
QUIC-FEC: Bringing the benefits of Forward
Erasure Correction to QUIC

François Michel
UCLouvain

Louvain-la-Neuve, Belgium
francois.michel@uclouvain.be

FNRS Research Fellow

Quentin De Coninck
UCLouvain

Louvain-la-Neuve, Belgium
quentin.deconinck@uclouvain.be

FNRS Research Fellow

Olivier Bonaventure
UCLouvain

Louvain-la-Neuve, Belgium
olivier.bonaventure@uclouvain.be

Abstract—Originally implemented by Google, QUIC gathers a
growing interest by providing, on top of UDP, the same service
as the classical TCP/TLS/HTTP/2 stack. The IETF will finalise
the QUIC specification in 2019.

A key feature of QUIC is that almost all its packets, including
most of its headers, are fully encrypted. This prevents eavesdrop-
ping and interferences caused by middleboxes. Thanks to this
feature and its clean design, QUIC is easier to extend than TCP.
In this paper, we revisit the reliable transmission mechanisms that
are included in QUIC. More specifically, we design, implement
and evaluate Forward Erasure Correction (FEC) extensions to
QUIC. These extensions are mainly intended for high-delays and
lossy communications such as In-Flight Communications. Our
design includes a generic FEC frame and our implementation
supports the XOR, Reed-Solomon and Convolutional RLC error-
correcting codes. We also conservatively avoid hindering the loss-
based congestion signal by distinguishing the packets that have
been received from the packets that have been recovered by the
FEC. We evaluate its performance by applying an experimental
design covering a wide range of delay and packet loss conditions
with reproducible experiments. These confirm that our modular
design allows the protocol to adapt to the network conditions. For
long data transfers or when the loss rate and delay are small, the
FEC overhead negatively impacts the download completion time.
However, with high packet loss rates and long delays or smaller
files, FEC allows drastically reducing the download completion
time by avoiding costly retransmission timeouts. These results
show that there is a need to use FEC adaptively to the network
conditions.

Index Terms—QUIC, Forward Error Correction, Forward
Erasure Correction, in-flight communications

I. INTRODUCTION

Initially proposed by Google engineers to reduce web page
download times, the QUIC protocol [1] brought innovation
back in the transport layer. QUIC started as an evolution
of SPDY [2], a precursor of HTTP/2. In a nutshell, QUIC
combines in a single protocol atop UDP the mechanisms
that are usually found in three different protocols: TCP, TLS
and HTTP/2. In contrast with TLS/TCP, QUIC encrypts both
the payload and most of the protocol control information
to prevent both pervasive monitoring and ossification from
middleboxes. Since it is built over UDP, QUIC is easier to
update than TCP. Indeed, QUIC implementations can be easily
included as libraries inside applications that are regularly
updated. Recent measurements show that a growing number of
servers (mainly Google and Akamai) support Google’s version
of QUIC [3] but also that the QUIC traffic grows [1], [4].

Given the positive results obtained by Google with QUIC
[1], the IETF created a dedicated working group in 2016
to standardise a new protocol starting from Google’s initial
design [5]. The first stable QUIC specification is expected by
the end of July 2019 and more than a dozen implementations
are being developed. Although the initial use-case will be
HTTP/2 [6], QUIC could also be used to support DNS [7],
RTP [8] and unreliable messages [9].

One of the strengths of the QUIC protocol is its extensibility.
A QUIC packet payload contains a sequence of frames,
each one being handled independently by the protocol. The
Stream frame transports application data. The ACK frame
acknowledges the received packets to the sender. New types of
frames can easily be added to the protocol. Furthermore, since
QUIC packets are encrypted, middleboxes cannot interfere
with protocol extensions, in contrast with the problems that
have plagued TCP [10].

In this article, we extend QUIC by enabling it to rely on
Forward Erasure Correction (FEC) to recover from packet
losses. This design is motivated by high Bandwidth-Delay
Product (BDP) networks such as In-Flight Communication
(IFC) services where losses are frequent and retransmissions
impact user experience [11]. These techniques transmit re-
dundant code to enable the receiver to recover from packet
losses without waiting for retransmissions. FEC techniques
have already been used in multicast applications [12], [13]
or in TCP [14]–[17], but the TCP extensions are difficult to
deploy [10].

We propose three main contributions in this paper. First, we
propose a modular QUIC extension that enables the utilisation
of a variety of FEC techniques. Our extension goes much
beyond the experiments carried out by Google with a simplis-
tic FEC technique in Chrome [18]. Furthermore, our design
makes the congestion control aware of packets that were
either normally received or recovered by FEC. Second, we
provide a complete implementation of the proposed extension
in quic-go [19] with three different FEC techniques. Third,
our evaluation, over a wide range of parameters, indicates
that the proposed FEC techniques improve the performance
of QUIC for short file transfers.

This paper is organised as follows. We first describe the
concepts behind FEC and discuss its support within QUIC
in Section II. We then define in Section III the design and

ar
X

iv
:1

90
4.

11
32

6v
1

 [
cs

.N
I]

 2
5

A
pr

 2
01

9

implementation details of QUIC-FEC, our extension enabling
the use of FEC-protected transfers with QUIC. We finally as-
sess its performances and compare different erasure-correcting
codes through experiments using a wide range of network and
loss configurations in Section IV.

II. FORWARD ERASURE CORRECTION

Over the last decades, researchers have explored a variety of
techniques that transmit redundant data to enable the receiver
to recover from errors and losses without having to wait
for retransmissions. Some proposed techniques were tuned
for specific link layer technologies [20]–[22] or targeted for
specific applications [12]–[17]. The IETF also considers these
techniques within the RMT and FECFRAME working groups
and the IRTF NWCRG [23]. FEC is especially interesting
compared to retransmission mechanisms when the delay and
loss rate are high: the packets will be recovered by FEC
without the need for a retransmission. Rula et al. [11] recently
revealed that In-Flight Communications (IFC) are highly de-
teriorated by the important latency and loss rate, making it
an interesting candidate for evaluating the benefits of FEC.
IFC technologies rely on 3/4G and satellite technologies.
Despite built-in redundancy and retransmission mechanisms
often proposed by such technologies, they may not be able to
recover from transmission losses, especially when the user is
mobile [24], which explains why losses can be perceived from
higher layer perspectives in the IFC use-case. There is thus a
call for exploiting coding schemes in higher OSI layers.

In their work on IFC communications, Rula et al. [11] study
the potential impact of the new arriving technologies for IFC
aiming at improving the link’s bandwidth. They conclude that
improving the link bandwidth does not improve significantly
the performances as the bottleneck resides in the high losses
and latencies. They also recognise that reducing the latency
and loss rate in this use-case is challenging. We thus study
the impact of adding FEC in QUIC for IFC, as FEC might
benefit from having more bandwidth provided by these new
technologies to reduce the impact of losses during a connection
over a lossy channel.

Given that most link layer technologies include error detec-
tion codes, we focus on erasures instead of errors. We define
FEC as the transmission of redundancy – Repair Symbols –
along with the data to recover packets – Source Symbols – that
have been lost. We use the word FEC scheme to refer to the
handling of Source and Repair Symbols and their redundancy
generation using an erasure correcting code.

A. Current support of FEC in QUIC

While a simple FEC scheme was originally included in
the QUIC protocol [5], it has rapidly been dropped due to
negative experiments results [18]. However, these experiments
targeted classical web use-cases where the loss rate and delays
are quite low compared to other use-cases such as In-Flight
Communications that have not been explored.

Furthermore, the FEC scheme used by Google was sim-
plistic, being only able to recover single losses, while bursty

Fig. 1: Example of (6, 4) block code. 2 Repair Symbols are
send for each block of 4 distinct Source Symbols.

Fig. 2: Example of (3, 2, 4) convolutional code. A coding win-
dow of 4 Source Symbols slides with a step of 2 symbols. For
each window position, it outputs 1 Repair Symbol protecting
the 4 Source Symbols contained in the current window.

losses occur in practice [18]. A wide range of codes more
adapted to those network conditions have been proposed in
the literature [13]. In this work, we consider both block and
convolutional error-correcting codes.

We define a (n, k) block code as a code sending a block
of k Source Symbols followed by n − k Repair Symbols.
Figure 1 shows an example of a (6, 4) code: each block of
4 Source Symbols is protected by 2 Repair Symbols (here,
R0 and R1). We define a (n, k, c) convolutional code as a
convolutional code sending n − k Repair Symbols every k
Source Symbols. The Repair Symbols protect the c previous
Source Symbols. Figure 2 shows an example of a (3, 2, 4)
convolutional code. It sends one Repair Symbol every two
Source Symbols. This means that the Repair Symbols are sent
interleaved with the Source Symbols. Each Repair Symbol
protects the 4 previously sent Source Symbols.

From the viewpoint of the QUIC protocol, the packet
reception outcome is binary. Either the packet is fully received
or it is not received at all. We thus consider entire packets as
Source Symbols, instead of protecting an arbitrary number of
bits in the packets. This is called packet-level coding.

Roca et al. compare block and convolutional codes using
Reed-Solomon and Random Linear Codes (RLC) to represent
both families of codes [25]. They show that while the Reed-
Solomon block codes provide a higher encoding speed, RLC
allows recovering the packets with a reduced latency compared
to Reed-Solomon. We leverage this property within our QUIC
extension. Palmer et al. [26] recently studied the combination
of an unreliable transfer and FEC on top of QUIC for Video-
on-Demand and live video streaming. However, only one block
code has been considered and using an unreliable transfer for
these use-cases could have been avoided by using a sufficient
playback buffer. To the best of our knowledge, the video
conferencing use-case using QUIC and FEC has not been
discussed yet.

III. INTEGRATING FEC INTO QUIC

In this section, we propose a generic Forward Erasure Cor-
rection extension for QUIC. It is currently based on the Google
version of QUIC and we implement it using the quic-go
implementation. We have a similar design for the IETF version
of QUIC [27] implemented in picoquic [28], but do not
discuss it due to space limitations. Our design transparently
supports different FEC Schemes and allows easily adapting
the selected FEC Scheme. The application can select the FEC
Scheme that suits its needs and recover from losses without
waiting for retransmissions.

Adding such a mechanism requires addressing several
points. We first describe how we advertise which are the
Source and Repair Symbols to the peer in Section III-A. We
then explain how we manage to transparently handle different
FEC Schemes in Section III-B. We finally discuss the impact
of FEC on congestion control in Section III-C.

A. Sending the Source and Repair Symbols

Our design uses QUIC packets as Source Symbols. We use
a previously unused flag of the QUIC header to inform the
peer that the packet must be considered as a Source Symbol.
We add a 32-bits field to the packet header to transmit FEC
Scheme-specific values to the peer. We only protect the packets
containing Stream frames that carry user data. Successive ACK
frames contain redundant information, making their loss less
impacting than the loss of Stream frames.

We introduce a new QUIC frame, the FEC frame, depicted
in Figure 3. The FEC frame contains the Repair Symbols
payload as well as a 64-bits (Repair FEC Payload ID) field
containing FEC Scheme-specific values. The FEC Scheme-
specific values are handled by the underlying FEC Scheme
and are opaque to the QUIC protocol itself. It allows easily
developing new FEC Schemes independently of the behaviour
and core functionalities of the QUIC protocol. The FEC frame
also advertises the number of Source (N.S.S.) and Repair
Symbols (N.R.S.) in the current FEC Block for block codes.
For convolutional codes, these fields advertise the number of
Source Symbols in the sliding window and the number of
Repair Symbols generated at each window step. They allow
the sender to dynamically change the code rate during the
connection and adapt its use of FEC to the changing network
conditions.

As a single Repair Symbol could be too large to fit into a
single FEC frame, the latter contains an Offset field indicating
the offset of the Repair Symbol chunk transported in the frame
and a FIN bit (F) indicating if the frame contains the last chunk
for this Repair Symbol.

While the QUIC Packets are sent encrypted and authen-
ticated, the Repair Symbols are generated from their clear-
text, avoiding the CPU overhead of decrypting the recovered
packets. To ensure the confidentiality and integrity of the
recovered packets, the Repair Symbols are sent encrypted and
authenticated. Therefore, no FEC frame is sent before the end
of the cryptographic handshake.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0a Data Length (15) F Offset (8)

Repair FEC Payload ID (64)

N. S. S. (8) N. R. S. (8)

Repair Symbol Payload
...

Fig. 3: Wire format of a FEC frame. The Repair FEC Payload
ID field is opaque to the protocol and is populated by the
underlying FEC Scheme.

B. The FEC Framework

The IETF has already developed solutions to add error-
correcting codes to several protocols. The most recent solution
is the FECFRAME framework [29] which has notably been
applied to RTP and supports different FEC schemes [30], [31].

Inspired by FECFRAME [29], we define a FEC Framework
implementing the common behaviour of these FEC Schemes
in order to further simplify their implementation. It provides
a structure for the different FEC Scheme-specific values ex-
changed by the peers to proceed to erasure correction. Its de-
sign is described in details in a technical report [32]. Although
there exists a wide variety of FEC Schemes, we can classify
most of them in two main categories: FEC Schemes using
block codes and FEC Schemes using convolutional (a.k.a.
sliding window) codes. Our FEC Framework is designed to
handle both. For block codes, it uses the 32-bits field in
the packet header to encode the FEC block number and the
offset of this packet in the FEC block. For convolutional FEC
Schemes, it uses these 32 bits to encode the offset of this
packet in the protected packets sequence. The framework also
populates 32 bits of the Repair FEC Payload ID field in the
FEC frame with informations identifying the FEC Block (for
block codes) and coding window (for convolutional codes)
protected by the Repair Symbol. The 32 other bits can be
populated by the underlying FEC Scheme with values required
to perform the encoding/decoding.

Such interfacing also brings interest from the IETF, where
the network coding research group currently works on an
Internet Draft [33]. While the core ideas are similar, the
draft recommends to only protect stream chunks while our
implementation protects arbitrary QUIC frames of any type.
We believe our work will benefit to the standardisation of such
interfacing.

Studied FEC Schemes. We currently support three different
FEC Schemes, each of them having different characteristics:
the XOR, the Reed-Solomon and the Convolutional Random
Linear Code (RLC) FEC Schemes. The two first ones are block
FEC Schemes and the last one is a convolutional FEC Scheme.

XOR FEC Scheme. Its principle is quite simple: the Source
Symbols are simply XORed with each other to generate a

Repair Symbol. It is easy to implement and to compute but
can only recover the loss of one Source Symbol. Experiments
carried out by Google showed that this is insufficient on
the Internet [34] because losses can occur in bursts. Our
implementation uses interleaving to recover from burst losses
with the XOR FEC Scheme. Sending successive packets in
different FEC Blocks enables the XOR FEC Schemes to better
handle burst losses at the expense of delay.

Reed-Solomon FEC Scheme. It can generate multiple Repair
Symbols per Source Block, allowing handling of burst losses.
While it better handles burst losses than the XOR FEC
Scheme, it is also more computationally intensive.

Convolutional RLC FEC Scheme. As convolutional codes
provide different properties from block codes, our FEC ex-
tension enables their use through the RLC FEC Scheme,
solving a system of linear equations with the lost Source
Symbols. It allows interleaving the Repair Symbols along with
the Source Symbols. Our implementation is inspired from the
FECFRAME RLC FEC Scheme draft [35].

C. FEC and the congestion control

Different congestion control algorithms have been imple-
mented into transport protocols such as QUIC and TCP.
Cubic [36] and New Reno [37] are the most popular ones. In
the case of QUIC-FEC, there are three outcomes to a packet
loss. i) The packet was not FEC-protected. In that case, it will
not be recovered. The sender observes a hole in the acknowl-
edgements and registers a loss. Packets containing only FEC
frames fall in this category. ii) The packet was FEC-protected
but could not be recovered. In that case, the sender will
notice the loss and retransmit the missing Stream frames. iii)
The packet was FEC-protected and recovered. Acknowledging
these recovered packets can hide the congestion signal and
make the FEC-enabled protocols behave unfairly compared
to TCP or regular QUIC, as they could potentially take more
than their fair share of the link bandwidth. We considered three
ways of avoiding to hide the congestion notification signal due
to packet losses:

1) Not acknowledging the recovered packets: This ap-
proach conservatively considers a recovered packet as lost.
It leads to a similar congestion control behaviour to when the
lost packets are not recovered with FEC. The drawback is that
the sender will perform unnecessary packet retransmissions.

2) Distinguishing the congestion-implied packet losses from
the channel noise-implied losses: Kim et al. [38] propose to
modify the loss-based congestion controls for this purpose.
They assume that a congestion-implied loss event is preceded
by an increase of the Round-Trip-Time (RTT) due to the
filling of the network buffers. They propose to diminish the
decrease of the congestion window after a packet loss if the
current RTT is close to the minimum observed RTT. Tickoo et
al. [39] propose to only react to congestion when it is explicitly
notified by the network nodes though the Explicit Congestion
Notification (ECN) [40] mechanism. TCP Westwood [41]
estimates the link bandwidth using the acknowledged data rate.

At each loss event, it adjusts its congestion window to use the
estimated bandwidth instead of multiplicatively decreasing it.

3) Explicitly advertising a packet recovery to the sender:
This approach extends the conservative approach. The packet
is acknowledged in a QUIC ACK frame but the receiver also
signals that this packet has been recovered. Upon reception of
this information, the sender both adapts its congestion window
according to the loss event and removes the recovered packet
from its retransmission queue. We implement this solution in
QUIC-FEC with a Recovered frame. Its format is similar to the
QUIC ACK frame: it advertises the ranges of newly recovered
packets.

Once a sender receives a Recovered frame, it removes
the recovered packets from its retransmission queue. It then
signals to its congestion control that a packet has been lost
for each packet listed in the Recovered frame. Using the
Recovered frame conservatively adapts the congestion window
of the sender as if every loss was caused by congestion. This
behaviour is comparable to the utilization of ECN. Once a
packet containing a Recovered frame is acknowledged, the
recovered packets ranges are removed from the subsequent
Recovered frames. We analyse the impact of this approach in
Section IV-B4.

IV. EVALUATION

Experiments have been performed to assess the perfor-
mances of our implementation and analyse the benefits of For-
ward Erasure Correction with the HTTP use-case running over
QUIC. We first describe in this section our methodology, then
perform experiments with parameters inspired by In-Flight
Communications. We analyse the Download Completion Time
(DCT), i.e. the time required to complete an HTTP transfer.

A. Methodology
We use network emulation with the Mininet tool [42]

to evaluate the performance of different FEC schemes in
quic-go. The main benefit of using emulation is that it
runs with real code and not a simplified protocol model. We
perform experiments with different loss models. While small
burst lengths or uniform losses can already give an idea on
the efficiency of a solution, we advocate for looking at longer
burst lengths as well in order to evaluate our solution with
different loss configurations. We thus use the Gilbert-Elliott
model [43], a standard loss model used to represent bursts of
lost packets.

The Gilbert-Elliott model is a two-states Markov model
used to represent correlated losses. The two states are the Good
and Bad states. In the Good state, a packet is delivered with
a probability k. In the Bad state, a packet is delivered with
a probability h. p denotes the probability of transition from
the Good to the Bad state, while r denotes the probability of
transition from the Bad to the Good state.

We added the packet-based loss detection mechanism to
quic-go as described in the current IETF specification [44]
as the version of quic-go we use only supports a time-based
loss detection marking a packet as lost when observing a hole
in the acknowledged packet ranges for more than 1

8 ∗RTT .

Fig. 4: Network topology for our experiments.

Parameter bw (Mbps) p r k h OWD (ms)
Smallest 0.3 0.01 0.08 0.98 0 100
Highest 10 0.08 0.5 1 0.1 400

TABLE I: Experimental design parameter ranges.

1) Experimental design: We use an experimental design
approach to perform our experiments [45]. This methodology
consists in defining ranges for each parameter and performing
a series of experiments with well-chosen values within these
ranges. This sub-samples the ranges of values and gives a
global overview of the possible values taken by all the param-
eters. In addition to providing a general confidence concerning
the performances of the tested implementation, it mitigates
the bias in the parameters’ selection by the experimenter. We
use the WSP algorithm [46] to broadly sample the space of
parameters with a reasonable amount of experiments. Unless
otherwise specified, we run the experiments with 130 different
combinations of parameters. Each configuration is run 9 times
and the median download completion time from these 9 runs
is considered. The experiment consists of an HTTP/2 GET
request for a particular file using QUIC. Figure 4 shows the
network topology used for our experiments. We apply the
delay, losses and bandwidth limitation on the “Internet” link.
Table I shows the parameters ranges chosen for our exper-
iments. It specifies ranges for the One-Way Delay (OWD),
bandwidth (BW), uniform loss rate (p) when a uniform loss
model is used and the state-transition probabilities (p, r,
k and h) when a Gilbert-Elliott loss model is used. The
parameters values are inspired from the work of Rula et al.
on In-Flight Communications [11]. As the authors specified
one representative set of parameters for Direct Air-to-Ground
Communication (DA2GC) and one set for Mobile Satellite
Service (MSS), we built our ranges around these values and
perform experiments with many combinations of different val-
ues within these ranges, covering most of the loss conditions
they experienced. For each set of parameters, the experiment
uses 4 file sizes: 1kB, 10kB, 50kB and a larger file of 1MB.
These sizes are intended to represent typical file sizes for the
web browsing use-case.

Unless otherwise specified, the level of redundancy is set
to (30, 20) for the Reed-Solomon code and (3, 2, 20) for the
RLC FEC Scheme. This ensures a code rate of 2

3 and a burst
recovery capability of 10 symbols per block.

2) Reproducible experiments: We advocate for having re-
producible experiments in order to easily analyse the results.
It also enables a fair comparison between the two solutions
and assess them under equal conditions. Mininet already
provides tools to emulate uniform losses on a link but neither
provides a Gilbert-Elliott loss model nor a way to reproduce
the loss pattern of an experiment. We thus built our own tool,

ebpf_dropper, allowing emulating losses in a network.
This tool, written using the extended Berkeley Packet Filter
(eBPF) [47], can be attached to a network node via the tc
tool. It provides a uniform and a Gilbert-Elliott deterministic
loss model, which can be given a seed to exactly reproduce
the sequence of lost packets.

B. Results with uniform losses

As Rula et al. [11] proposed a uniform loss rate for the
IFC use-case, we first perform experiments with uniform
losses and investigate the benefits of FEC in QUIC in these
configurations. We first study the two average cases for IFC.
We then extend the parameters ranges using experimental
design. We compare the regular QUIC with our QUIC-FEC
implementation, using different error-correcting codes: the
RLC and Reed-Solomon codes. We do not present the results
for the XOR code, as it showed similar or poorer results to
these two codes.

1) Specific IFC use-cases: In this section, we study in
details the average parameters values proposed by Rula et
al. [11] for Mobile Satellite Service and Direct Air-To-Ground
Communications with different deterministic uniform loss
patterns. For each case, we performed 50 experiments for
each file size with a different seed for our deterministic loss
generator, allowing experimenting with a high variety of loss
patterns. Due to space limitations, we do not show here the
results with the Reed-Solomon code here as RLC seems to
outperform it in this uniform losses environment.

a) Direct Air-To-Ground Communication (DA2GC): We
experiment with the average parameters values for the DA2GC
use-case [11]. This leads us to a Round-Trip-Time of 262ms,
a link bandwidth of 0.468 Mbps and a loss rate of 3.3%.
The results are presented on the left graph of Figure 5. As
we can see, even within the same set of parameters, the
experiment can lead to quite different results when run with
different loss patterns. This is because the position of the lost
packets in the packet flow can have a high impact on the final
result. With small file transfers, only a few packets will be
lost, if any. If a loss occurs on a packet transporting non-
stream frames, its impact on the download completion time
will likely be negligible or non-existent if the files are small
(with small files transfers, the sender will not necessarily be
flow control-blocked, thus losses of packets containing frames
updating the flow control window won’t have an impact on
the file transfer). On the other hand, losses that occur on
packets containing Stream frames can have a high impact on
the download completion time if FEC is not used or did not
recover the packet.

As we can see, the 1kB file download sees only a positive
impact or no impact when FEC is used. The file is indeed
not large enough to saturate the sender’s congestion window
even when FEC is used. However, when the packet containing
the Stream frame is lost, QUIC-FEC will be able to recover
it as soon as the FEC frame is received (which has been sent
directly after the Stream frame, in a separated packet). The
regular QUIC implementation will have to wait for at least

one RTT to retransmit the frame. In the case of a 1kB file
download, the loss of the only Stream frame is also a tail
loss, that will be retransmitted at least after waiting 2 ∗RTT
in the quic-go implementation that uses the Tail Loss Probe
(TLP) mechanism [48]. In this case, the sender will wait for
more than 500 milliseconds before retransmitting the frame.

The advantages of FEC are less evident for larger files:
for both 10kB and 50kB files, using FEC clearly deteriorates
the DCT in most cases. This result can easily be explained.
With such a low bandwidth, the network forwards one packet
of 1200 bytes every 20.5 milliseconds. Even in the case of
a limited number of packets such as with the transfer of a
10kB file, the impact of the additional bandwidth required to
transfer the Repair Symbols will be noticed with such a limited
bandwidth. The advantage of FEC is especially visible when
a packet loss occurs during our tests: recovering the packet
through FEC reduces the DCT compared to a retransmission.

b) Mobile Satellite Service (MSS): We performed ex-
periments with the average parameters values for the Mobile
Satellite Service use-case provided by Rula et al. [11]. We
thus set a Round-Trip-Time of 761ms, a link bandwidth of
1.89 Mbps and a loss rate of 6%. The graph at the right of
Figure 5 shows the DCT ratio between QUIC-FEC with RLC
and QUIC without the FEC extension. As we can see, using
FEC reduces the total DCT in the vast majority of the smaller
files downloads. The RTT and loss rate are sufficiently high
to have a highly negative impact on the DCT that will be
recovered through the use of FEC. As the bandwidth is a lot
higher than for the DA2GC case, the negative impact of FEC
on smaller files is less present. Using FEC takes the benefits of
the additional available bandwidth to transmit the redundancy
needed to recover from losses. It can be easily seen when
comparing the 10kB curves for the DA2GC and MSS cases:
when no loss occurred, the ratios are significantly closer to
1 for the MSS case. Finally, we can note a higher variance
of the DCT ratio for the 1MB files compared to the DA2GC
scenario. This is due to the higher available bandwidth. With
a higher available bandwidth, there is a larger set of possible
values for the congestion window after encountering the first
random loss making the sender exit from the slow start phase.
The position of the first loss in the loss pattern has thus a
higher impact than with a smaller available bandwidth.

2) Experimental Design: We now use the Experimental
Design approach to explore a broader set of parameters values.
Figure 6 shows the ECDF of the ratio of the Download Com-
pletion Time (DCT) between QUIC-FEC using Reed-Solomon
and the regular QUIC, with four different file sizes. Each
experiment in this CDF has been performed with parameters
selected from the ranges shown in Table I.

a) Large files transfers: We can easily see that QUIC-
FEC performs badly compared to the regular QUIC with the
1MB file. This comes from one of the drawbacks of FEC.
Adding redundancy to a data stream implies to transfer more
bytes on the wire. As our code rate is 2

3 in this experiment,
QUIC-FEC has to transfer 1.5 times the amount of bytes
transferred by regular QUIC (ignoring the potential retransmis-

0.5 1.0 1.5 2.0
RLC/QUIC

0.0

0.5

1.0

CD
F

0.5 1.0 1.5 2.0
RLC/QUIC

0.0

0.5

1.0

1kB 10kB 50kB 1MB

Fig. 5: Download Completion Time (DCT) ratio between
QUIC-FEC with the RLC block code and QUIC for the
average DA2GC (left) and MSS (right) parameters values. A
ratio below 1 means that QUIC-FEC performed better than
QUIC. For DA2GC, FEC was only beneficial for 25% of the
experiments for small file sizes. FEC noticeably deteriorates
the performance in the other cases, due to the low bandwidth.
For MSS, FEC can improve the performances in 75% of the
cases for 50kB file transfers and does not deteriorate it when
no loss occurs during small file transfers, due to the higher
available bandwidth.

sions), which increases the overall download completion time.
With longer files, the benefits brought by FEC are thus masked
by the overhead needed to transmit the redundancy. In some
cases, we can see that the DCT ratio can reach high values
when the first losses arrive later. This will let the congestion
window increase higher and the regular QUIC download will
be able to terminate before the congestion window finished to
decrease to a stable level. On the other side, QUIC-FEC will
have to transmit the remaining data at a smaller rate and thus
be significantly slower.

b) Small files transfers: We can see that the advantage of
FEC is visible on small file transfers. Recovering a packet with
FEC avoids the wait for a retransmission. A retransmission
costs at least the time of one Round-Trip-Time. With small
files, the wait for a retransmission will have a high relative
impact on the DCT. This is why using FEC has an advantage
in these cases, as the file transfer will be able to terminate
without an additional round trip. The experimental design also
shows that there is a benefit in protecting the client request. For
example, our 108th test discards the client packet containing
the GET request. The server then recovers it without the need
for the client to retransmit it and can directly begin to serve
the request. However, it should be noted that protecting the
client’s request is equivalent to duplicating it if the request is
contained in only one packet.

When looking more closely at our results, we can also see
that FEC can still be harmful, depending on the loss pattern
and the available bandwidth. Indeed, for experiments during
which no loss occurred and with a low available bandwidth,
using FEC sensibly increases the DCT, even for the 10kB
and 50kB files transfers. These configurations are indeed
similar to the DA2GC scenario. The additional time needed

0.5 1.0 1.5 2.0 2.5 3.0
RS/QUIC

0.0

0.5

1.0
CD

F 1kB
10kB
50kB
1MB

Fig. 6: DCT ratio between QUIC-FEC with the Reed-Solomon
block code and the regular QUIC.

to transmit the redundancy is non negligible compared to the
total DCT. When losses occur or for experiments having a
higher available bandwidth, this overhead is greatly reduced.

c) Comparing FEC codes: We now compare the impact
of the FEC Scheme used for these different file sizes. Figure
7 shows the DCT ratio between QUIC-FEC using the Reed-
Solomon block code and QUIC-FEC using the RLC convolu-
tional code. As we can see, RLC performs significantly better
than Reed-Solomon with the 1MB file transfer. This can be
explained easily by the way these two codes send their Source
and Repair Symbols. These two codes provide the same code
rate and a similar packet recovery capability. However, the
RLC code interleaves the packets containing the FEC frames
with the FEC-protected QUIC packets. On the other hand,
the Reed-Solomon code sends all its FEC frames after the
block containing the FEC-protected packets has been sent. In
our experiments, the RLC code sends one FEC frame every
two FEC-protected packets. The Reed-Solomon code sends 10
FEC frames every 20 FEC-protected packets. If the first FEC-
protected packet of a Reed-Solomon block is lost, the receiver
will have to wait for receiving the 19 other FEC-protected
QUIC packets and one Repair Symbol before being able to
recover it. On the other hand, the RLC code must only wait for
the reception of two additional symbols: the following QUIC
packet and the following FEC frame. With a packet-based loss
detection threshold of 3 packets such as the one defined in the
QUIC recovery draft [44], using the Reed-Solomon code will
trigger a retransmission on the sender in most cases as the
packet has been recovered too late. The uselessly retransmitted
packet will occupy the congestion window of the sender, while
a new packet will be sent when RLC is used.

3) The need for adaptive FEC: Using the experimental
design, we saw that FEC performed badly when no loss occur
and when the available bandwidth is low. We want to study to
which extent using FEC can deteriorate the DCT. We perform
experiments with the same parameters, except for the loss rate
that we set to 0%. Figure 8 shows the DCT ratio comparing
QUIC-FEC with RLC and regular QUIC. On the left (resp.
right) of the figure, QUIC-FEC uses RLC with a code rate
of 2

3 (resp. 4
5). As we can see, except for some results due

to a slight variance in our experiments, using FEC always
deteriorates the DCT. When looking at our results, we see that

0.6 0.8 1.0 1.2 1.4 1.6
RLC/RS

0.0

0.5

1.0

CD
F

1kB
10kB
50kB
1MB

Fig. 7: DCT ratio between QUIC-FEC with the convolutional
RLC code and QUIC-FEC with the Reed-Solomon block code.

0.5 1.0 1.5 2.0
RLC/QUIC

0.0

0.5

1.0

CD
F

0.5 1.0 1.5 2.0
RLC/QUIC

0.0

0.5

1.0

1kB 10kB 50kB 1MB

Fig. 8: DCT ratio between QUIC-FEC with RLC and the
regular QUIC with a loss rate of 0%. On the left, the used
code rate is 2

3 , while on the right, the code rate is 4
5 . Increasing

the code rate reduces the impact of FEC on the bandwidth.

the DCT is further deteriorated during experiments for which
the available bandwidth is low. When comparing the results
with the different code rates, we can see that increasing the
code rate reduces the negative impact of FEC on the DCT.
We can thus conclude that there is a need in controlling the
redundancy level during the life of a connection and disabling
it when it deteriorates the DCT.

Adaptive coding schemes are already studied in the litera-
ture at different levels in order to reduce the negative impact
of over-coded transmissions [49]–[54]. It is however known
that ARQ offers better performances than FEC for larger bulk
transfers [53]. This is also what we can observe from our
experiment results. Disabling the use of FEC for these use-
cases should thus be considered.

4) The importance of the recovery notification: In Section
III-C we proposed the Recovered frame to notify the peer that
packets have been recovered to avoid hiding the loss-based
congestion signal. In this section, we analyse the impact of
this notification on the fairness of QUIC-FEC.

The connection parameters used for this experiment are the
parameters of the MSS scenario, except that we set a loss rate
of 0% to avoid disturbing the experiment with random losses.
Losses will only be caused by congestion. We use a (7, 6, 20)
RLC code, leading to a code rate of 6

7 , to better see the impact
of masking the congestion signal when no Recovered frame
is sent. Indeed, with a higher code rate such as 2

3 , a large part

Regular With RF Without RF
100

150

Re
gu

la
r Q

UI
C

DC
T

(s
ec

on
ds

)

Fig. 9: DCT of a regular QUIC transfer when competing with
QUIC, QUIC-FEC with Recovered frames and QUIC-FEC
without Recovered frames.

of the packet flow is composed by packets containing only a
FEC frame. The loss of a single FEC frame does not lead to
the transmission of a Recovered frame since this loss does not
impact the receiver, but it is still announced in ACK frames.
The sender thus still receives a frequent loss signal when many
FEC frames are lost. With a higher code rate such a 6

7 , losses of
packets containing only FEC frames and the related congestion
signal will be less frequent. Note that quic-go also marks
a packet as lost if there is a hole in its ACK ranges for this
packet for more than 1

8 ∗RTT .
Our experiment consists in performing a 10MB file trans-

fer with the regular QUIC implementation (we call it the
foreground transfer) while the link is already fully utilised
by another transfer (we call it the background transfer).
We consider three different candidates for the background
transfer: 1) another regular QUIC transfer, 2) a QUIC-FEC
connection that uses Recovered frames (RF) and 3) a QUIC-
FEC transfer that simply acknowledges the recovered packets,
without sending Recovered frames. We compare the DCT of
the foreground transfer in these three cases. The left, middle
and right box plots in Figure 9 respectively represent the DCT
of the foreground transfer for the first, second and third cases.

As we can see, the regular QUIC download takes generally
longer when it competes with a QUIC-FEC transfer that does
not send Recovered frames. This is due to the fact that in this
case, the congestion signal is lost when packet losses caused
by congestion are recovered and simply acknowledged by the
receiver. This makes a FEC-enabled protocol unfair compared
with traditional protocols such as regular QUIC that only use
retransmissions. The middle bar plot shows that when QUIC-
FEC uses Recovered frames, there is no difference between
a QUIC sender competing with another QUIC sender or a
QUIC-FEC sender.

C. Results with bursty losses

In this section, we analyse the impact of using FEC in the
case of correlated losses. We perform the same experiments
with a Gilbert-Elliott loss model. The parameters of these
experiments are shown in Table I. We remove from our
results the experiments whose intense loss patterns prevent

0.1 0.5 1 2 10
RLC/QUIC

0.0

0.5

1.0

CD
F

1kB
10kB
50kB
1MB

Fig. 10: DCT ratio between QUIC-FEC with the RLC block
code and QUIC, using the Gilbert-Elliott loss model.

a successful file transfer. We show the comparison of QUIC-
FEC with RLC and the regular QUIC in Figure 10. We can
see that the results are close to the results with uniform losses
shown in Figure 6: using FEC has benefits for smaller transfers
and the 1MB file transfer suffers from the added redundancy.

When looking more closely at our results, it appears that
using FEC performs badly when the r parameter of the
Gilbert-Elliott model is low. For the download of 10kB and
50kB files, the average DCT ratio for our experiments when
r ≤ 12% is above 1, while it is below 1 otherwise.

D. Experiments conclusion and future work

As a first conclusion, we can note that adding FEC to a
file transfer considerably reduces the Download Completion
Time for small files. For such transfers, a loss will more likely
impact the Download Completion Time as its retransmission
will potentially occur after all data have been sent. Using FEC
avoids waiting this additional time. FEC is beneficial in higher-
bandwidth networks. The MSS use-case already proposes a
sufficient bandwidth to hide the overhead induced by FEC
for smaller file sizes. Newer MSS and DA2GC technologies
aim at improving the available bandwidth [11], and thus the
efficiency of FEC. We compared a block to a convolutional
code and showed that the convolutional code can recover from
single loss events more rapidly than block codes, leading
to a better bandwidth efficiency by avoiding useless packet
retransmissions for long transfers.

We can also conclude that using FEC requires to be able
to adjust the code rate, or even disable the transmission of
redundancy, especially for large file transfers.

V. CONCLUSION

In this paper, we have leveraged the extensibility of QUIC
to complement its existing retransmission techniques with
Forward Erasure Correction (FEC). FEC is particularly suited
for lossy communications over high-delay paths such as In-
Flight Communications. Our design and implementation are
modular and can support a variety of FEC techniques with
different levels of redundancy. Furthermore, thanks to our
Recovered frame, the sender can correctly adjust its congestion
window when the receiver uses FEC to recover from packet
losses.

Our evaluation over a wide range of network scenarios
shows that FEC can drastically lower the Download Comple-
tion Time for short web transfers. However, it can be harmful
for longer file downloads or in low-bandwidth configurations.
Our future work will be to develop heuristics that enable
QUIC senders to automatically decide whether to use FEC
or traditional retransmission techniques in function of the
requirements of the application and the network conditions.
We also plan to use our implementation to carry out large
scale experiments in real networks.

ARTEFACTS

Our code for QUIC-FEC and the scripts for the experi-
ments1 as well as ebpf_dropper2 are publicly available.

REFERENCES

[1] A. Langley et al., “The quic transport protocol: Design and internet-scale
deployment,” in SIGCOMM ’17. ACM, 2017, pp. 183–196.

[2] M. Belshe et al., “Spdy protocol,” http://www.chromium.org/spdy/
spdy-protocol/spdy-protocol-draft3-1, accessed: 2018-06-19.

[3] J. Rüth et al., “A first look at quic in the wild,” in PAM’18, 2018.
[4] M. Trevisan et al., “Five years at the edge: Watching internet from the

isp network,” ser. CoNEXT ’18. New York, NY, USA: ACM, 2018, pp.
1–12. [Online]. Available: http://doi.acm.org/10.1145/3281411.3281433

[5] R. Hamilton et al., “Quic: A udp-based secure and reliable transport for
http/2,” Working Draft, Internet-Draft draft-hamilton-early-deployment-
quic-00, July 2016.

[6] M. Bishop, “Hypertext transfer protocol (http) over quic,” Working
Draft, Internet-Draft draft-ietf-quic-http-11, April 2018.

[7] C. Huitema et al., “Specification of dns over dedicated quic connec-
tions,” January 2018, draft-huitema-quic-dnsoquic-03.

[8] J. Ott et al., “RTP over QUIC,” internet draft, draft-rtpfolks-quic-rtp-
over-quic-01, work in progress.

[9] T. Pauly et al., “An Unreliable Datagram Extension to QUIC,” Septem-
ber 2018, internet draft, draft-pauly-quic-datagram-00, work in progress.

[10] M. Honda et al., “Is it still possible to extend tcp?” in IMC 2011. ACM,
2011, pp. 181–194.

[11] Rula et al., “Mile high wifi: A first look at in-flight internet connectivity,”
in 2018 World Wide Web Conference on World Wide Web, 2018.

[12] G. Carle et al., “Survey of error recovery techniques for ip-based audio-
visual multicast applications,” IEEE Network 11 (6), pp. 24–36, 1997.

[13] C. Perkins et al., “A survey of packet loss recovery techniques for
streaming audio,” IEEE Network, vol. 12, no. 5, pp. 40–48, 1998.

[14] S. Ferlin et al., “Mptcp meets fec: Supporting latency-sensitive applica-
tions over heterogeneous networks,” IEEE/ACM ToN, 2018.

[15] Y. Cui et al., “Fmtcp: A fountain code-based multipath transmission
control protocol,” IEEE/ACM ToN, vol. 23, no. 2, pp. 465–478, 2015.

[16] J. K. Sundararajan et al., “Network coding meets tcp: Theory and
implementation,” Proceedings of the IEEE 99 (3), pp. 490–512, 2011.

[17] J. Cloud et al., “Multi-path tcp with network coding for mobile devices
in heterogeneous networks,” in VTC, 2013 IEEE. IEEE, 2013, pp. 1–5.

[18] I. Swett, “Quic-fec,” https://datatracker.ietf.org/meeting/99/materials/
slides-99-nwcrg-08-swett-quic-fec-00, 2017, accessed: 2018-06-02.

[19] L. C. et al, “A quic implementation in pure go.” 2017, https://github.
com/lucas-clemente/quic-go.

[20] E. W. Biersack, “Performance evaluation of forward error correction in
an atm environment,” IEEE JSAC, vol. 11, no. 4, pp. 631–640, 1993.

[21] S. Katti et al., “Xors in the air: practical wireless network coding,”
IEEE/ACM ToN, vol. 16, no. 3, pp. 497–510, 2008.

[22] H. Giesen et al., “In-network computing to the rescue of faulty links,”
in NetCompute 2018. ACM, 2018, pp. 1–6.

[23] B. Adamson et al., “Taxonomy of coding techniques for efficient
network communications,” March 2018, internet draft, draft-irtf-nwcrg-
network-coding-taxonomy-08, work in progress.

1Available on this link: https://bitbucket.org/michelfra/quic-fec on the
branch networking_2019 from May 20th 2019.

2Available on this link: https://github.com/francoismichel/ebpf dropper on
the branch networking_2019.

[24] N. Kuhn et al., “Network coding and satellites,” Working Draft, Novem-
ber 2018, draft-irtf-nwcrg-network-coding-satellites-02.

[25] V. Roca et al., “Less latency and better protection with al-fec sliding
window codes: A robust multimedia cbr broadcast case study,” in
WiMob. IEEE, 2017, pp. 1–8.

[26] M. Palmer et al., “The quic fix for optimal video streaming,” Conext’18
EPIQ workshop, 2018.

[27] J. Iyengar et al., “Quic: A udp-based multiplexed and secure transport,”
Working Draft, Internet-Draft draft-ietf-quic-transport-16, October 2018.

[28] C. Huitema, “Minimal implementation of the quic protocol,” 2018, https:
//github.com/private-octopus/picoquic.

[29] V. Roca, M. Watson, and A. C. Begen, “Forward Error Correction (FEC)
Framework,” RFC 6363, Oct. 2011.

[30] A. Bouabdallah et al., “Rfc6865: Simple reed-solomon forward error
correction (fec) scheme for fecframe,” RFC 6865, Tech. Rep., 2013.

[31] V. Roca et al., “Simple low-density parity check (ldpc) staircase forward
error correction (fec) scheme for fecframe,” RFC 6816, Tech. Rep., 2012.

[32] F. Michel, Q. De Coninck, and O. Bonaventure, “Adding forward erasure
correction to quic,” arXiv preprint arXiv:1809.04822, 2018.

[33] I. Swett et al., “Coding for quic,” Working Draft, Internet-Draft draft-
swett-nwcrg-coding-for-quic-00, March 2018.

[34] I. Swett, “QUIC FEC v1,” Feb 2016, unpub-
lished draft, https://docs.google.com/document/d/
1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit.

[35] V. Roca et al., “Sliding window random linear code (rlc) forward erasure
correction (fec) schemes for fecframe,” Working Draft, Internet-Draft
draft-ietf-tsvwg-rlc-fec-scheme-02, March 2018.

[36] S. Ha et al., “Cubic: a new tcp-friendly high-speed tcp variant,” ACM
SIGOPS operating systems review, vol. 42, no. 5, pp. 64–74, 2008.

[37] T. Henderson et al., “Rfc6582: The newreno modification to tcp’s fast
recovery algorithm,” RFC 6582, Tech. Rep., 2012.

[38] M. Kim et al., “Congestion control for coded transport layers,” in
Communications (ICC), 2014 IEEE International Conference on. IEEE,
2014, pp. 1228–1234.

[39] O. Tickoo, V. Subramanian, S. Kalyanaraman, and K. Ramakrishnan,
“Lt-tcp: End-to-end framework to improve tcp performance over net-
works with lossy channels,” in IWQoS. Springer, 2005, pp. 81–93.

[40] K. Ramakrishnan, S. Floyd, and D. Black, “Rfc3168: The addition of
explicit congestion notification (ecn) to ip,” Tech. Rep., 2001.

[41] S. Mascolo et al., “Tcp westwood: Bandwidth estimation for enhanced
transport over wireless links,” in MobiCom. ACM, 2001, pp. 287–297.

[42] N. Handigol et al., “Reproducible network experiments using container-
based emulation,” in CoNEXT. ACM, 2012, pp. 253–264.

[43] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
The Bell System Technical Journal, vol. 42, no. 5, pp. 1977–1997, 1963.

[44] J. Iyengar et al., “Quic loss detection and congestion control,” Working
Draft, Internet-Draft draft-ietf-quic-recovery-16, October 2018.

[45] R. A. Fisher, The design of experiments. Oliver And Boyd, 1949.
[46] J. Santiago et al., “Construction of space-filling designs using wsp

algorithm for high dimensional spaces,” Chemometrics and Intelligent
Laboratory Systems, vol. 113, pp. 26–31, 2012.

[47] M. Fleming, “A thorough introduction to ebpf,” 2017, https://lwn.net/
Articles/740157/.

[48] N. Dukkipati et al., “Tail loss probe (tlp): An algorithm for fast recovery
of tail losses,” draft-dukkipati-tcpm-tcp-loss-probe-01.

[49] A. Nafaa, T. Taleb, and L. Murphy, “Forward error correction strategies
for media streaming over wireless networks,” IEEE Communications
Magazine, vol. 46, no. 1, pp. 72–79, 2008.

[50] I.-H. Hou, Y.-E. Tsai, T. F. Abdelzaher, and I. Gupta, “Adapcode:
Adaptive network coding for code updates in wireless sensor networks,”
in IEEE INFOCOM 2008. IEEE, 2008, pp. 1517–1525.

[51] Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Channel-adaptive resource allo-
cation for scalable video transmission over 3g wireless network,” IEEE
TCSVT, vol. 14, no. 8, pp. 1049–1063, 2004.

[52] P. Chaporkar and A. Proutiere, “Adaptive network coding and scheduling
for maximizing throughput in wireless networks,” in MobiCom 2007.
ACM, 2007, pp. 135–146.

[53] Q. Zhang et al., “End-to-end qos for video delivery over wireless
internet,” Proceedings of the IEEE, vol. 93, no. 1, pp. 123–134, 2005.

[54] J. Cloud, D. Leith, and M. Médard, “A coded generalization of selective
repeat arq,” in INFOCOM 2015. IEEE, 2015, pp. 2155–2163.

http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://doi.acm.org/10.1145/3281411.3281433
https://datatracker.ietf.org/meeting/99/materials/slides-99-nwcrg-08-swett-quic-fec-00
https://datatracker.ietf.org/meeting/99/materials/slides-99-nwcrg-08-swett-quic-fec-00
https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://bitbucket.org/michelfra/quic-fec
https://github.com/francoismichel/ebpf_dropper
https://github.com/private-octopus/picoquic
https://github.com/private-octopus/picoquic
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/

	I Introduction
	II Forward Erasure Correction
	II-A Current support of FEC in QUIC

	III Integrating FEC into QUIC
	III-A Sending the Source and Repair Symbols
	III-B The FEC Framework
	III-C FEC and the congestion control
	III-C1 Not acknowledging the recovered packets
	III-C2 Distinguishing the congestion-implied packet losses from the channel noise-implied losses
	III-C3 Explicitly advertising a packet recovery to the sender

	IV Evaluation
	IV-A Methodology
	IV-A1 Experimental design
	IV-A2 Reproducible experiments

	IV-B Results with uniform losses
	IV-B1 Specific IFC use-cases
	IV-B2 Experimental Design
	IV-B3 The need for adaptive FEC
	IV-B4 The importance of the recovery notification

	IV-C Results with bursty losses
	IV-D Experiments conclusion and future work

	V Conclusion
	References

