
Edge-ICN and its application to the Internet of
Things

Nikos Fotiou, Vasilios A. Siris,
George Xylomenos, George C. Polyzos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business

47A Evelpidon, 113 62 Athens, Greece
Email:{fotiou,vsiris,xgeorge,polyzos}@aueb.gr

Konstantinos V. Katsaros, George Petropoulos
Intracom SA Telecom Solutions

Peania, 19002, Greece
Email:{konkat, geopet}@intracom-telecom.com

Abstract—While research on Information-Centric Networking
(ICN) flourishes, its adoption seems to be an elusive goal. In this
paper we propose Edge-ICN: a novel approach for deploying ICN
in a single large network, such as the network of an Internet
Service Provider. Although Edge-ICN requires nothing beyond
an SDN-based network supporting the OpenFlow protocol, with
ICN-aware nodes only at the edges of the network, it still offers
the same benefits as a clean-slate ICN architecture but without
the deployment hassles. Moreover, by proxying legacy traffic
and transparently forwarding it through the Edge-ICN nodes,
all existing applications can operate smoothly, while offering
significant advantages to applications such as native support
for scalable anycast, multicast, and multi-source forwarding. In
this context, we show how the proposed functionality at the
edge of the network can specifically benefit CoAP-based IoT
applications. Our measurements show that Edge-ICN induces
on average the same control plane overhead for name resolution
as a centralized approach, while also enabling IoT applications
to build on anycast, multicast, and multi-source forwarding
primitives.

I. INTRODUCTION

Information-Centric Networking (ICN) has been in the
spotlight of many recent research efforts around the world [1].
However, although ICN promises to solve many problems of
the current Internetworking architecture (see for example [2])
its adoption seems to be an elusive goal. The main obstacle to
ICN adoption seems to be the requirement for radical changes
to the entire network stack, from layer 3 technologies all the
way to the application layer. In order to mitigate this problem,
a number of research efforts have sprung up, investigating the
potential of ICN deployments at smaller scales, as well as the
possibility for backward compatibility with legacy protocols.
Notable examples of such efforts are the POINT project [3]
and, more recently, Cisco’s hybrid ICN (hICN) [4] ; this paper
is a further step in this direction.

The goal of the POINT project is to allow standard IP
traffic to be transported over an ICN core network in a more
efficient way. To achieve this, the POINT architecture provides
a number of “handlers” implemented at Network Attachment
Points (NAPs). These handlers perform translations between
existing IP-based protocols (e.g., HTTP, CoAP, basic IP)

and appropriately named objects within the ICN deployment.
Similarly, the hICN project aims at allowing existing appli-
cations to operate over the named-data networking (NDN)
ICN architecture [5]. In order to achieve this goal, hICN
offers a scheme that allows NDN traffic to be encapsulated
in IPv4/IPv6 packets, relying on a small set of “enhanced”
routers to process these packets; legacy routers treat them as
any other IPv4/IPv6 packet.

In this work, we leverage Software-Defined Network-
ing (SDN) technology to build an efficient and easily deploy-
able ICN architecture. Adopting the decentralized approach
of the fog computing paradigm, our architecture requires
deploying ICN-aware nodes only at the edges of a network,
hence we refer to it as Edge-ICN. Between these ICN-aware
nodes, our architecture includes SDN switches supporting
the OpenFlow protocol. Beyond the ICN-aware nodes, Edge-
ICN considers legacy end-user devices and applications that
are oblivious to the ICN functionality. The ICN-aware nodes
(henceforth referred to as Edge-ICN nodes) translate legacy
“names” (e.g., IP addresses, HTTP/CoAP URIs) into ICN
identifiers. An Edge-ICN node may advertise an ICN identifier
to the rest of the Edge-ICN nodes. Similarly, Edge-ICN nodes
may search for, subscribe to, or pull a content item based
on its identifier. As a result, devices at the edge of the
network, including thin end-user devices, IoT sensors/actuators
and existing IoT gateways, are supported by a rich set of
ICN-enabled forwarding primitives so as to engage in IoT
communications e.g., request data from a semantically related
set of IoT devices. Edge-ICN offers multicast and anycast ca-
pabilities that can be exploited for both requests and responses.
Moreover, Edge-ICN supports content replication in multiple
nodes and it creates opportunities for novel mobility, security,
and service composition solutions. The SDN controller in the
Edge-ICN architecture is oblivious to ICN, only being aware
(as usual) of the network topology, including Edge-ICN node
identifiers, so as to be able to calculate paths between them.

Edge-ICN borrows many concepts from the POINT archi-
tecture, but it also has key differences from it. The POINT
architecture considers a centralized entity, the rendezvous
point, which is aware of all available information items andISBN 978-3-901882-94-4 c© 2017 IFIP

ar
X

iv
:1

70
7.

01
72

1v
2

 [
cs

.N
I]

 1
1

Ju
l 2

01
7

SDN SwitchEdge-ICN Node

End user

Fig. 1: Edge-ICN components

their location. This information is used for computing paths
between network endpoints. In Edge-ICN, information related
to content availability is stored at edge nodes, with the path
computation element (i.e., the SDN controller) oblivious to this
information. Therefore, Edge-ICN performs no ICN-specific
operation beyond the edge nodes, nevertheless, it achieves
the same advantages. This separation allows for “special
purpose” Edge-ICN nodes (e.g., nodes tailored to perform
information lookup based on the constraints that an IoT
protocol imposes), as well as for better traffic engineering
(e.g., multiple communication paradigms). Similarly, although
hICN shares the same goals as Edge-ICN (and POINT) it
follows a different approach: it considers enhanced in-network
devices that are aware of the ICN protocols and manipulate
packets accordingly. In Edge-ICN, apart from the Edge-ICN
nodes, no other device is aware of the ICN functionality.

The structure of the remainder of this paper is as follows.
In Section II we detail our architecture, focusing on the ICN
functionality of Edge-ICN nodes. In Section III we discuss the
mappings of legacy protocols to ICN and focus on the case of
CoAP. In Section III we present our implementation and we
discuss performance issues. Finally, in Section V we provide
our conclusions and plans for future work.

II. SYSTEM OVERVIEW

Figure 1 illustrates an instance of an Edge-ICN network.
The main component of Edge-ICN is the Edge-ICN node.
Edge-ICN nodes act as network attachment points for legacy
end-user devices and are interconnected through a network
composed of SDN switches. Edge-ICN nodes do not disrupt
existing protocols and services, but enhance the network

with ICN benefits. All Edge-ICN nodes are identified by at
least one identifier denoted by NodeID. These identifiers
are assumed to be distributed on network bootstrapping, and
managed by the SDN controller. The semantics of NodeID are
deployment strategy specific. The only requirement imposed
by our architecture is that a NodeID should fit in the pay-
load of single IPv6/UDP packet. Moreover, our architecture
considers a virtual node identifier, denoted by all.nodes,
whose semantics are “all Edge-ICN nodes”. Depending on
the deployment strategy, other virtual node identifiers can also
be considered, e.g., all.coap.nodes, i.e., all Edge-ICN nodes
that support CoAP handling, all.http.nodes, i.e., all Edge-ICN
nodes that support HTTP handling, and so on.

For all traffic between Edge-ICN nodes, Bloom filter based
forwarding is used [6]. To realize this, each link of the SDN
network is assigned a unique identifier, called its LinkID,
which is a fixed-size Bloom filter-based vector [7]. Each
LinkID is mapped to an arbitrary bitmask with length equal
to two IPv6 addresses and corresponding OpenFlow rules
are installed at its adjacent switch interfaces. The forwarding
identifier that realizes the communication between Edge-ICN
nodes is a Bloom filter encoding the link identifiers of the
path that a packet should follow, by simply ORing these
identifiers. An interesting property of this type of forwarding
is that by ORing the encodings of two paths A → B and
A → C, the encoding of a multicast path from A to B,C
is derived. The solution in [6] encodes Bloom filters in the
IPv6 source and destination fields of an IPv6 packet and
uses the OpenFlow arbitrary mask match in switches to make
forwarding decisions. Therefore, this forwarding technique
is implemented using standard OpenFlow mechanisms and
without modifying the structure of network packets; to a
network monitoring tool, these packets appear to be ordinary
IPv6 packets, but with “strange” addresses. An SDN controller
can calculate a Bloom filter for a path between two Edge-ICN
nodes, as well as between an Edge-ICN node and all.nodes
(or any other virtual node identifier).

When an Edge-ICN node wants to send a packet towards
another Edge-ICN node, it has the following options: (a)
it adds the NodeID of the destination (or a virtual node
identifier) in the payload of a special new packet, and sets the
IPv6 source and destination fields of the packet to pre-defined
constant value, (b) it directly encodes a Bloom filter in the IPv6
source and destination fields. In order to distinguish between
these two packet types, a different value for the Ethernet type
field is used. For option (b), packet switching is performed
based on the aforementioned forwarding principles.

For option (a), packet forwarding requires first resolving
the node identifier to a Bloom filter. The first SDN switch
that receives the special packet does not have a rule to
switch it, hence it forwards it to the SDN controller as an
Openflow PacketIn message [8]. The SDN controller extracts
the provided NodeID of the destination (or any virtual node
identifier), and given its knowledge of the underlying SDN
topology and assigned node and link identifiers calculates
the appropriate Bloom filter, as well as a Bloom filter for

the reverse path (if applicable), and returns this information
to the switch as an Openflow PacketOut message. Finally,
the switch forwards this message to the Edge-ICN node that
originally sent the packet. The Edge-ICN node can now use
the provided Bloom filter for all subsequent requests destined
for that NodeID; all these requests are forwarded by the SDN
network without further communicating with the controller.

It should be noted that the initial packet contains only the
destination NodeID, hence the SDN controller learns less in-
formation about a user’s preferences compared to, for example,
POINT [3], where content names are resolved rather than edge
node names. In addition, the aforementioned process does not
require the presence of a centralized ICN-specific “rendezvous
entity” [3] to match advertisements between Edge-ICN nodes,
hence it does not impose further deployment requirements to
network administrators.

A salient feature of Edge-ICN is its anycast capability.
In an Edge-ICN network a (virtual) NodeID does not have
to be unique, i.e., there can be multiple Edge-ICN nodes
sharing the same identifier; recall here that an edge-ICN node
may be associated with multiple identifiers. The first time an
SDN switch encounters a packet destined for a NodeID, it
asks the SDN controller for forwarding instructions; if there
exist multiple nodes sharing this identifier, the controller can
implement a deployment specific anycast strategy and select
the most appropriate.

A. ICN operations

Edge-ICN adopts the information organization semantics
of the Publish-Subscribe Internet architecture [9], i.e., all
information items are grouped in scopes. In terms of legacy
protocols, a scope can be an IP address, a domain name,
etc. Edge-ICN nodes may advertise a scope they “know” by
sending an advertisement message to the all.nodes identifier;
depending on the deployment strategy, they could use a
more fine-grained virtual node identifier. An advertisement
message contains the scope identifier, the NodeID of the
sender and, optionally, a payload. When an Edge-ICN node
receives such an advertisement, it updates a lookup table that
contains tuples of the form [ScopeIdentifier,NodeID]. An
example of scope advertisement is illustrated in Figure 2.
In this example Node3 advertises a scope, i.e., Scope1; the
advertisement is received by both Node1 and Node2, which
update their lookup tables accordingly. Edge-ICN supports
scope replication, therefore the same scope can be advertised
by multiple nodes. In that case, lookup tables should contain
all node identifiers that have advertised a specific scope.
Finally, Edge-ICN supports advertisements where the sender
field is set to a virtual node identifier (e.g., all.coap.nodes),
which means that all nodes belonging to that group “know”
this scope.

Edge-ICN nodes can subscribe to information items stored
in a scope. In contrast to [9], Edge-ICN nodes can not request
an item stored in a scope that has not yet been created. When
a node wants to send a subscription message, it uses its lookup
table and selects an appropriate destination NodeID; if there

are multiple candidates, then the selection process is based on
a deployment specific strategy e.g., to achieve load balancing.
It is noted that such strategies can further express application
semantics e.g., retrieving sensor information from selected IoT
gateways, subject to the time of the day or geographical area.
In this way, application logic gets further integrated within the
edge network. As a next step, the node constructs a network
packet that includes the following: the identifier of the desired
item, the identifier of the scope in which this item belongs
to, the subscribing node identifier and, optionally, a payload
(which can contain the Bloom filter of the reverse path). This
packet is forwarded to the selected NodeID, using the process
defined in the previous subsection.

A feature of Edge-ICN that is of particular importance for
ICN applications, is its ability to forward a content subscrip-
tion to multiple Edge-ICN nodes. This feature, which can
be considered as a generalization of the anycast capability,
is implemented by “grouping” target nodes under the same
(virtual) NodeID; when an SDN controller receives a request
for such a NodeID it responds with a Bloom filter that covers
all nodes of the group. Note here the difference between
multiple nodes advertising the same scope, which lets the
Edge-ICN node select where to send a subscription, and using
a virtual NodeID, where the network returns all members of
the corresponding group. This feature is particularly useful
for information searching, as well as for “pulling” information
items. With Edge-ICN we can choose to either advertise fine-
grained scopes or use “generic” scopes associated with virtual
node identifiers. In the former case, we essentially broadcast
specific advertisements, corresponding to a push model; in the
latter case, we broadcast the content requests, corresponding
to a pull model. The choice should take into account the
expected popularity of the content and its lifetime, or its
mobility in case of mobile content, in addition to the cost of
broadcasting advertisements to all edge nodes, which depends
on the number of edge nodes and the network topology.

The pull model supported by Edge-ICN facilitates the
deployment of privacy-enhancing solutions. For instance, a
node may encrypt the desired content identifier and subscrip-
tion payload using Identity-Based Encryption (as for example
described in [10]) and broadcast the subscription message to
all nodes belonging to a virtual nodes identifier; only the
node that holds the desired item should be able to decrypt
the encrypted parts of the message.

III. MAPPING LEGACY PROTOCOLS TO ICN

ICN has been regarded as a promising candidate for build-
ing IoT architectures. In fact, RFC 7476 [11] specifies IoT
as a baseline ICN scenario. To this end, many ICN-based
IoT architectures has been proposed (e.g., [12], [13], [14]).
However, all these architectures follow a clean-slate approach.
The POINT project specifies an approach for supporting IP-
enabled IoT devices using the standard CoAP protocol; Edge-
ICN builds on this approach. Specifically, Edge-ICN uses the
solutions developed by the POINT project in order to map
legacy protocol name spaces to ICN identifiers [3]. When

Node 1

Node 2

Node 3

Adv: Scope 1

Adv: Scope 1

(a)

Node 1

Node 2

Node 3

Scope 1

Node 3

Scope 1

Node 3

(b)

Fig. 2: Scope advertisement

it comes to the IoT and the CoAP protocol, the approach
described in [15] is followed.

CoAP [16] is a lightweight protocol, designed to be the
“HTTP of the IoT.” The CoAP interaction model is similar
to the client/server model of HTTP: a CoAP client requests a
resource from a server; if the resource is available, the server
responds, otherwise it simply ACKnowledges the request
and responds asynchronously when the resource becomes
available. CoAP resources are identified by a URI, similar
to HTTP URIs: the host part of this URI is mapped to
an ICN scope. Edge-ICN nodes that are aware of a CoAP
resource (e.g., through static configuration or by using a
discovery protocol such as CoAP Observe [17]), advertise the
appropriate scope identifier using the procedures described
in the previous section. In order for a CoAP client to take
advantage of Edge-ICN, it should be configured to use an
Edge-ICN node as a CoAP proxy. When an Edge-ICN node
receives a CoAP request (from the IP world), it extracts the
URI-host and checks, using its lookup table, if there is a scope
identified by the same name (i.e., the URI-host). If there is
no such scope, it means that the requested resource is not
accessible through ICN, so the Edge-ICN node process the
packet following the standard CoAP procedures; otherwise, it
creates a subscription message that contains in its payload the
CoAP request headers and (if applicable) a reverse path Bloom
filter.

As discussed in [15] significant gains can be achieved by
aggregating requests and by multicasting responses (by ORing
the reverse path Bloom filters). This feature is particularly
useful when (CoAP) responses are sent asynchronously or
when the CoAP Observe extension is used. Another benefit
of ICN to CoAP, also reported in [15], is that due to ICN’s
native support for multicast it is easier to support CoAP Group

Communication [18], which allows a CoAP client to send a
CoAP request to multiple CoAP servers simultaneously. In
an IP network, CoAP group communication is implemented
using IP multicast. However, by forwarding CoAP requests
over an ICN network, CoAP endpoints do not have to support
IP multicast, neither do they have to maintain excessive state.1

The CoAP Group Communication RFC also defines the
notion of “context-based” URI-hosts, e.g., all.west.building6,
which should be mapped to an IP multicast address that
corresponds to all CoAP endpoints located in the west wing
of building 6. In order to implement this behavior in an IP
network (a) DNS servers should be modified, and (b) all CoAP
servers (or their gateways) should join a priori all possible IP
multicast groups. With Edge-ICN and the notion of the virtual
node identifier this functionality can be implemented in a much
easier way. SDN controllers can be configured with virtual
node identifiers, such as “west”, “building6”, “temperature”,
as well as with the mappings from this identifiers to real
NodeIDs; when a Bloom filter is requested, for example, to
all.west.building6, the SDN controller can find the NodeIDs
that belong to all three virtual node identifiers and construct
the appropriate Bloom filter.

An advantage of distributing the scope lookup process to
the edge nodes, as opposed to having a centralized entity as
in [3], is that application specific Edge-ICN nodes can be
considered. For example, in an IoT architecture there can be
“enhanced” Edge-ICN nodes that support some form of service
description in scope advertisements (e.g., using the CoRE link
format [19]), allowing easier service composition and service
chaining, or even M2M communication. Similarly, the state
stored in a CoAP resource directory may as well be distributed

1For more details, interested readers are referred to [15].

Node A

Node 1

Node 2

Node N

RV

Fig. 3: Evaluation topology. RV stands for POINT’s ren-
dezvous point.

to specialized Edge-ICN nodes supporting “smarter” subscrip-
tions (e.g., “send a notification if the temperature falls below
X degrees”).

IV. IMPLEMENTATION AND EVALUATION

To validate the feasibility of our concept, we have imple-
mented Edge-ICN using the mininet network emulator [20],
Open vSwitch [21], and the POX SDN controller [22].2

A concern that may arise is related to the communication
overhead introduced due to scope advertisements to all.nodes
(or to other virtual node identifiers). At first glance it may seem
that storing all advertisements in a centrally located entity e.g.,
as in POINT, where all advertisements are sent to a centralized
“rendezvous point”, is more optimal. Nevertheless, this is not
the case, since content subscriptions also must be be sent to
that same entity. In order to illustrate this intuition, consider
the topology of Figure 3. In this figure there exist two types
of nodes: N+1 edge nodes and 1 centrally located node. The
latter node is referred to as the rendezvous point (RV) and
it is used by POINT to store all scope advertisements. In a
nutshell, content dissemination in POINT is implemented by
executing the following steps:3

• Step 1 A node (referred to as the server NAP, or sNAP
for short) sends a scope advertisement to the RV.

• Step 2 Another node (referred to as the client NAP, or
cNAP for short) “advertises” a content request to the RV.

• Step 3 The RV responds with a Bloom filter that encodes
a path towards an sNAP.

• Step 4 The cNAP sends a content request to the sNAP
using the provided Bloom filter.

• Step 5 The sNAP responds with the content item.

2Source code is available at https://github.com/mmlab/edge-icn.
3For clarity reasons, the terminology has been adapted to the context of

this paper.

For all subsequent requests by the same subscriber for items
belonging to the same scope steps 1, 2 and 3 are omitted.
Similarly, the steps required to transfer a content item in Edge-
ICN are the following:4

• Step 1 An Edge-ICN node sends a scope advertisement
to all other nodes.

• Step 2 Another node sends a subscription which is
received by the SDN controller.

• Step 3 The controller responds with a Bloom filter that
encodes a path towards a NodeID.

• Step 4 The node sends the subscription using the pro-
vided Bloom filter.

• Step 5 The node that received the subscription responds
with the content item.

For all subsequent requests by the same node towards the same
NodeID steps 1, 2 and 3 are omitted.

We now compare the communication overhead of these
two approaches, by making the following assumptions: (i) all
messages are of equal length (ii) all paths between any NAP
and the RV in POINT are of equal length l, (iii) all paths
between any Edge-ICN node and the SDN controller are of
equal length l (i.e., the same length as in assumption (ii))
(iv) all paths between any NAP, as well as between any two
Edge-ICN nodes are of equal length 2l, (v) the length of the
multicast tree used in Edge-ICN for advertising a scope to
all nodes is 1 + l ∗ |nodes|, where |nodes| is the number of
the nodes that receive the advertisement. We can now calculate
the communication overhead of each architecture assuming the
same topology. In our calculations, we do not consider steps
4 and 5 of both architectures, as they introduced the same
overhead.

We consider a number of scopes equally distributed to a
number of advertising nodes. Moreover, a number of sub-
scribing nodes request one item per scope. In Edge-ICN an
advertising node advertises a scope to all nodes (i.e., advertis-
ing + subscribing nodes). Figure 4 shows the communication
overhead measured in times l (i.e., a packet that traverses
a network path of size l is measured to introduce overhead
1) as a function of the number of (a) advertising nodes, (b)
subscribing nodes, and (c) scopes. It can be observed that when
the number of subscribing nodes is higher than the number
of the advertising nodes, Edge-ICN introduces less overhead
than POINT. In contrast, when the number of advertising
nodes is bigger that the number of subscribing nodes, Edge-
ICN introduces more overhead than POINT. The reason is
that Edge-ICN has higher costs for content advertisement but
lower costs for content subscription than POINT. When the
number of subscribing and advertising nodes are equal, then
both architectures behave almost the same.

Of course the results are obtained through analysis. Thor-
ough simulations with realistic topologies and workloads will
be considered in follow-up work.

4It is assumed that Edge-ICN nodes have already advertised at least one
item, hence they know the Bloom filter that corresponds to the virtual node
identifier all.nodes.

0

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90 100

Advertising nodes

POINT

Edge-ICN

(a) 100 subscribing nodes and 1000
scopes.

0

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90 100

Subscribing nodes

POINT

Edge-ICN

(b) 100 advertising nodes and 1000 scopes.

0

200000

400000

600000

800000

1000000

1200000

10 20 30 40 50 60 70 80 90 100

Number of scopes

POINT

Edge-ICN

(c) 100 advertising nodes and 100 sub-
scribing nodes.

Fig. 4: Communication overhead measured in times l.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented Edge-ICN, an efficient and easily
deployable ICN architecture. Edge-ICN aims at extending
existing networks with ICN capabilities by leveraging SDN
technology. In particular, Edge-ICN exploits an SDN-based
substrate to build communication paradigms that can enable
ICN applications, exploiting push, pull, anycast and mutlicast.
By implementing all ICN logic in edge nodes and by mapping
legacy protocols to ICN-functions, Edge-ICN requires no
modifications to end user devices or protocols nor to the (now
SDN-based) core network infrastructure. Additionally, existing
applications can benefit from Edge-ICN despite the fact they
are oblivious to the ICN functions of the architecture. To this
end, we discussed the gains realized by a CoAP-based IoT
application when Edge-ICN is used.

The work reported in this paper is at an early stage of
development and it assumes reliable control messaging, stable
and legitimate nodes, and only legacy applications. It is in our
immediate plans to revisit all these assumptions. In particular,
we will investigate SDN monitoring tools that are able to
detect node failures and provide churn handling mechanisms,
we will consider packet losses in the control plane, and we
will design node mobility solutions. Moreover, we will explore
the benefits that can be gained by considering ICN-aware
applications in addition to legacy ones. Edge-ICN is designed
to be a network-wide solution and assumes that all Edge-ICN
nodes belong to the network operator. An interesting twist of
this assumption is to consider user-owned Edge-ICN devices;
this case will create opportunities for novel applications, as
well as new challenges.

ACKNOWLEDGMENTS

This research was supported by the EU funded H2020 ICT
project POINT, under contract 643990.

REFERENCES

[1] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey
of Information-Centric Networking research,” IEEE Communications
Surveys Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

[2] D. Trossen, M. Sarela, and K. Sollins, “Arguments for an Information-
Centric Internetworking architecture,” SIGCOMM Computer Communi-
cations Review, vol. 40, no. 2, pp. 26–33, Apr. 2010.

[3] D. Trossen, M. J. Reed, J. Riihijrvi, M. Georgiades, N. Fotiou, and
G. Xylomenos, “IP over ICN - The better IP?” in Proc. of the European
Conference on Networks and Communications (EuCNC), June 2015, pp.
413–417.

[4] G. Carofiglio, “Mobile video delivery with Hybrid ICN,” Cisco, Tech.
Rep., 2016.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Computer Communications Review, vol. 44, no. 3, pp. 66–
73, Jul. 2014.

[6] M. J. Reed, M. Al-Naday, N. Thomos, D. Trossen, G. Petropoulos, and
S. Spirou, “Stateless multicast switching in software defined networks,”
in Proc. of the IEEE International Conference on Communications
(ICC), May 2016, pp. 1–7.

[7] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[8] “OpenFlow Switch Specification v1.2.0,” 2011. [Online]. Available:
https://www.opennetworking.org/

[9] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V. A. Siris, and G. C.
Polyzos, “Caching and mobility support in a publish-subscribe internet
architecture,” IEEE Communications Magazine, vol. 50, no. 7, pp. 52–
58, July 2012.

[10] N. Fotiou and G. C. Polyzos, “Decentralized name-based security for
content distribution using blockchains,” in Proc. of the IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), April
2016, pp. 415–420.

[11] K. Pentikousis et al., “Information-Centric Networking: Baseline sce-
narios,” IETF, RFC 7476, 2015.

[12] T. Biswas, A. Chakraborti, R. Ravindran, X. Zhang, and G. Wang, “Con-
textualized information-centric home network,” SIGCOMM Computer
Communications Review, vol. 43, no. 4, pp. 461–462, Aug. 2013.

[13] L. A. Grieco, M. B. Alaya, T. Monteil, and K. Drira, “Architecting infor-
mation centric ETSI-M2M systems,” in Proc. of the IEEE International
Conference on Pervasive Computing and Communication Workshops
(PERCOM WORKSHOPS), March 2014, pp. 211–214.

[14] G. C. Polyzos and N. Fotiou, “Building a reliable internet of things
using information-centric networking,” Journal of Reliable Intelligent
Environments, vol. 1, no. 1, pp. 47–58, 2015.

[15] N. Fotiou, H. Islam, D. Lagutin, T. Hakala, and G. C. Polyzos, “CoAP
over ICN,” in Proc. of the IFIP International Conference on New
Technologies, Mobility and Security (NTMS), Nov 2016, pp. 1–4.

[16] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” IETF, RFC 7252, 2014.

[17] K. Hartke, “Observing resources in the constrained application protocol
(CoAP),” IETF, RFC 7641, 2015.

[18] A. Rahman and E. Dijk, “Group communication for the constrained
application protocol (CoAP),” IETF, RFC 7390, 2014.

[19] Z. Shelby, “Constrained RESTful Environments (CoRE) Link Format,”
2012, RFC 6690, 2014.

[20] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proc. of the ACM

https://www.opennetworking.org/

SIGCOMM Workshop on Hot Topics in Networks (HotNets). New York,
NY, USA: ACM, 2010, pp. 19:1–19:6.

[21] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in Proc. of the
USENIX Conference on Networked Systems Design and Implementation

(NSDI), 2015, pp. 117–130.

[22] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an operating system for networks,”
SIGCOMM Computer Communications Review, vol. 38, no. 3, pp. 105–
110, Jul. 2008.

	I Introduction
	II System overview
	II-A ICN operations

	III Mapping legacy protocols to ICN
	IV Implementation and Evaluation
	V Conclusions and future work
	References

