Malicious attack detection based on traffic-flow information fusion | IEEE Conference Publication | IEEE Xplore

Malicious attack detection based on traffic-flow information fusion


Abstract:

While vehicle-to-everything communication technology enables information sharing and cooperative control for vehicles, it also poses a significant threat to the vehicles'...Show More

Abstract:

While vehicle-to-everything communication technology enables information sharing and cooperative control for vehicles, it also poses a significant threat to the vehicles' driving security owing to cyber-attacks. In particular, Sybil malicious attacks hidden in the vehicle broadcast information flow are challenging to detect, thereby becoming an urgent issue requiring attention. Several researchers have considered this problem and proposed different detection schemes. However, the detection performance of existing schemes based on plausibility checks and neighboring observers is affected by the traffic and attacker densities. In this study, we propose a malicious attack detection scheme based on traffic-flow information fusion, which enables the detection of Sybil attacks without neighboring observer nodes. Our solution is based on the basic safety message, which is broadcast by vehicles periodically. It first constructs the basic features of traffic flow to reflect the traffic state, subsequently fuses it with the road detector information to add the road fusion features, and then classifies them using machine learning algorithms to identify malicious attacks. The experimental results demonstrate that our scheme achieves the detection of Sybil attacks with an accuracy greater than 90 % at different traffic and attacker densities. Our solutions provide security for achieving a usable vehicle communication network.
Date of Conference: 13-16 June 2022
Date Added to IEEE Xplore: 22 July 2022
ISBN Information:
Electronic ISSN: 1861-2288
Conference Location: Catania, Italy

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.