the repair, and
the algorithm is run again with the new information until all
demands are met. We call this algorithm progressive ISP. As
can be seen in the table, progressive ISP drastically reduces
the repairs compared to ISP with uncertain information.

However, the gap between progressive ISP and OPT full-
info is still large, motivating the need to develop our iterative
stochastic recovery (ISR) algorithm that also progressively
repairs network elements and updates its knowledge of the
state of the network, and makes repair decisions based on the
known failure probabilities.

III. PROBLEM DEFINITION

We consider the problem of restoring critical services in a
network subject to a large-scale failure, under uncertain knowl-
edge of the failure extent. More specifically, in the absence
of detailed knowledge of which are the failed components of
the network, we assume availability of a probabilistic estimate
of the failure scenario, given in the form of a geographical
distribution of the failure probability of the network devices,
namely nodes and links. We hereby call the grey area the
portion of the network whose state is uncertain. We assume
knowledge of the probability of failure of each node/link in
the gray area, which can be found using machine learning

algorithms, seismography analysis in case of an earthquake
[10], or stability analysis of different parts of the network. The
network elements in the gray area might have geographical or
independent correlation of failures [11]. We model the inten-
sity of the disruption on a geographic coordinate system using
a bi-variate Gaussian function, whose variance determines the
extent of the disruption. We are interested in gradual recovery
of the network such that the total cost of repaired nodes/edges
during all steps of the recovery is minimized.

Given an undirected graph G = (V,E) and a set of demand
pairs D = {(s1, t1), ..., (sk, tk)}, the goal is to minimize the
expected recovery cost (ERC) to satisfy the demands while
having capacity constraint cij for every edge in the graph.

To model our optimization problem as a decision making
process which includes uncertainty, we model the cost of repair
as a function of the failure probability for each node/edge in
the network. Our belief about the failure distribution at the
nth iteration is ζ(n) = {ζeij(n) ∀eij ∈ E, ζvi (n) ∀vi ∈ V },
where ζvi (n) and ζeij(n) are representing our belief about the
failure probability of node vi and edge eij in the network at the
nth iteration. We use heterogeneous non-uniform cost function
in our evaluation, where kvi (ζ

v
i (n)) and keij(ζ

e
ij(n)) is the cost

of repairing each vertex vi and edge eij in the network, and
is a function of the uncertainty of the failure status of the
node/edge. Therefore, our objective function is to minimize
the expected recovery cost (ERC) given the information from
the monitoring nodes to satisfy the given demand. The nodes
and edges in the graph belong to three different categories:
1) the sets EB ⊆ E and VB ⊆ V are the set of broken edges

and nodes in the red area which are known to be failed,

2) the sets EU ⊆ E and VU ⊆ V are the sets of edges and
nodes in the gray area whose failure patterns is unknown,

3) the sets EW ⊆ E and VW ⊆ V are the sets of nodes and
edges in the green area which are known to be working
correctly in the system.

At the beginning of iterative recovery process, we assume that
all the working demand endpoints are monitoring nodes which
can discover the status of up to m hops in the network. Later,
as we repair more nodes/edges in the network, we exploit the
repaired nodes as monitors to discover the gray area and adjust
the initial belief ζ(0) about the failure probability distribution.

The MINER problem to find a feasible solution set at the
nth iteration can be formulated as follows:

minimize
δv
i
,δe
i,j

Eζ
∑

(i,j)∈EU∪EB

k
e
ij(ζ

e
ij(n))ζ

e
ij(n)δ

e
ij +

∑
i∈VU∪VB

k
v
i (ζ

v
i (n))ζ

v
i (n)δ

v
i

subject to cij .δ
v
ij >

|EH |∑
h=1

f
h
ij(n) + f

h
ji(n) ∀(i, j) ∈ E (1a)

δ
v
i .ηmax >

∑
(i,j)∈EB

δ
e
ij ∀i ∈ V (1b)∑

j∈V
f
h
ij(n) =

∑
k∈V

f
h
ki(n) + b

h
i (n) ∀(i, h) ∈ V × EH (1c)

f
h
ij(n) > 0 ∀(i, j) ∈ E, h ∈ EH (1d)

δ
v
i , δ

e
i,j ∈ {0, 1} (1e)

where the binary variables δeij and δvi represent the decision
to repair link (i, j) ∈ E and node i ∈ V , cij is the capacity
of edge (i, j), fhij(n) is the fraction of flow h that will be
routed through link (i, j), ηmax is the maximum degree of the
network, and bhi (n) is the flow h generated at node i which
is positive if i is the source of the flow and negative if i
is the destination of the flow; keij(ζ

e
ij(n)) and kvi (ζ

v
i (n)) are

the repair cost of edge (i, j) and vertex i. The recovery cost is
heterogeneous and depends on the location of the nodes/edges.
Constraint 1a specifies that the fraction of flow that will be
routed through link (i, j) has to be smaller or equal than the
capacity of that edge; 1b specifies that the degree of each
node is smaller or equal than the maximum degree of the
network; 1c shows the flow balance constraint, i.e. the total
flow out of a node is equal to the summation of total flow that
comes into a node and the net flow generated/consumed at the
node; 1d states that we consider non-negative assignment of
flows and finally 1e shows binary decision variable of repairing
a node/edge.

Our goal here is to minimize the expected recovery cost.
Since our initial belief about the failure in the system is
not always correct, it may happen that we try to repair
a gray node/edge which is not failed, but simply isolated
from the working components. This is unavoidable in some
cases. Nevertheless, it is an unwanted event. For this reason,
we distinguish between necessary and unnecessary recovery
interventions. We associate a cost to the intervention on an
unknown but working network element, to take account of the
cost to send personnel to make a local inspection of the device.

In the evaluation, we consider a metric called unnecessary
repairs which corresponds to the total number of nodes/edges
in the gray area, ni ∈ VU , ei,j ∈ EU , which we decide to
repair, δeij , δ

v
i = 1, but which are found to be properly func-

tional after a local inspection. On the other hand, necessary
repairs are the total number of nodes/edges in the gray or red
area, ni ∈ {VU ∪ VB}, ei,j ∈ {EU ∪EB} which we decide to
repair, δeij , δ

v
i = 1 and are actually broken.

NP-Hardness: The Steiner Forest problem which is NP-
Hard and APX-Hard in general graphs [12, 13], is a special
case of our optimization problem. The deterministic version
of our problem is shown to be NP-Hard in [3]. Therefore, our
problem is also NP-Hard. We therefore, consider a polynomial
time heuristic (ISR-SRT) an LP-relaxation of the problem
(ISR-IMULT) and an approximate solution of our problem
(ISR-BB) to reduce the time complexity.

IV. ITERATIVE STOCHASTIC RECOVERY ALGORITHMS

In this section, we propose the Iterative Stochastic Recovery
(ISR) algorithm, and its three versions, namely, Iterative short-
est path (ISR-SRT), Iterative branch and bound (ISR-BB), and
iterative multi-commodity (ISR-MULT). The skeleton of these
versions follow the same structure and only differ in terms
of the approximate algorithm they use. We summarize ISR
algorithm in six main steps shown in Figure 1 and Algorithm 1.

Initially, ISR starts by estimating the probability distribution

Start

(1)Build/
Update the
probability
distribution
of failure
ζ(t)

(2)Find a
feasible
solution
set St

St =
∅?

End

{ni ∈

St} =

∅?

Repair
edges

{eij ∈ St}

(3)Select
candidate

node
ni ∈ St

(4)Repair ni
and edges
attached to

it (i, j) ∈ St

(5)Monitor
on ni,

discovery
phase

(6)Update
expected

costs

yes

no

yes

no

Fig. 1: Different steps of ISR.

of the network failure (Step 1). At each iteration, ISR uses
an approximate algorithm to build a partial solution set of
candidate network components to repair, St = {(i ∈ VU ∪
VB |δi = 1), ((i, j) ∈ EU ∪ EB |δij = 1)} (Step 2). In
our evaluation, we do not consider infeasible problems, i.e.,
there exists at least one feasible solution which can satisfy all
critical services.

We use three different optimization techniques explained
in Section IV-A to build the partial solution set. The partial
solution minimizes the MINER problem based on the current
estimated costs which can change as we gain more knowledge
about the gray area. In step 3, the nodes in the partial solution
set St, are ranked based on the amount of flow in critical
services that they are likely to route, and a node with the
maximum value is selected as a candidate node (Steps 3 and
4). We repair the candidate node, and use it to monitor (Step
5) the surrounding network and obtain more information about
the status of the network. In step 6, the algorithm updates the
previous belief after the discovery. The procedure is repeated
until demands are satisfied or there are no more repairs to
satisfy the remaining demand pairs, even though the problem is
feasible. The remaining demand pairs, which are not satisfied,
are counted as demand loss percentage.

A. An approximate feasible solution

This section describes our three different approaches to find
an approximate feasible solution, step (2) in Figure 1, of the
MINER problem. We use this approximate solution set (St)
to select a candidate node to repair and gain information in
our ISR algorithm. The first alternative is to use an iterative
shortest path algorithm, which has lower time complexity
compared to the other approaches but may not satisfy all the
demands. The second alternative, is to use an iterative branch
and bound, which has high complexity due to large space
exploration but gives a solution very close to the optimal in
terms of repair cost; and finally, we use an iterative multi-
commodity relaxation of the problem to reduce the execution
time but with higher repair cost w.r.t the ISR-BB.

Algorithm 1: Iterative Stochastic Recovery (ISR)
Data: The supply graph G, demand graph H , EU , VU , EB , VB , EW , VW ,

initial belief about the failure pattern ζ(0)
Result: Set of nodes/edges to be recovered to satisfy the demand

1 DemandSatisfied= False;
2 t= 0;
3 Solution = ∅ ;
4 while DemandSatisfied !=True do
5 Find an approximate solution set of nodes/edges to repair from the

MINER problem that satisfy the demand:
St = {Vs(t) ∈ (VB ∪ VU), Es(t) ∈ (EB ∪ EU)} using ISR-SRT,
ISR-BB, or ISR-MULT.;

6 if St == ∅ then
7 DemandSatisfied = True;
8 break;
9 else

10 SelectedNode = Select a node with highest flow ∈ St ;
11 if |SelectedNode|> 1 then
12 SelectedNode = the node with maximum failure probability ;

13 Repair the SelectedNode, ni and edges attached to it, enij ∈ St ;
14 Solution = Solution ∪ {ni} ∪ {enij∈St} ;
15 Put a monitor on the selected node and run m-hop discovery phase;
16 t = t+ 1 ;
17 Update our belief ζ(t) from failure probability distribution from the

discovered nodes/edges ;

18 return Solution

1) Iterative Shortest Path (ISR-SRT): This intuitive heuris-
tic first sorts all the demand pairs in decreasing order
of demand flows, and repairs all the shortest paths that
are necessary to satisfy each demand separately, without
considering potential conflict among them. To account for
the impact of uncertainty, we use a new notion of path
length. For a path at the nth iteration, the length of each
link eij ∈ E is defined as l(n)(eij) = keij(ζ

e
ij(n))ζ

e
ij(n) +

(kvi (ζ
v
i (n))ζ

v
i (n) + kvj (ζ

v
j (n))ζ

v
j (n))/2, where keij(ζ

e
ij(n))ζ

e
ij(n),

kvi (ζ
v
i (n))ζ

v
i (n) and kvj (ζ

v
j (n))ζ

v
j (n) are the expected cost of

repair for edge eij and nodes i and j based on the estimated
probability distribution at the nth iteration. Therefore, the
algorithm finds the shortest expected repair cost paths for
each demand pair to repair independently. We run the full
optimization based on the current estimated costs each time,
repair one node and put a monitor on the repaired node, and
then run the optimization with the updated cost again. Since
the algorithm does not consider potential conflicts among
demand pairs, it is possible that only a portion of demand
pairs will be satisfied in the network. The advantage of this
algorithm is its polynomial time complexity since it only needs
to find the shortest cost paths of all demand pairs which makes
it a good candidate for situations, where a small amount of
critical demands needs to be satisfied in short period of time.

2) An Approximate Iterative Branch and Bound (ISR-BB):
As a second option to determine a more accurate estimate
solution of the problem, we use an iterative branch and
bound optimization [14]. The algorithm starts by finding a
solution of the problem by removing the integrality restric-
tions. The resulting linear programming relaxation of MINER
gives a solution for the Multi-Commodity Flow relaxation
of the problem [15]. The multi-commodity relaxation has a
polynomial time complexity and gives a lower bound (LB)
for the minimization. If the solution satisfies all integrality

restrictions, then we have the optimal solution, otherwise, we
pick a fractional variable, δx, and make two branches by
creating two more constraints in the optimization (δx = 0
and δx = 1). We continue this procedure by making more
branches to get closer to optimal. The smallest branch that
satisfies all integrality restriction is called an incumbent. We
stop branching once the gap between the incumbent’s objective
function and the lower bound in the first iteration on the
objective function is smaller than a threshold (Gap), or we
can stop branching after passing a given time limit. In the
first case the algorithm gives a solution with an objective
function within (100 ∗ Gap)/LB percentage of the optimal.
In the second case, there is no guarantee on the bound but we
have a guarantee on the execution time of the algorithm. In
the worst-case scenario, we need to put all fractional variables
from the LP-relaxation of MINER in the solution set. At each
iteration, we run the optimization with the current estimation
of the costs, repair one node and run the discovery phase, and
then run the optimization with the updated costs again.

The advantage of this algorithm is its low recovery cost.
Although the execution time is high due to exploration of all
possible branches, we can trade-off recovery cost to reduce
the execution time.

3) An iterative multicommodity (ISR-MULT): Since the
approximate branch and bound algorithm has high execution
time due to large space exploration of branches, we propose
a new iterative multicommodity solution. In this algorithm,
we do not explore all possible branches, but only select the
branch which is more likely to stay in the final solution (the
node with maximum centrality). We first start by constructing
a linear programming (LP) relaxation of the MINER problem
which can be solved in polynomial time providing non-integer
solution for 0 ≤ δi ≤ 1 and 0 ≤ δi,j ≤ 1. The LP
relaxation has a lower bound on the objective function of
MINER, but it can result in many repairs if we repair all
fractional variables. To reduce the number of repairs, we select
the best candidate node from the current non-integer solution
to repair and run the discovery phase and update the cost
functions and failure probability distribution accordingly. We
iterate the algorithm until all the demand pairs are satisfied in
the network. Therefore, the iterative multicommodity solution,
works the same as a branch and bound technique except that,
at each iteration of the algorithm we only select one of the
branches and do not explore other possible branches. At each
iteration, we repair a node with maximum flow as described
in section IV-B.

B. Best candidate node selection

The choice of the best candidate node, step (3) in Figure 1,
is performed based on a centrality ranking, where we use a
new notion of centrality which generalizes the classic concept
of betweenness centrality, to consider flow routing. Assuming
the total set of paths in the current solution (St), is P ∗ and
P ∗ni be the total set of paths in the current solution (St) that

contain ni, then the candidate node, N∗i , is chosen as follows:

N∗i = argmaxni∈St

∑
p∈P∗ni

f(p)∑
p∈P∗ f(p)

(2)

The numerator is the total amount of flow which can be
satisfied in the current solution set (St) and passes through
ni and the denominator is the total amount of satisfied flow in
the current solution. Whenever this metric was the same for
several nodes, we choose the node with maximum failure prob-
ability, argmaxni∈Stζ

v
ni(t), to reduce unnecessary repairs,

where ζvni(t) represents the estimation of failure probability
of node ni, at time t.

C. Monitoring nodes

This section describes how monitor nodes probe the sur-
rounding network to derive more information on the status
of the reachable nodes and links. We assume that at the
beginning of the algorithm, a monitor is deployed on each
demand endpoint. Each monitor is able to identify other nodes
that are located within a distance of m-hops, for example by
using traceroutes or other probing methods. Monitors adopt
a breadth-first search algorithm to explore the network, and
truncate the visit at m hops. Whenever a monitor determines
that a node v is not able to forward the probe to one of its
neighbors w, the monitor marks both the link (v, w) and the
node w as gray as the monitor is not able to assess whether
the failure is located in the node w or in the link (v, w). Note
that a monitor node can only detect its adjacent link failures.

D. When to iterate the optimization

In order to reduce the complexity of the algorithm, when
the current iteration of the approximate optimization does
not change after discovery phase, we propose the Heuristic
trigger for solution update. Assuming S∗ is the total set of
nodes/edges in the gray area and S(t) is the total set of gray
nodes/edges which have to be repaired to satisfy the demands
in the current iteration of the algorithm, it is possible that after
running the discovery phase of our algorithm the next solution
set S(t + 1) remains the same and therefore we do not need
to iterate the optimization.
Heuristic trigger for solution update. Before running the
discovery phase, if the cost function for the current solution
S(t) was X , and it changes to X ′ after m hops discovery,
and the cost function of the set outside the current solution
S∗ − S(t) was Y and changes to Y ′ after m hops discovery,
then we only need to re-run the optimization if X − X ′ <
Y −Y ′ because there exists a possibility that there is a better
solution other than the current solution.

V. PROGRESSIVE ISP (P-ISP)

This section describes progressive ISP which is our exten-
sion of the state-of-the-art iterative split and prune (ISP) [3].

The basic ISP algorithm starts iteratively by ranking the
nodes based on a new centrality metric, called demand based
centrality, and reducing the demands by either pruning or
splitting the demand on the best candidate node. The demand

TABLE II: Network characteristics used in our evaluation.

Network Name # of nodes # of edges Average Node degree
BellCanada 48 64 2.62
Deltacom 113 161 2.85
KDL 754 895 2.37

pair which is least likely to be routed elsewhere is split over
the repaired node to break the problem into two smaller sub-
problems. The demand can be pruned once we find a working
path that can satisfy a portion of the demand.

While it has been shown that ISP, in terms of recovery
cost, performs very close to optimal compared to other greedy
approaches when full knowledge of the failure is known,
it performs poorly under uncertain failure distributions. See
Table I. Therefore, we adapted the algorithm to accommodate
uncertain failures in a gray area, and iterate at each step to
discover the status of gray nodes/edges by putting monitoring
nodes on the repaired nodes. We use an uncertain estimation
of failure distribution in the first iteration of the algorithm and
change the length of the edge eij ∈ E at the nth iteration to
l(n)(eij)/cij where l(n)(eij) is the expected cost of eij based
on the estimated probability distribution at the nth iteration
defined in Section IV-A1 (ISR-SRT), and cij is capacity of
eij . The edge cost is divided by cij to give higher cost to the
paths which have smaller capacity. Further, we put monitoring
software on the node which is chosen to split the demand
at each iteration to discover the gray area. However, once
the demand splits over a candidate node, a routing decision
is made on the selected node to break the flow into two.
Therefore, as we will see in Section VI, even with the help
of monitoring nodes, progressive ISP does not perform well
in terms of total number of repairs under uncertain failures.
In the remainder of the paper we use the terms ”progressive
ISP” and ”P-ISP” interchangeably.

VI. EVALUATION

In this section, we compare ISR algorithms, presented in IV,
to the modified version of ISP introduced in Sections V. We
use different network topologies including planar and non-
planar real topologies taken from the Internet Topology Zoo
[16, 17]. Table II shows the characteristics of the topologies
used for the evaluation. In addition to the real network
topologies, we use synthetic Erdos-Renyi graphs with 100
nodes, where we varied the probability of having an edge
between any two different nodes, to investigate the behavior
of the algorithms in scenarios of increasing complexity.

In the following experiments, we consider several scenarios,
in which we vary different aspects, such as the number of
demand pairs, the amount of flow demand for each pair,
and the parameters defining the geographical extent of the
disrupted area. For each scenario we randomize the results
running 20 different trials, in which, depending on the sce-
nario, we vary the random selection of source/destination
pairs and the random disruption of network elements. We
implement our recovery algorithms in python and used the
Gurobi optimization toolkit, on a 24-core, 2.6 GHz, 32G RAM
cluster [18].

A. m-hop discovery impact

In this section, we investigate the impact of the depth of
discovery phase on the performance of the proposed algorithm.
We changed the number of discovered hops for the monitoring
nodes from 1 to 5. We used the BellCanada topology with
10 demand pairs and 4 units of flow per demand. The link
capacity is set randomly in the interval [20, 50]. We used
heterogeneous repair cost for each node randomly from a uni-
form distribution in [0, 10] and for each edge from a uniform
distribution in [0, 20]. We used higher repair cost for edges
due to difficulty in locating the failure and accessibility. From
Figure 2a, we can see that increasing the number of discovered
hops improves the restoring performance of our algorithms in
terms of total repair cost. We performed similar experiments
with different topologies, which we do not show in this paper,
due to space limitations. These experiments highlighted that
the impact of the parameter m varies significantly with the
size of network topology.

B. Disruption variation

In this scenario, addressed in Figure 2b, we changed the
amount of disruption in the network to evaluate the perfor-
mance of the algorithms. We used the BellCanada topology
with 5 demand pairs and 4 units of flow per demand pair.
The link capacity is set randomly in the interval [20, 50]. We
used a Gaussian failure distribution and changed the disruption
variance from 10 to 100. On average, 20% of the network is
disrupted when the disruption variance is 10 and increases to
94% when the variance is 100. Figure 2b shows the simulation
results for this scenario. We observed that, the difference from
the optimal is higher for small disruption variation, and all the
algorithms perform close to each other when the variance is
higher. This is due to the fact that, as we increase the disruption
variation, the total number of repairs increases until it gets
saturated and the whole network gets disrupted. Therefore, the
uncertainty in the gray area has less impact on the restoring
performance of the algorithms because the whole gray area is
failed. Furthermore, the number of necessary and unnecessary
repairs is the same for dense disruptions since most of the
nodes in the network are failed in higher disruption variations
and the discovery phase does not help to reduce the number
of unnecessary repairs by a large amount.

C. Heterogeneous repair cost

In this scenario, we analyze the impact of heterogeneous
repair cost. We considered the BellCanada topology with 5
demand pairs and 5 units of flow per demand pair. The link
capacity is set randomly in the interval [20, 50]. We considered
a scenario where the whole network is disrupted and used
heterogeneous repair cost with the average of 20 derived from
a uniform distribution, and changed the variance of cost from
0 to 20. Figure 3a shows the total and necessary repair cost
for this scenario. As shown, our recovery algorithms perform
better in terms of total cost of repairs compared to the state-of-
the-art P-ISP algorithm when the variance of heterogeneity is

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5

C
o

s
t

o
f

re
p

a
ir
s

K-hop discovery

P-ISP Total

P-ISP Necessary

ISR-MULT Total

ISR-MULT Necessary

ISR-BB Total

ISR-BB Necessary

OPT full-info

Original ISP Total

Original ISP Necessary

(a) Increasing m-hop.

 0

 100

 200

 300

 400

 500

 10 20 30 40 50 60 70 80 90 100

C
o

s
t

o
f

re
p

a
ir
s

Variance of disruption

 P-ISP Total

 P-ISP Necessary

 ISR-MULT Total

 ISR-MULT Necessary

 ISR-BB Total

ISR-BB Necessary

OPT full-info

(b) Increasing disruption.

Fig. 2: m-hop discovery and disruption variance, (BellCanada,
m-hop=2).

higher. Therefore, in the next set of experiments we consider
homogenous repair cost.

D. Sensitivity analysis

In our next set of experiments, we study the sensitivity
of the proposed algorithm with respect to the correctness of
the initial failure estimation. We use the BellCanada topology
where the link capacity is set randomly in the interval [20, 50].
The network disruption is randomly generated according to
a Gaussian geographic distribution with variance of 50 that
destroys 85% of network components on average. We consider
a varying error in the estimate of the disruption extent, and we
overestimate/underestimate the disruption by adding an error
between -40 to 50 to the variance of the disruption. Figure 3b
shows the simulation results for this scenario, where an error
of 0 means that the estimate is generated according to the same
distribution that is used to generate the failures. We observe
that when we underestimate the disruption, the algorithms
try to route the critical demands through a part of network,
which is more likely to be failed. Overestimating the disruption
assumes that more nodes/edges have been failed than the real
disruption and the algorithm tries to repair a node/edge which
was not really destroyed, therefore, there is a higher number
of unnecessary repairs. Furthermore, the number of repairs
does not change beyond a specific overestimation, because
with higher disruption variance, we are assuming that the
whole network is disrupted and the Gaussian distribution does
not give much information about the disruption. ISR-BB per-
forms better than other algorithms in overestimation or perfect
estimation scenarios; but its restoring performance decreases
for underestimation scenarios. ISR-MULT is more robust in
underestimation scenarios and in perfect/overestimation sce-
narios its performance is close to P-ISP.

E. Trade-off on demand loss, time complexity, and number of
repairs

The recovery problem can be addressed by giving different
priority to performance aspects such as: 1) demand loss, 2)
execution time and 3) number of repairs (cost). These aspects
are in conflict with each other; therefore, we study the trade-
off among them.

In this scenario, addressed in Figure 4, we considered the
Deltacom topology, where we set the link capacity randomly

 700

 750

 800

 850

 900

 950

 1000

 0 5 10 15 20

C
o

s
t

o
f

re
p

a
ir
s

Variance of Cost

P-ISP Total

P-ISP Necessary

ISR-MULT Total

ISR-MULT Necessary

ISR-BB Total

ISR-BB Necessary

OPT full-info

(a) Heterogeneous repair cost.

 35

 40

 45

 50

 55

 60

 65

-40 -30 -20 -10 0 10 20 30 40 50

N
u

m
b

e
r

o
f

re
p

a
ir
s

Over/Under-estimation of failure variance

P-ISP Total

P-ISP Necessary

ISR-MULT Total

ISR-MULT Necessary

ISR-BB Total

ISR-BB Necessary

OPT full-info

(b) Sensitivity analysis.

Fig. 3: a) The impact of heterogeneous repair cost variation
on total cost of repair, b) Over/under-estimation of the dis-
ruption by adding an error between -40 to 50 to the variance
(BellCanada, m-hop=2).

in the interval [20, 30]. We compare ISR-SRT to OPT to
determine the amount of demand flow loss in ISR-SRT. We
vary the number of critical demand flows from 1 to 6.
Each demand pair has a requirement of 22 units of flow.
The network disruption is randomly generated according to
a Gaussian geographic distribution that causes the disruption
of 43% of the network components on average.

Figure 4a shows that ISR-SRT performs a smaller number of
necessary repairs than OPT but a much higher number of total
repairs, meaning that ISR-SRT schedules repairs for nodes that
are found to be working. Figure 4b also shows that ISR-SRT
does not meet the demand requirements. The percentage of
satisfied demands drops to 75% when the number of demand
pairs grows to 6.

The reason for demand loss is due to the fact that ISR-SRT
does not consider potential conflicts among different demands,
and the decision on the nodes/links to be repaired is made
separately for every demand pair without considering other
demands of the network. This has two effects. First, it may lead
to the wrong decisions, and therefore increases the number
of unnecessary repairs. Second, the algorithm might make a
routing decision in one iteration for a specific demand pair
which turns to be in conflict with another demand pair in the
next iteration and make it impossible for the second demand
pair to be satisfied. Therefore, the repairs that are required to
route the second demand pair are not performed due to the
conflict, and the demand is not satisfied. This implies that the
number of necessary repairs would be less w.r.t the optimal
solution. We underline that the other algorithms, namely OPT,
ISR-BB and ISR-MULT, repair nodes/edges until all demand
pairs are satisfied. In these algorithms, no routing decision is
made before finding a feasible solution for all demand pairs.
For this reason, they never show a demand loss. Since our goal
is to restore all critical services, we do not further evaluate
ISR-SRT. However, due to its low computational complexity,
the algorithm can be used in scenarios where the demand load
is low and a short computation time is required.

In the next experiment we used the same topology, under a
larger disruption, corresponding to 75% of network elements
on average. We consider 5 demand pairs, of 17 flow units each.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

N
u

m
b

e
r

o
f

re
p

a
ir
s

Number of demand pairs

ISR-SRT Total

ISR-SRT Necessary

OPT full-info

(a) repairs.

 70

 75

 80

 85

 90

 95

 100

 105

 110

 1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f

s
a

ti
s
fi
e

d
 d

e
m

a
n

d

Number of demand pairs

ISR-SRT

OPT full-info

(b) demand loss.

Fig. 4: Trade-off between number of repairs and demand loss.

 30

 40

 50

 60

 70

 80

 90

 100

0 20 40

N
u

m
b

e
r

o
f

to
ta

l
re

p
a

ir
s

Percentage of Gap from OPT

ISR-MULT

ISR-BB Heuristic trigger for solution update

ISR-BB

ISR-SRT

OPT full-info

(a) repairs.

 0.1

 1

 10

 100

 1000

 10000

0 20 40

 T
im

e
 (

s
)

Percentage of Gap from OPT

ISR-MULT

ISR-BB Heuristic trigger for solution update

ISR-BB

ISR-SRT

OPT full-info

(b) time.

Fig. 5: Trade-off between execution time and repairs.

In order to evidence the tradeoff between the number of repairs
and computation time, in Figure 5 we vary the gap between
the lower bound of the objective function and the solution of
iterative ISR-BB and ISR-MULT algorithms from 0 to 40%.
We recall that by increasing this gap, we decrease the number
of iterations of the optimization algorithms, and therefore we
obtain an approximation of the solution that is farther from
the optimal. Nevertheless, the increase in the gap has the
advantage of reducing the computation time remarkably.

Figure 5a shows that, when we increase the gap from 0
to 40%, the difference between the total number of repairs
of ISR-MULT with respect to optimal increases by a factor
of 1.6, while this factor is 3.4 for ISR-BB. Furthermore,
we observe that by running the Heuristic trigger for solution
update, introduced in Section IV-D, the total execution time on
average decreases by a factor of 10.5, while the total number
of repairs increases of only 3.8%. This is mainly due to the
fact that most of the time, after running the first optimization
step, the solution is still valid by using Heuristic IV-D. We
did not include the execution time results for Progressive ISP
since its performance has not been optimized to run on multi-
core machines.

In the next scenario, we used synthetic Erdos-Renyi non-
planar graphs. In an Erdos-Renyi graph, any two nodes are
connected through an edge with probability p. We considered
an Erdos-Renyi topology with 100 nodes where each link
has a capacity of 1,000 units of flow. We set the number
of critical demand pairs to 6, of one unit each. Notice that
with this setting of demand flows and capacities, the problem
reduces to establishing connectivity between the endpoints of
the demand pairs. The complexity of the problem increases as

 20

 25

 30

 35

 40

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r

o
f

to
ta

l
re

p
a

ir
s

Edge probability

OPT full-info

ISR-MULT

ISR-BB

P-ISP

(a) repairs.

 0*10
0

 5*10
4

 1*10
5

 2*10
5

 2*10
5

 2*10
5

 3*10
5

 4*10
5

 4*10
5

 5*10
5

 5*10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Edge probability

OPT full-info

ISR-BB

ISR-MULT

P-ISP

(b) time.

Fig. 6: Synthetic Erdos-Renyi topology with 100 nodes.

we increase the parameter p and the graph becomes gradually
non planar. We compare the behavior of ISR-MULT, ISR-BB
and P-ISP with the optimal solution that would be obtained
in the ideal setting of complete knowledge. In ISR-MULT
and ISR-BB, we set the gap between the lower bound of
the objective function and the solution of iterative ISR-BB
and ISR-MULT algorithms to 50%. Once the gap is satisfied,
we put all fractional variables in the solution and select a
node to repair and continue this procedure till all critical
services are restored. Figure 6b shows the execution time
of the approximate solutions with respect to optimal as we
increase the value of p. We observe that, since MINER is NP-
Hard, the optimal recovery with full information has a very
high execution time, while if we stop the algorithm when the
objective is within 50% of the lower bound, the number of
repairs is still close to optimal in ISR-MULT and ISR-BB, and
the execution time with respect to OPT reduces by a factor of
200 in ISR-BB and 630 in ISR-MULT.

F. Increasing number of demand pairs and amount of flow

In this section, we investigate the impact of the number
of demand pairs and of the amount of demand flow of each
pair, on the number of necessary repairs. We consider the
BellCanada topology, where we set random link capacity
with values in the interval [20, 50]. We increased the number
of demand pairs from 1 to 10, where each demand has a
requirement of 10 units of flow. Figure 7a shows the simulation
results for this scenario. We used a Gaussian disruption with
disruption variance of 20, which destroys around 40% of the
network. As we increase the number of demand pairs, the gap
between necessary and unnecessary repairs increases in P-ISP,
while the number of necessary repairs is still close to optimal.
This is mainly due to the fact that P-ISP was not designed
for uncertain failures. ISR-IBB has the smallest number of
repairs and ISR-MULT’s number of repairs is between P-ISP
and ISR-IBB.

In the next scenario, we consider the same network topol-
ogy, and same disruption parameters. We set the number of
critical demand pairs to 5 and increased the units of flow per
demand pair from 2 to 10. Figure 7b shows the simulation
results in this scenario for our iterative algorithms and optimal
recovery with full knowledge. We observe that for less than 4
units of flow, P-ISP performs slightly better than the ISR-

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

N
u

m
b

e
r

o
f

re
p

a
ir
s

Number of demand pairs

P-ISP Total

P-ISP Necessary

ISR-MULT Total

ISR-MULT Necessary

ISR-BB Total

ISR-BB Necessary

OPT full-info

(a) Increasing demand.

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

re
p

a
ir
s

Number of flows

P-ISP Total

P-ISP Necessary

ISR-MULT Total

ISR-MULT Necessary

ISR-BB Total

IBB Necessary

OPT full-info

(b) Increasing flows.

Fig. 7: Increasing demand pairs and flows (BellCanada).

TABLE III: Potential Implication of the proposed algorithms.

Algorithm Cons Pros
ISR-
SRT

Demand loss, cannot satisfy all de-
mands

Low complexity, easy to implement.
Can be used to satisfy small critical
demands in short time.

P-ISP High number of unnecessary repairs
in high demand load

Low time complexity compared to
ISR-BB and ISR-MULT, works better
than ISR-MULT in low demand load

ISR-
BB

High time complexity due to large
space exploration

Low number of repairs, best for small
topologies. Can be configured to re-
duce the execution time with higher
number of repairs

ISR-
MULT

Moderate time complexity, high
number of repairs in smaller traffics
(can be combined with P-ISP to
have advantage of both)

Smaller number of repairs compared
to P-ISP, higher than ISR-BB. Better
restoring performance for large num-
ber of demand flow/pair.

MULT solution in terms of number of necessary repairs.
However, as we increase the amount of flows per pair, ISR-
MULT and ISR-BB perform better mainly because ISR-MULT
and ISR-BB can refine their incorrect decisions due to lack
of knowledge from the beginning of the algorithm while
P-ISP is not able to adjust its solution after initial wrong
decisions. For small number of flows/demand pair, both P-
ISP and ISR-MULT are close to optimal. We observe that
in larger topologies, P-ISP performs better than ISR-MULT
when the total demand load (sum of all the demand flow
requirements for all the demand pairs) is lower than 40% of
the network capacity. This opens up the opportunity to have a
hybrid scenario for low flow/pair and high flow/pair scenarios
where one can get advantage of P-ISP under low demand load
and the ISR-MULT for higher demand load.

Table III shows the comparison between P-ISP, ISR-MULT,
ISR-BB and ISR-SRT. We observed that each of the proposed
algorithms has pros and cons, which makes them suitable for
scenarios where we need short execution time, higher restoring
performance or small number of critical demand pairs.

VII. CONCLUSION

While there have been several works on timely network
recovery algorithms, far less progress has been seen in the
context of uncertain network failure patterns. This paper
considers, for the first time, a progressive network recovery
algorithm under uncertainty. We use a multi-stage stochastic
optimization technique, called ISR to guess the best feasible
solution set at each iteration using an estimated distribution
of failure. ISR finds a feasible solution using three different

approaches namely ISR-SRT, ISR-BB and ISR-MULT. From
the elements of this solution we select the one with highest
centrality, at each iteration step to repair and exploit it as a
monitor to discover the gray area, until all critical services are
restored. We iterate the process, alternating monitoring and
repair activities, until all critical services are restored. Our
simulation results show that ISR reduces the total cost of repair
significantly with respect to the state-of-the-art ISP algorithm.
We also observed that we could configure our choice of trade-
off between the demand loss, total number of repairs and
execution time.

ACKNOWLEDGMENTS

This research is supported in part by the Defense Threat
Reduction Agency under Grant HDTRA1-10-1-0085 and in
part by the U.S. Army Research Laboratory under Agreement
W911NF-14-0610.

REFERENCES

[1] A. Kwasinski et al. Telecommunications power plant damage
assessment for hurricane katrina–site survey and follow-up
results. IEEE Systems Journal, 2009.

[2] J. Wang et al. On progressive network recovery after a major
disruption. In Proceedings IEEE INFOCOM, 2011.

[3] N. Bartolini et al. Network recovery after massive failures. In
Dependable Systems and Networks (DSN), 2016.

[4] S. Tati et al. Adaptive algorithms for diagnosing large-scale
failures in computer networks. In Dependable Systems and
Networks (DSN), 2012.

[5] T. Horie et al. A new method of proactive recovery mechanism
for large-scale network failures. In AINA’09. IEEE, 2009.

[6] G. Yu et al. Disruption management: framework, models and
applications. World Scientific, 2004.

[7] K. Al Sabeh et al. Progressive network recovery in optical
core networks. In 2015 7th International Workshop on Reliable
Networks Design and Modeling (RNDM). IEEE, 2015.

[8] F. Farhat et al. Locally multipath adaptive routing protocol
resilient to selfishness and wormholes. In ISPEC, 2010.

[9] D. Z. Tootaghaj et al. Game-theoretic approach to mitigate
packet dropping in wireless ad-hoc networks. In CCNC, 2011.

[10] Y. Bozorgnia et al. Earthquake engineering: from engineering
seismology to performance-based engineering. CRC press,
2004.

[11] S. Neumayer et al. Network reliability with geographically
correlated failures. In Proceedings IEEE INFOCOM, 2010.

[12] M. Hauptmann et al. A compendium on steiner
tree problems. Inst. für Informatik, 2013.
http://theory.cs.uni-bonn.de/.

[13] M. Bateni et al. Approximation schemes for steiner forest on
planar graphs and graphs of bounded treewidth. Journal of the
ACM (JACM), 2011.

[14] G. L. Nemhauser et al. Integer programming and combinato-
rial optimization. Constraint Classification for Mixed Integer
Programming Formulations. COAL Bulletin, 20:8–12, 1988.

[15] T. C. Hu. Multi-commodity network flows. Operations
research, 1963.

[16] S. Knight et al. The internet topology zoo. IEEE Journal on
Selected Areas in Communications, 2011.

[17] The internet topology zoo.
http://www.topology-zoo.org/, accessed in May,
2015.

[18] Gurobi optimization, inc. gurobi optimizer reference manual.
http://www.gurobi.com/, accessed in, 2012.

