
1

A Distributed Algorithm for Throughput Optimal
Routing in Overlay Networks

Anurag Rai, Rahul Singh, Eytan Modiano

Abstract—We address the problem of optimal routing in
overlay networks. An overlay network is constructed by adding
new overlay nodes on top of a legacy network. The overlay
nodes are capable of implementing any dynamic routing policy,
however, the legacy underlay has a fixed, single path routing
scheme and uses a simple work-conserving forwarding policy.
Moreover, the underlay routes are pre-determined and unknown
to the overlay network. The overlay network can increase the
achievable throughput of the underlay by using multiple routes,
which consist of direct routes and indirect routes through other
overlay nodes. We develop a throughput optimal dynamic routing
algorithm for such overlay networks called the Optimal Overlay
Routing Policy (OORP).

OORP is derived using the classical dual subgradient descent
method, and it can be implemented in a distributed manner. We
show that the underlay queue-lengths can be used as a substitute
for the dual variables. We also propose various schemes to gather
the information about the underlay that is required by OORP
and compare their performance via extensive simulations.

I. INTRODUCTION

Optimal routing algorithms1 have received a significant
amount of attention in the literature for the past two decades
(e.g. [1], [2], [10], [11]), however, they have had limited
success in terms of implementations. One of the main reasons
behind the lack of traction is that these policies require
additional functionalities that are not supported by the legacy
devices. For example, most of these algorithms need the
network to be composed of homogeneous nodes that possess
the ability to implement a dynamic routing policy. In contrast,
many legacy networks use a single path routing scheme with
a work-conserving forwarding policy such as FIFO, and hence
can support only a fraction of the achievable throughput. Thus,
an implementation of a throughput optimal scheme usually
requires a complete overhaul of the network. An overlay
architecture for a gradual move towards optimal routing was
proposed in [6]. This architecture integrates overlay nodes
capable of dynamic routing into an underlay network of legacy
devices (see Figure 1 for an example). In this paper, we
develop a throughput optimal dynamic routing algorithm for
such overlay networks.

Overlay networks have been used to improve the perfor-
mance and capabilities of computer networks for a long time.
The Internet itself started as a data network built on top of
the telephone network. An overlay architecture to improve

Anurag Rai (rai@mit.edu), Rahul Singh (rsingh12@mit.edu) and Eytan
Modiano (modiano@mit.edu) are with the Laboratory of Information and
Decision Systems (LIDS), Massachusetts Institute of Technology, Cambridge,
MA 02139, USA.

1A routing algorithm is throughput optimal if it can stabilize any traffic
that can be stabilized by some routing algorithm.

C

DA

B

C

D

A

B Overlay Network

Physical Network

Possible routes

Underlay path

(Tunnel)

Underlay node

Overlay node

Overlay link

Fig. 1: Overlay network architecture. If the overlay node A
has traffic for node D, it can either route it directly using the
tunnel from A to D or relay it through other overlay node B
or C.

the robustness of the Iinternet was proposed in [3], where
alternate overlay paths are used to overcome path loss in the
underlay network. Placement for the overlay node to improve
path diversity was studied in [4]. Architectures for designing
overlay networks that improve different quality of service
metrics have been proposed in [18], [19]. Currently overlay
is being used extensively for applications such as content
delivery, multicast, etc.

In [6], the authors study the problem of placing the min-
imum number of overlay nodes into an existing underlay
in order to maximize network throughput. In particular, the
authors show that with just a few overlay nodes, maximum
network throughput can be achieved. However, [6] also shows
that the backpressure routing algorithm of [1], which is known
to be optimal in a wide range of scenarios, leads to a loss in
throughput when used in an overlay network. Then the authors
of [6] proposes a heuristic for optimal routing called the
Overlay Backpressure Policy (OBP). An optimal backpressure
like routing algorithm for a special case, where the underlay
paths do not overlap with each other, was given in [7]. This
paper also proposes a threshold based heuristic for general
overlay networks. The schemes presented in [6] and [7] are
very similar and were conjectured to be throughput optimal.

In this paper, we provide a counterexample to show that
OBP is in fact not throughput optimal and develop a new
optimal routing policy. To derive the optimal policy, we notice
that the suboptimality of backpressure arises from its failure
to accurately account for congestion in the underlay paths.
Traditional backpressure doesn’t keep track of the packets in
the underlay which can lead the overlay nodes to send too
many packets into the underlay creating instability of underlay

ar
X

iv
:1

61
2.

05
53

7v
1

 [
cs

.N
I]

 1
6

D
ec

 2
01

6

2

queues. We will first develop a centralized solution which
achieves optimality by limiting the traffic injected into the
underlay so that the underlay queues are always bounded.
Then we use the intuition gained from this policy to develop a
distributed solution which uses the queue backlog information
in the underlay to compute the amount of flow transmitted
into each underlay path. This policy implicitly favors underlay
paths that are less congested and preserves stability of all the
queues.

This paper is organized as follows. We describe our model in
the next section. In section III, we provide a counterexample
to the OBP routing policy. Then in section IV, we provide
a centralized stochastic policy that is throughput optimal for
overlay networks. In section V, we develop a distributed
policy based on the dual subgradient descent method that
requires the underlay queue-lengths. In section VI, we propose
three approaches to estimating the queue-lengths if they are
not available to the overlay nodes. Finally, we verify the
performance of our algorithm with extensive simulations.

II. MODEL

We model the network as a graph (N,E) where N is the
set of nodes and E is the set of directed links. The links are
capacitated and the capacity of a link (i, j) ∈ E is given by
cij . The nodes can be of two types: underlay or overlay. We
represent the set of all underlay nodes by U and the set of all
overlay nodes by O = N\U . The network supports a set of
commodities, K, where each commodity k ∈ K is defined by
a source-destination pair. For the ease of exposition, we will
formulate the problem with all the sources and destinations
being overlay nodes. In Section V-D, we discuss how the same
solution can be applied when this is not the case. The time
is slotted and indexed by t. We remove the time index for
notational simplicity if removing it doesn’t create ambiguity.

A. Overlay

The overlay network consists of the controllable nodes
O which are capable of implementing a dynamic routing
algorithm. The links between two overlay nodes can either
be a direct edge or a path through the underlay referred to
as a tunnel. A tunnel l is a sequence of nodes l1, l2, . . . , l|l|
where |l| is the length of the tunnel. We represent the set of
all the tunnels in the network by L.

Since a tunnel connects two overlay nodes, l1 and l|l| are
overlay nodes, and l|2|, ..., l|l|−1 are underlay nodes. When a
packet is sent into a tunnel l, node l1 encapsulates it into a
packet destined to node l|l| and forwards it onto the underlay
node l2. The route taken by the tunnel is dictated by the path
from l2 to l|l| which is assigned by the underlay. When the
packet reaches l|l|, it is decapsulated and enqueued at the node.
An example of the different type of links in an overlay network
is given in Figure 2. This overlay network consists of one
direct link (1,4) and three tunnels (1,3,4), (2,3,4) and (2,3,5).

Each overlay node i maintains a queue for each commodity
k and the backlog is represented by Qki . The number of
external commodity k packets that arrive at node i represented
by Aki . Let F kl represents the amount of packets injected into

Node 1

Node 2
Node 3

(Underlay)

Node 4

Node 5

𝑄1
1

𝑄34
𝑄35

𝑄2
2

𝑄2
3

ത𝐹134
1 + ത𝐹234

2𝐹134
1

𝐹14
1

𝐹234
2 + 𝐹235

3
ത𝐹235
3

𝐴2
2 + 𝐴2

3

𝐴1
1

(a) Example of overlay and underlay queues in the physical network. The
variables labelling the edges represent the number of packets transmitted
for each commodity on each tunnel.

1

2

4

5

(1,4)

(1,3,4)
(2,3,4)

(2,3,5)

(b) Corresponding overlay network. Each tunnel in the overlay
network is represented by a sequence of nodes traversed by it.

Fig. 2: A physical network and its corresponding overlay
network.

the tunnel l, and F̄ kl represents the number of packets that exit
tunnel l. The quantities are different because a packet sent into
the tunnel might not exit the tunnel for several time-steps.
Let F kij represent the number of commodity k packets that
are transmitted on an overlay to overlay link (i, j). Figure 2
illustrates the meaning of these variables on a simple network.
The backlog of commodity k packets at overlay node i evolves
as follows:

Qki (t+ 1) =

Qki (t)−
∑
j∈O

F kij(t)−
∑

l∈L:l1=i

F kl (t)+

∑
j∈O

F kji(t) +
∑

l∈L:l|l|=i

F̄ kl (t) +Aki (t)

+

Here, {l ∈ L : l1 = i} are all the tunnels that start at node
i, {l ∈ L : l|l| = i} are the tunnels that end at node i, and
[.]+ = max(., 0). Packets are removed at the destination node,
hence the backlog of a commodity at its destination is zero.

We assume that all the traffic arrivals Aki are i.i.d. with a
mean of λki . We also assume that the arrival rate vector λ is
in the interior of the throughput region of the overlay network
Λ [6]. We will be designing a dynamic routing policy that
controls F kl and F kij at each time-step so that both the overlay
and the underlay queues stabilize.

B. Underlay

The underlay network consists of the uncontrollable nodes
U . These nodes have a static routing policy which assigns a
fixed path between each pair of nodes in the underlay. The
paths are assumed to be acyclic and unique, which ensures
that all the tunnels are acyclic an that they take a fixed route
through the underlay.

3

An underlay node maintains a queue per outgoing link.
The backlog on the queue associated with the link (a, b) is
represented by Qab. The queues have infinite buffer space
hence packets are not dropped. When a packet arrives at an
underlay node, the node looks up the link assigned to it based
on its destination and enqueues it on the corresponding link.
Since several tunnels of the overlay network can pass through
the same underlay link the underlay queues accumulates
packets from several different tunnels and commodities. An
example of an underlay queue that is shared by several tunnels
is presented in Figure 2. Packets from both the tunnels (1,3,4)
and (2,3,4) are queued on the link (3,4).

The underlay employs a work-conserving forwarding
scheme that is “universally stable” as defined in [5]. This
assumption ensures that if the number of packets injected into
the underlay at each timeslot satisfies the capacity constraints
of the tunnels, then the underlay queues are deterministically
bounded. Specifically, under a universally stable forwarding
policy, an underlay queue corresponding to link (a, b) is
always deterministically bounded if∑

l∈L:(a,b)∈l

∑
k

F kl (t) < cab∀t. (1)

Here {l ∈ L : (a, b) ∈ l} is the set of tunnels that pass
through the link (a, b). We refer to such constraints as the
tunnel capacity constraints. Several work-conserving policies
that are universally stable are given in [5].

III. BACKGROUND

The problem of optimal routing in an overlay network was
first studied in [6], where it was shown that backpressure
routing, which is known to be throughput optimal in a range of
scenarios, is not optimal for overlay networks, and proposed a
heuristic called the Overlay Backpressure Policy (OBP). The
OBP heuristic was conjectured to be throughput optimal.

For each tunnel l and commodity k OBP keeps track of
the packets in flight Hk

l , which is the number of packets that
have been transmitted into the tunnel by node l1 but haven’t
reached node l|l|. The weight for each commodity over the
tunnel W k

l (t) is computed as follows

W k
l (t) = Qkl1(t)−Hk

l (t)−Qkl|l|(t).

A link (i, j) that connects two overlay nodes can be thought
of as a tunnel l = (i, j) with no underlay node, hence the
weight is computed as

W k
l (t) = Qkl1(t)−Qkl|l|(t).

Then, the commodity with the highest weight sends its packets
into the tunnel provided that the weight is positive. A precise
description of the OBP is given in Algorithm 1.

This policy makes sense intuitively because it encourages
utilizing the tunnels that have less packets in them. When
a tunnel is congested, the number of packets in flight is
high, which encourages the overlay nodes to use alternate
routes and send packets into the tunnel only when the backlog
in the overlay is extremely high. This behavior is common
to backpressure-based optimal routing algorithms. Moreover,

Algorithm 1 Overlay Backpressure Policy (OPB):
For each tunnel l at each time-step t:

1) Compute the commodity k∗ that maximizes the weight
W k
l (t),

k∗ ∈ arg max
k

W k
l (t).

Ties are broken arbitrarily.
2) Transmit µ packets into the tunnel where

µ =

{
cl1l2 if W k∗

l (t) > 0
0, otherwise,

where cl1l2 is the capacity of the first link of tunnel l.

OBP reduces to backpressure routing when all the nodes are
overlay nodes.

We present the following counterexample to show that the
OBP is not throughput optimal. Consider a network topology
given in Figure 3a where all the links are unit capacity.
There are three commodities with source si and destination di,
i = 1, 2, 3. The source and the destination are overlay nodes,
whereas the nodes 1, 2 and 3 (in gray) are underlay nodes.
The underlay nodes use the FIFO queuing discipline2. Each
commodity in this network has two tunnels to the destination,
e.g. (s1, 1, 2, d1) and (s1, 3, 1, 2, d1). Note that the shorter
tunnels do not share any links between them. So, if the shorter
tunnel is chosen by each commodity, this network can support
an arrival rate vector of [1, 1, 1].

3 1

2

d1

d2 d3
s1

s2s3

(a) Topology (b) Total backlog in the network for arrival rate
vector of [0.8, 0.8, 0.8]

Fig. 3: Counterexample for throughput optimality of the Over-
lay Backpressure Policy of [6].

Let us consider Poisson arrivals with the rate vector of
[0.8, 0.8, 0.8], which is clearly inside the stability region. To
support this rate OBP has to send most of its traffic through
the shorter tunnels. However, as we show below, congestion
can lead traffic to use longer tunnels, which leads to instability.
A simulation result showing this instability is given in Figure
3b.

This instability is caused by overlapping tunnels where
congestion in one tunnel forces commodities to use the longer
tunnels which in turn leads to more congestion. Consider the

2From [8] we know that FIFO is throughput optimal for a ring which is
the underlay topology in this example.

4

situation where the number of packets in flight is large for
tunnel (s1, 1, 2, d1). So, commodity 1 traffic is routed through
the tunnel (s1, 3, 1, 2, d1). This means that the link (3,1) is
being used by commodity 1 packets, which creates congestion
for commodity 3 over tunnel (s3, 3, 1, d3) forcing commodity
3 traffic onto tunnel (s3, 2, 3, 1, d3). This problem continues
for the tunnels used by commodity 2, which in turn create
congestion for the tunnels of commodity 1 forcing its traffic
onto tunnel (s1, 3, 1, 2, d1) further exacerbating the situation.
This cyclical nature of increased congestion makes all the
commodities unstable.

IV. CENTRALIZED SOLUTION

We begin by providing a centralized optimal routing policy
for overlay networks. In this section we assume that the
underlay topology is known, and a centralized controller can
make the routing decisions at the overlay. The key to obtaining
a throughput optimal policy is to realize that the underlay
cannot make dynamic decisions, hence, the overlay necessarily
has to take into account the capacities of the underlay links
while making scheduling decisions.

Our algorithm works by choosing the scheduling decision
which minimizes the T -slot drift of the quadratic Lyapunov
function of the overlay queues [15]. This is similar in spirit
to the backpressure routing algorithm, which implements a
schedule that minimizes the Lyapunov drift at every slot. In
our set-up, multislot drift needs to be considered since packets
that are sent into the tunnel take several timeslots to come out
of the tunnel. In addition to minimizing the drift, we also have
to make sure that the underlay queues are bounded. Because
we assume that the underlay forwarding scheme is universally
stable, we are able to guarantee that underlay queues are
bounded once the tunnel capacity constraints (1) are met. Thus
the algorithm seeks a scheduling decision that minimizes the
drift subject to the tunnel capacity constraints.

To simplify the notation, in this section, a link between
two overlay nodes will be viewed as a tunnel which does
not comprise of any underlay nodes. We divide the time
into T -slot duration frames and consider minimizing the T -
slot drift. At the beginning of each frame, we solve the
optimization problem (2) in a centralized fashion. The solution
to (2) minimizes the drift of a quadratic Lyapunov function,
while simultaneously satisfying the tunnel capacity constraints.
The solution gives us F kl

∗, which is the number of packets
commodity k must send into tunnel l in order to minimize
the drift. A complete description of the policy is given in
Algorithm 2.

In the special case when a tunnel l does not share any
link with other tunnels, we see that F kl

? can be computed
independently of the other tunnels. The commodity k∗ is the
one with the highest differential backlog Qkl1(t)−Qkl|l|(t) and
F k
∗

l is chosen to be the capacity of the smallest link in the
tunnel. Thus our algorithm resembles the backpressure routing
except for the fact that the packets can face large delays while
passing the underlay. However, when there is a shared link, all
the tunnels that share the link are required to exchange their
backlog information.

Algorithm 2 Centralized Policy

1) At the beginning of each frame solve the following
optimization problem:

F kl
∗

= arg max
Fk

l

∑
k,l

F kl [Qkl1(t)−Qkl|l|(t)] (2)

s.t.
∑

l∈L:(a,b)∈l

∑
k

F kl ≤ cab,∀(a, b) ∈ E

(3)

F kl ≥ 0 (4)

2) Send F kl
∗ packets of commodity k into tunnel l each

time slot in the frame. If F kl
∗ is not an integer, ap-

proximate it by sending p packets every q slots so that
p
q ≈ F

k
l

∗.

Next we show that the Algorithm 2 stabilizes the network
queues if the arrival rate vector λ lies in the interor of the
stability region. We use T -slot Lyapunov drift analysis to prove
that these queues are strongly stable [15].

Theorem 1. For any arrival rate vector λ in the stability
region Λ and a large enough frame length T , the policy given
in Algorithm 2 stabilizes all the queues in the network.

Proof: The proof of the theorem is given in the Appendix.

V. FLUID FORMULATION AND DISTRIBUTED SOLUTION

The centralized policy in the previous section requires
the knowledge of the underlay topology which might not
be known to the overlay. Moreover, having a centralized
controller is often impractical. We now consider the fluid
model of the network and develop a decentralized policy. Fluid
models have been successfully utilized to establish the stability
of queueing networks (e.g. [17], [16]).

Let fkij be the flow assigned to commodity k on the link
(i, j) ∈ E, and fkl be the flow assigned to commodity k on
the tunnel l ∈ L. Let f denote the vector containing all the
flow variables. The arrival rate of commodity k at overlay
node i is represented by λki , and we assume that the vector
of arrival rates λ is in the interior of the stability region. For
simplicity, we will assume λ to be a constant, however, if
it is time-variying, we note that the technical results hold as
long as the arrival rate is bounded at each time-step and the
expected value E[λ(t)] exists. The problem of stabilizing the
network queues can be formulated as a linear program that

5

finds a feasible flow allocation on all the links and tunnels,

max 0

s.t.
∑

l:(i,j)∈l

∑
k

fkl ≤ cij ,∀(i, j) : i ∈ U, j ∈ N (5)

∑
l:(i,j)∈l

∑
k

fkl ≤ cij ,∀(i, j) : i ∈ O, j ∈ U (6)

∑
j

fkij +
∑
l:l1=i

fkl −
∑
j

fkji−∑
l:l|l|=i

fkl − λki ≥ 0,∀i ∈ O, k (7)

∑
k

fkij ≤ cij ,∀i, j ∈ O (8)

fkij , f
k
l ≥ 0, (9)

Here, the inequalities (5) are the tunnel capacity constraints
which are the fluid version of (1). Each one of these constraints
correspond to an uncontrollable link, i.e. a link between two
underlay nodes or a link that goes from underlay to an
overlay node. Inequalities (6) are the link capacity constraints
corresponding to the first link in the tunnel, i.e. the links that
go from an overlay node to an underlay node. This link is
responsible for controlling the rate received by the underlay
links. Inequalities (7) are the flow conservation constraints
on the overlay network. Note that the flow conservation
constraints are not required for the underlay because for each
tunnel l, there is a single route and the flows coming into the
underlay are feasible because of (5). That is, for a tunnel l,
when f is a feasible solution,

fkl = fkl1,l2 = fkl2,l3 = ... = fkl|l|−1,l|l|
.

Constraints (8) are the capacity constraints for the overlay
links.

A. Dual problem

We now formulate the dual problem so that it can be solved
with the subgradient descent method [9], [14]. Let qij and
qki denote the dual variables for the tunnel constraints (5)
and the flow conservation constraints (7) respectively, and let
q represent the vector containing all the dual variables. The
Lagrangian function is given by,

L(f, q) =
∑

(i,j):i∈U

qij

cij − ∑
l:(i,j)∈l

∑
k

fkl

+
∑
i∈O,k

qki∑
j

fkij +
∑
l:l1=i

fkl −
∑
j

fkji −
∑
l:l|l|=i

fkl − λki


=
∑
l

∑
k

fkl

qkl1 − ∑
(i,j)∈l:i∈U

qij − qkl|l|

+

∑
(i,j)

∑
k

fkij(q
k
i − qkj) +

∑
(i,j):i∈U

qijcij −
∑
i∈O,k

qki λ
k
i ,

(10)

where the second equality is obtained by rearranging the terms
so that the flow variables are factored out instead of the dual
variables.

Let X be a set such that any f ∈ X satisfies the constraints
(6), (8) and (9). Note that these constraints can be enforced
locally by an overlay node using only locally available infor-
mation. This property will be essential in designing the decen-
tralized algorithm. The dual objective function corresponding
to the problem (5) is

D(q) = max
f∈X

L(f, q).

The dual problem is given by,

min
q

D(q) (11)

s.t. q ≥ 0.

Since the primal problem (5) is a linear program, the duality
gap is zero (Slater’s condition [14]). Hence, solution of the
dual (11) yields a feasible flow allocation.

B. Distributed solution

The subgradient method works by initializing the dual vari-
ables with a value q(0) ≥ 0, and then iterating on them until
it converges to optimal q?. Each iteration involves computing
a subgradient g of D at the current value of the dual variables,
then updating the dual variables as follows:

q(t+ 1) = [q(t)− α(t)g(t)]
+
. (12)

Here α(t) is positive scalar step-size. The dual variables are
known to converge to the optimal q? if the step-sizes α(t)
are chosen appropriately. However, if α(t) ≡ α, then the
iterates (12) converge to a bounded neighbourhood of q? [14].

Let fkl
∗ and fkij

∗ be the values of flow variables which
maximize the Lagrangian L(f, q) over f ∈ X for a fixed q,
i.e. D(q) = L(f∗, q). From [14] we know that a subgradient
of D(q) is given by a vector g with entries as,

gij = cij −
∑

l:(i,j)∈l

∑
k

fkl
∗
, and (13)

gki =
∑
j

fkij
∗

+
∑
l:l1=i

fkl
∗ −

∑
j

fkji
∗ −

∑
l:l|l|=i

fkl
∗ − λki .

(14)

Now we can use the recursive equation (12) to update the dual
variables.

The only necessary step that we haven’t covered so far is
the computation of fkl

∗ and fkij
∗. A careful observation of

equation (10) and the set X shows that this is a simple opti-
mization problem that can be solved in a decentralized fashion.
The objective is a weighted sum of the flow variables, and
the constraints that form X are the link capacity constraints.
At a high level, for each overlay link, the solution chooses
the maximum value of the flow variable that corresponds to
the commodity with the highest positive weight. A complete
algorithm to compute the optimal flow variables and update
the dual variables is given in Algorithm 4.

6

Algorithm 3 Optimal Overlay Routing Policy (OORP)
At each time-step t, overlay node i does the following:
Optimal flow variables computation (used to obtain the
subgradients):
An overlay to overlay link (i, j) computes the flow variables
fkij
∗:
• Let kopt ∈ arg maxk q

k
i − qkj , ties are broken arbitrarily.

The weight of commodity kopt in this link is W opt
ij =

qk
opt

i − qkoptj .
• For k = kopt,

fkij
∗

=

{
cij if W opt

ij > 0

0, otherwise

• For all k 6= kopt, fkij
∗

= 0.
Each overlay to underlay link (i, j) computes the flow variable
fkl for all l : (l1, l2) = (i, j):
• Let

(lopt, kopt) ∈ arg max
l:(l1,l2)=(i,j),k

qkl1 −
∑

(a,b)∈l:a∈U

qab − qkl|l| .

(15)
Ties are broken arbitrarily. Let the weight of commodity
kopt in the tunnel be

W opt
l = qk

opt

lopt1
−

∑
(a,b)∈l∗:a∈U

qab − qk
opt

lopt|lopt|
.

• For (l, k) = (lopt, kopt),

fkl
∗

=

{
cij if W opt

l > 0
0, otherwise

• For all (l, k) : l 6= lopt or k 6= kopt, fkl
∗

= 0.
Data transmission:
Transmit fkij

∗ amount of commodity k traffic into each overlay
to overlay link (i, j) and fkl

∗ amount of commodity k traffic
into each tunnel l.

Dual variables update:
Performed by an overlay node i:

qki (t+ 1) =

q(t)− α(t)

∑
j

fkij
∗

+
∑
l:l1=i

fkl
∗

−
∑

j:(j,i)∈E

fkji
∗ −

∑
l:l|l|=i

fkl
∗ − λki

+

(16)

Performed by an underlay node i:

qij(t+ 1) =

q(t)− α(t)

cij − ∑
l:(i,j)∈l

∑
k

fkl
∗

+

(17)

C. Queue-lengths as dual variables

The subgradient descent algorithm presented in the Al-
gorithm 4 requires the network to explicitly keep track of
the dual variables. In order to implement the algorithm in a

decentralized fashion, each underlay node i needs to maintain
a dual variable qij for each link (i, j), and each overlay node
i needs to maintain a dual variable qki for each commodity
k. This is a reasonable assumption for the overlay nodes, but
not justified for the uncontrollable underlay. To get around
similar problems of not having a dual variable, works such
as [12], [11], etc. have proposed approximating them with
the corresponding queue lengths. The argument behind this
procedure is that the subgradients are proportional to the
change in queue-lengths, so that the queue-lengths will move
in the same direction as the dual variables. Next, we give an
example in which this proportionality does not hold. In spite
of this issue, we show that the queue-lengths can provide a
good approximation for the dual variables.

We first observe that the dual variable update equations (16)
and (17) are the same as the queue update equations when the
flows sent into the tunnels fkl are feasible for the underlay, i.e.
when no queues buildup in the underlay. But when the flows
do not satisfy the tunnel capacity constraints, the underlay
queues build up, and the flows get reduced from their initial
value as they pass through the bottleneck links. This decrease
in the flow size is not captured in these dual variable update
equations (16), (17). Consider the simple network shown in
Figure 4. There is one commodity, k = 1, with source node
1 and destination node 4, and a single tunnel l = (1, 2, 3, 4).
Suppose that at a certain iteration, q11 > q14 , hence fkl

∗
= 3.

This flow into the tunnel gets bottlenecked at link (2, 3) so
node 3 only receives a flow of 1. In this situation, equation (17)
predicts that the queue-length for q34 would increase because
a flow of size 3 was sent into the tunnel and the capacity of
the link is 2, however this queue can only decrease or stay
unchanged at 0.

1 2 3 4
3 1 2

Fig. 4: Link (3, 4) never builds a queue as the flow gets
bottlenecked by (2,3).

To capture this reduction of the flow sizes in the tunnel, we
model the queuing in the network as follows:

q̂ki (t+ 1) =

q̂(t)− α(t)

∑
j

fkij
∗

+
∑
l:l1=i

fkl
∗

−
∑

j:(j,i)∈E

fkji
∗ −

∑
l:l|l|=i

εkl (i)fkl
∗ − λki

+

(18)

q̂ij(t+ 1) =

q̂(t)− α(t)

cij − ∑
l:(i,j)∈l

∑
k

εkl (i, j)fkl
∗

+

(19)

where εkl (i), εkl (i, j) ∈ [0, 1] represent the reduction suffered
by the corresponding flows before arriving at node i. These
quantities are implicitly determined by the network at each
time-step depending on the scheduling policy in the underlay.
In the example presented above, for any work conserving

7

scheme, εkl (3, 4) = 1/3. We will show that for any value of ε
in the set [0, 1] the queue-lengths will converge to the optimal
dual variables. Let g be the true subgradient of D at q, and
ĝ be the approximate subgradient after the reduction, then we
can represent the queuing equation as

q̂(t+ 1) = [q̂(t)− α(t)ĝ(t)]
+
,

and ĝ ≥ g.
Before we prove the convergence, we state the following

preliminary lemma.

Lemma 1. The vector q∗ = 0 is an optimal solution to the
dual problem (11).

Proof: Since the objective of the primal problem is 0, a
feasible solution to the primal is given by any feasible flow
allocation fkij . Since q = 0 is a feasible dual solution, and any
feasible fkij together with q = 0 satisfy the complementary
slackness condition (Theorem 4.5 in [13]), the proof follows.

This shows that the optimal solution corresponds to queue
lengths equal to zero which makes, sense intuitively because
any feasible flow allocation in the fluid domain doesn’t require
queuing.

Let G be a constant such that it bounds the Euclidean norm
of the subgradients of the dual function D(q) for all possible
values of q, i.e. G > ‖g‖. From equations (13)-(14), we
can see that the subgradients are bounded because the flow
variables are bounded by link capacities and arrival rates are
bounded by assumption. So G is finite. For simplicity we fix
α(t) = 1 and present the following convergence result.

Theorem 2. Let us approximate the dual variables q with the
queue-lengths q̂ that evolve according to equations (18)-(19).
Using the dual subgradient descent algorithm with α(t) = 1,
the queue lengths converge to the set S =

{
q̂ : D(q̂) ≤ 1

2G
2
}

.

Proof: We will show that ||q̂(t+1)−q∗||2 < ||q̂(t)−q∗||2
when q(t) is outside the set S. Because q∗ = 0 from Lemma
1, it suffices to show that ||q̂(t+ 1)||2 < ||q̂(t)||2.

We have,

||q̂(t+ 1)||2 = ‖q̂(t)− ĝ‖2

Since ĝ ≥ g,

||q̂(t+ 1)||2 ≤ ‖q̂(t)− g‖2

= ‖q̂(t)‖2 − 2q̂(t)T g + ‖g‖2

Our algorithm chooses g to be a subgradient of D(.) at q̂(t).
So,

D(x) ≥ D(q̂(t)) + (x− q̂(t))T g,∀x ∈ Rm,

wehre m is the dimension of q̂. Taking x = 0,

D(q̂(t)) ≤ q̂(t)T g(f(t)∗)

So, ||q̂(t+1)||2 ≤ ||q̂(t)||2−2D(q̂(t))+G2. Hence when, the
q̂ is far away from the optimal, specifically when D(q̂(t)) >
1
2G

2, it moves towards the optimum in the next time-step.
Hence, we will use queue-lengths instead of the dual

variables in the implementation of OORP. This will allow us
to use the policy presented in Algorithm 4 without having to
perform the dual variables update.

D. Underlay sources and destinations
The problem formulation given in beginning of Section V

assumes that all the flows go from one overlay node to another.
However, this assumption can be easily removed. Any flow
that originates in the underlay be routed over a single path
using the underlay routing scheme. Hence these flows can be
represented simply as a reduction in the link capacities in the
constraints (5) and (6) for the links traversed by this flow. Our
algorithm stays unchanged because it is agnostic to the change
in the link capacities at the underlay. OORP is also optimal
when the underlay is a destination because destination nodes
do not perform any routing.

E. Rate control
It is well known that subgradient descent is a general

method to solve convex optimization problems. The dual
gradient descent algorithm has been used derive distributed
solutions to network utility maximization problems (e.g. [9],
[11]). In the overlay network setting we can get a distributed
solution to the utility maximization problem of the form:

max
∑

k∈K,i∈O

Uki (λki)

where Uki (.) is concave and strictly increasing. In this setting,
we can assume that there is an infinite backlog at the sources,
and the rates λki are chosen to maximize the total network
utility.

We can use the same derivation technique as in section V-B
to obtain a distributed algorithm. The algorithm is very similar
to OORP with an added rate controller at each source. The
rate control algorithm so obtained is standard, and the joint
rate control and routing algorithm can be written as follows:

Algorithm 4 Rate control algorithm for the utility maximiza-
tion problem
At each time-step t:

1) Source node i ∈ O for commodity k chooses the rate
λki
∗ as follows:

λki
∗

= arg max
0≤λk

i≤Mi
k

Uki (λki)− qki λki .

Here, Mi
k is a finite upper bound on the rate that the

source i can receive.
2) All the overlay nodes use OORP for routing.

VI. UNKNOWN UNDERLAY QUEUES

In the previous section we showed that the dual subgradient
descent algorithm can be used to compute a feasible rate for
each commodity on each link. We also showed that the queue
lengths can be used to approximate the subgradient. However,
typically legacy devices may not be able to send queue-lengths
to the sources. In this section, we will present two approaches
to estimate the required queue-length information. The first
approach will estimate it using the delay experienced by the
packets. The second approach will involve sending probe
packets at a certain time intervals that collect the queue-length
information in the tunnels.

8

A. Delay based approaches

From equation (15) it can be seen that in order to compute
the subgradients we only need the total backlog in the tunnel,
i.e. we don’t need the length of individual queues. A natural
approach to estimate the total backlog in a tunnel is by using
the time it takes for a packet to traverse it. To implement this
method, each tunnel l maintains a delay variable Dl. When a
packet is sent into a tunnel, the sending node stamps the packet
with the current time. When the packet exits the tunnel, the
difference between the current time and the time-stamp on the
packet is used to update Dl. When computing the optimal flow
variables, in equation (15) of OORP we substitute the sum of
the underlay queues-lengths,

∑
(a,b)∈l:a∈U qab, with Dl.

For this approach, we assume that the underlay uses a FIFO
queuing model which is a common forwarding scheme. Hence,
this method requires no modification to the underlay. A similar
approach has been used by TCP Vegas to solve a network
utility maximization problem [12].

Although this approach is simple and does not require
cooperation from the underlay, the queue-length estimates
obtained by this method can be arbitrarily bad. Consider a
FIFO queue that is empty at time zero. As shown in Figure
5(a), it has an incoming rate of 2 and outgoing capacity of
1. We want to estimate the queue-length at time t by using
packet delays. To see the problem with this approach, let
us consider a situation when 2 packets arrive at the queue
at every time-slot for the first τ time-slots, and no arrivals
happen after that. In this situation, the actual queue length
grows at the rate of 1 for the first τ time-slots, and then it
decreases at the rate of 1 packet per time-slot until the queue
is empty. On the other hand, the delay increases at the rate of
1
2 , and the last packet (that arrives at the τ th time-slot) sees a
delay of 100 because there are 99 packets in the queue at that
time. So at time 2τ when the queue is emptied, the packet
received will have suffered a delay of τ time-slots giving a
queue-length estimate of τ , whereas the actual queue-length
at that time is zero. Furthermore, the estimate stays bad until
another arrival happens. This problem is illustrated in Figure
5(b). These arbitrarily bad estimates lead to sub-optimality of
OORP which we will observe in the simulations.

A simple way to improve the estimate is to send empty
probe packets when real packets are not available for some
time period T . A similar approach has been shown to achieve
throughput optimality in a special scenario in [20]. This
approach quickly identifies when a queue becomes empty in
the absence of new data packets, and the control algorithm can
react accordingly. Although this approach corrects the estimate
within P time-slots, it can still suffers from the arbitrarily bad
estimation errors. As shown in Figure 5(c), at time 2τ the
estimate is τ whereas the actual queue-length is zero. Thus,
we propose the following approach using explicit probes.

B. Priority probe approach

In this approach, we assume that the underlay nodes are
capable of stamping the current queue-lengths into a special
type of packets called the probe packets. We also assume that
these packets are given higher priority compared to the data

Estimate



…
2 1

 packets

Time

B
ack

lo
g

2





Time

B
ack

lo
g

2

T

2 +

(a) FIFO Queue after  timeslots

(b) Without probes (c) With probes

Actual Actual

Estimate

Fig. 5: The actual queue-length of a single FIFO queue and
its estimate calculated using delay. The arrivals happen at the
rate of 2 packets per time-slot for the first τ time-slots, and
there are no arrivals after that. Service rate is fixed at 1 packet
per time-slot.

packets, and they do not consume link capacity because they
are very small in size. These packets are generated by each
tunnel at a fixed time-intervals T . When a probe packet exits
a tunnel, the sum of the queue-lengths it has collected can be
used to compute the optimal flow variables in Algorithm 4.

We can see that this approach results in a much more
accurate estimation of the backlog compared to the delay based
approach. However, the value of T can have a significant
impact on the performance on the algorithm. We will study
its impact in the next section via simulations.

VII. SIMULATION RESULTS

We present several simulation results to evaluate the per-
formance of the optimal overlay routing policy (OORP) given
in Algorithm 4. First, we will ascertain that this algorithm
is in fact optimal for the network in which the OBP policy
of [6] was suboptimal. Then we evaluate the effect that
different methods of estimating the queue-lengths have on
the performance of the algorithm. Next we will study the
performance of our algorithm when there is uncontrolled
background traffic in the underlay. Finally, we will simulate the
rate control algorithm to show that it achieves the maximum
throughput.

A. OORP on the counterexample to OBP

We reconsider the network from Section III, shown in Figure
3a. The network has three commodities and it can support a
maximum arrival rate vector of λsimAmax = [1, 1, 1]. We simulate
the network under three different policies: the backpressure
policy (BP), the overlay backpressure policy (OBP) and our
policy, OORP. The simulations are conducted at different loads
ρ = 0.5, 0.55, ..., 1. For each policy the arrivals are Poisson
distributed with rates λ = ρλmax. The result of the simulations
is given in Figure 6.

The BP algorithm executed on the overlay network does not
account for the underlay nodes and simply views a tunnel l as a
link between two overlay nodes with capacity cl1l2 . In the plot

9

0.5 0.6 0.7 0.8 0.9 1

Load

0

50

100

150

200

250

300

350

400

A
v
er

ag
e

B
ac

k
lo

g

BP

OBP

ORP

Fig. 6: Performance of different routing algorithms on the
overlay network shown in Figure 3a.

we can see that this algorithm becomes unstable around the
load of 0.56. This is as expected because for each commodity
the backpressure policy uses both tunnels equally since they
have equal weights. The end node of both the tunnels is a
destination, which has zero backlog, and BP does not account
for the backlog in the underlay. So the weigh for each tunnel
of commodity k is equal to Qksk . When the algorithm uses the
longer tunnel, the network becomes unstable for relatively low
load.

The plot also shows that OBP is suboptimal and OORP
achieves maximum throughput. We discussed the suboptimal-
ity of OBP in Section III. The main reason was that the OBP
policy could not avoid using the longer tunnel which gave
raise to a cycle of increased congestion. But in OORP, when
the underlay queues-lengths are positive, the shorter tunnels
have a higher weight than the longer tunnels. For example,
for commodity 1, the weight of the shorter tunnel (s1, 1, 2, d1)
is Q1

s1 − Q12 − Q2d1 and the weight of the longer tunnel
(s1, 3, 1, 2, d1) is Q1

s1 − Q31 − Q12 − Q2d1 . So when the
underlay queues are large, the longer tunnel needs a lot more
backlog at the source than the shorter tunnel for its weight
to be positive. This causes OORP to avoid using the longer
tunnels when the network is congested.

B. Estimated Tunnel Backlog

We consider the network given in Figure 7 to observe the
effect of estimating the backlog in the tunnels. In this network,
all the links are bidirectional, composed of two unidirectional
links. The links between an overlay and an underlay node have
capacity 2 in each direction. All other links have unit capacity
in both directions. We will simulate the network with two
commodities. The first commodity is defined by the source-
destination pair (1,3) and the second is defined by (2,4). For
these commodities the network supports a max-flow vector of
λsimBmax = [2, 2]. The simulation is performed at various load
levels and the arrivals are Poisson distributed.

The underlay uses the shortest path routing hence creating a
large number of available tunnels. Node 1 can send packets to
node 3 directly via node 7 or 10 using the tunnels (1,7,5,6,3)
and (1,10,7,5,6,3) respectively. However, these tunnels overlap,
hence there is no benefit in using both of them. To achieve the

throughput of two, node 1 must send its traffic through node
2 and have it forward it to node 3. Similarly node 2 must
send some of its traffic through node 1 in order to achieve
high throughput. Observing the organization of the tunnels in
the network, we can see that using the wrong tunnel might
cause the network to lose throughput. In addition, the tunnels
form cycles in the overlay topology. These features make this
topology challenging for a routing algorithm to achieve the
optimal throughput.

7

1

9

10

126

13

2

3

45

14

8 11

2 2

2
2 2

2

s1

d1

d2

s2

(a) Physical network topology with overlay (blue) and underlay
(white) nodes. The underlay network uses shortest path routing
creating a total of eighteen tunnels between the overlay nodes.
The dotted lines show the tunnels from node 1 to nodes 2 and
3.

3

1

4

2

(b) Corresponding overlay network showing all eighteen tun-
nels. Each link in this graph represents a tunnel; an undirected
link represents two tunnels, one in each direction. E.g. the two
links going from node 1 to 3 represent the two tunnels from
node 1 to 3: (1,7,5,6,3) and (1,10,7,5,6,3).

Fig. 7: Physical and overlay network topology for simulations
in Sections VII B and VII C.

The result of the simulations under different load levels is
given in Figure 8. We can see that the delay approach, which
uses packet delay as an estimate of the tunnel backlog, does
not provide optimal throughput. Although probing the delay in
the network with control packets improves the performance,
it is still suboptimal. This happens because when the backlog
is large the estimation error of this approach can also be large
as described in Section VI-A.

We can also see that the probing approach achieves optimal
throughput, and its performance is close to that of using the
actual queue-lengths. The estimates obtained by this approach
are much more accurate than those from the delay approach
because they are not affected by the amount of backlog in
the network. When T is increased, the stale estimate is used
for a longer time period, so the performance of the algorithm
degrades.

10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Load

0

100

200

300

400

500

600
A

v
er

ag
e

B
ac

k
lo

g

Fig. 8: Performance of OORP under different measures of
tunnel backlog.

C. Background traffic

So far we have assumed that all the traffic in the network
belongs to the overlay network. However, in real networks
the underlay can be routing other traffic not generated by
the overlay nodes. Next, we will study the performance of
our algorithm under such traffic. We expect the OORP to
be throughput optimal under stable background traffic in the
underlay because such traffic can be thought of as a reduction
in the link capacities in inequalities (5) as described in Section
V-D.

We again consider the network from Figure 7 with two com-
modities (1,3) and (2,4). We inject two flows of background
traffic: first going from node 7 to 6 along the path (7,5,6) with
the arrival rate of 0.5, and second going from 8 to 14 along
the path (8, 9, 12, 14) with the arrival rate of 0.2. The arrivals
happen according to the Poisson process. Note that the first
background flow blocks commodity 1’s tunnel (1,7,4,5) and
the second flow blocks commodity 2’s tunnel (2,12,14,13,4);
both the tunnels are essential for achieving the max flow vector
λsimBmax . This reduces the maximum supportable arrival rates for
the two commodities to λsimCmax = [1.5, 1.8]. Figure 9 shows
the result of the simulation. We can see that all the approaches
except for the delay based approaches achieve the maximum
throughput.

D. Rate control

To observe our rate controller at work, we consider the
network from Section VII-C with a minor modification as
shown in Figure 10. We add a new overlay node 15 and a
new commodity (15, 14) to the network. Node 15 connects to
node 5 with a directed link (15, 4) which has a unit capacity.
We constrain the third commodity to use the tunnel provided
by the shortest path (5, 6, 9, 12, 14). For all three sources,
the utility function is chosen to be 20 log(λ) and Mk

i = 20.
Note that the addition of the third commodity makes the
simulation more challenging because the rate that maximizes
total throughput is not the same as the rates that maximizes

0.5 0.6 0.7 0.8 0.9 1

Load

0

100

200

300

400

500

600

700

800

900

A
v
e

ra
g

e
 B

a
c
k
lo

g

Fig. 9: Performance of OORP in a network with background
traffic.

utility. We assume that the backlog information of each tunnel
is available to the overlay nodes instantaneously.

7

1

9

10

126

13

2

3

45

14

8 11

2 2

2
2 2

2

s1

d1

d2

s2

15

s3

d3

Fig. 10: Topology for the rate control experiment. The dotted
lines show the tunnel assigned to the third commodity and the
background traffic.

Constrained by the link capacities and the background
traffic, the maximum throughputs for the commodities 1,2,
and 3 are 1.5, 1.8, and 1 respectively. However, the third
commodity interferes with both commodities 1 and 2, hence
the throughput of [1.5, 1.8, 1] is not achievable. From the plot
in Figure 11 we can see that the throughput vector converges
to [1, 1.3, 0.5] which maximizes the total utility. We can see
that this throughput vector has a smaller sum than the sum of
the maximum throughput supported in Section VII-C. That is,
the network could have supported higher throughput by giving
zero throughput to the third commodity, but that would have
decreased the utility of the network.

VIII. CONCLUSION

We showed that the existing algorithms for routing traffic in
an overlay network are suboptimal, and developed a through-
put optimal policy called the Optimal Overlay Routing Policy
(OORP). This policy is distributed and can also be used with
a rate controller to maximize network utility. Our algorithm

11

0 100 200 300 400 500

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4
T

h
ro

u
g

h
p

u
t

Commodity 1

Commodity 2

Commodity 3

Fig. 11: Throughput achieved by the rate control algorithm
with OORP converges to the rate that maximizes utility.

requires the knowledge of congestion at the underlay, which
might not be available to the overlay nodes. Hence we pro-
posed different approaches to estimating underlay congestion.
Simulations results show that OORP outperforms OBP and
that estimating congestion using probing mechanism is effec-
tive. Future research will include obtaining better estimates
for the congestion in the tunnels with minimum support from
the underlay nodes and reducing the delay experienced by the
packets in the network.

REFERENCES

[1] L. Tassiulas and A. Ephremides. “Stability properties of constrained
queueing systems and scheduling for maximum throughput in multihop
radio networks.” IEEE Transactions on Automatic Control, vol. 37, no.
12, pp. 1936-1949, December 1992.

[2] B. Awerbuch and T. Leighton. “A Simple Local-Control Approximation
Algorithm for Multicommodity Flow.” Proceedings 34th IEEE Confer-
ence on Foundations of Computer Science, Oct. 1993.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. “Resilient
overlay networks.” In Proceedings of ACM SOSP, October 2001.

[4] J. Han, D. Watson, and F. Jahanian. “Topology aware overlay networks.”
In Proceedings IEEE INFOCOM, March 2005.

[5] M. Andrews, B. Awerbuch, A. Fernndez, T. Leighton, Z. Liu, and
J. Kleinberg. “Universal-stability results and performance bounds for
greedy contention-resolution protocols.” Journal of the ACM 48, 1
(January 2001), 39-69.

[6] N. M. Jones, G. S. Paschos, B. Shrader, and E. Modiano. “An overlay
architecture for throughput optimal multipath routing.” In Proceedings
of the ACM MobiHoc, 2014.

[7] G. S. Paschos and E. Modiano. “Throughput optimal routing in overlay
networks.” In Proceedings of the Allerton Conference, 2014.

[8] L. Tassiulas and L. Georgiadis. “Any work-conserving policy stabilizes
the ring with spatial re-use.” Networking, IEEE/ACM Transactions on
4.2 (1996): 205-208.

[9] S. H. Low, and D. E. Lapsley. “Optimization flow controlI: basic
algorithm and convergence.” IEEE/ACM Transactions on Networking
(TON) 7, no. 6 (1999): 861-874.

[10] M. J. Neely, E. Modiano, and C. Li. “Fairness and Optimal Stochastic
Control for Heterogeneous Networks.” In Proceedings of IEEE INFO-
COM, March 2005.

[11] X. Lin, N. B. Shroff and R. Srikant. “A tutorial on cross-layer op-
timization in wireless networks.” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1452-1463, Aug. 2006.

[12] S. H. Low, L. L. Peterson, and L. Wang. 2002. “Understanding TCP
Vegas: a duality model.” Journal of the ACM 49, 2 (March 2002).

[13] D. Bertsimas and J. Tsitsiklis. “Introduction to Linear Optimization.”
Athena Scientific, 1997.

[14] D. Bertsekas, A. Nedic, and A. E. Ozdaglar. “Convex Analysis and
Optimization.” Athena Scientific, 2003.

[15] L. Georgiadis, M. J. Neely, and L. Tassiulas. “Resource Allocation and
Cross-Layer Control in Wireless Networks.” Foundations and Trends in
Networking, Vol. 1, no. 1, pp. 1-144, 2006.

[16] J.G. Dai. “On Positive Harris Recurrence of Multiclass Queueing
Networks: A Unified Approach Via Fluid Limit Models.” The Annals
of Applied Probability, Vol. 5, no. 1, pp. 49–77, 1995.

[17] M. Bramson. “Stability of queueing networks.” Probability Surveys,
Vol. 5, pp. 169–345, The Institute of Mathematical Statistics and the
Bernoulli Society, 2008.

[18] Z. Li, and P. Mohapatra. “QRON: QoS-aware routing in overlay
networks.” IEEE Journal on Selected Areas in Communications 22.1
(2004): 29-40.

[19] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain. “Overlay
Networks: An Akamai Perspective.” John Wiley & Sons, 2014.

[20] G. Paschos, M. Leconte, and A. Destounis. “Routing with Blinkers:
Online Throughput Maximization without Queue Length Information.”
In Proceedings of the International Symposium on Information Theory,
2016.

APPENDIX
PROOF OF THEOREM 1

A. Stationary policy π

In order to prove the stability of the centralized policy, we
need a stationary policy that stabilizes the network. For any
arrival rates λ such that λ+ ε ∈ Λ, ε > 0, we know that there
exist a feasible flow allocation vectors (fkl)l∈L,k∈K such that
for any overlay node n,∑

l∈L:l1=n

fkl −
∑

l∈L:l|l|=n

fkl = λkn + ε. (20)

This vector can be obtained by solving the multi-commodity
flow problem. We assume that these flow variables can be
closely approximated by rational numbers. So there exists
integers pkl and q such that fkl = pkl /q. The time-slot are
divided into T slot long frames.

The policy π simply sends pkl amount of commodity k
packets every q time-slots in each frame. Because the underlay
is using a universally stable forwarding scheme and the
burstiness constraints are satisfied, the underlay queues are
deterministically bounded by a constant B [5]. Also note that
all the capacity constraints are satisfied every q time-slots.
Hence, π stabilizes λ.

Let F kl (t+ τ, π) represent the number of packets sent into
tunnel l by node l1 at time t+τ under policy π. Let F̄ kl (t+τ, π)
represent the number of packets that are received by node l|l|
at time t from tunnel l under policy π. Note that F kl (t+τ, π) =
F̄ kl (t+ τ, π) only if the tunnel l is a direct link between two
overlay nodes. If a tunnel passes through the underlay, it can
take a bounded amount of time for the packets to exit the
tunnel. Now, we prove the following lemma that will be used
in proving the theorem.

Lemma 2. For the proposed randomized policy π

E

[∑
l∈L:l1=n

T−1∑
τ=0

F kl (t+ τ, π)−

∑
l∈L:l|l|=n

T−1∑
τ=0

F̄ kl (t+ τ, π)

∣∣∣∣∣∣Q(t)

 ≥ T (λkn + ε)−B, ∀n.

12

Proof:

E

[∑
l∈L:l1=n

T−1∑
τ=0

F kl (t+ τ, π)−

∑
l∈L:l|l|=n

T−1∑
τ=0

F̄ kl (t+ τ, π)

∣∣∣∣∣∣Q(t)


= E

[∑
l∈L:l1=n

T−1∑
τ=0

F kl (t+ τ, π)−

∑
l∈L:l|l|=n

T−1∑
τ=0

F̄ kl (t+ τ, π)

 (21)

≥ E

[∑
l∈L:l1=n

T−1∑
τ=0

F kl (t+ τ, π)−

∑
l∈L:l|l|=n

T−1∑
τ=0

F kl (t+ τ, π)−B

 (22)

= T
∑

l∈L:l1=n

pkl
q
− T

∑
l∈L:l|l|=n

pkl
q
−B (23)

= T
∑

l∈L:l1=n

fkl − T
∑

l∈L:l|l|=n

fkl −B (24)

= T (λkn + ε)−B

Here B is a finite constant representing the maximum amount
of backlog in the underlay network. We use this constant to
obtain inequality (22) and equation (20) to obtain the last
equality.

B. Analysis of TBP

We know that the underlay queues are stable because the
traffic injected into the tunnels satisfy the burstiness constraints
and the underlay employs a universally stable forwarding
policy [5]. Next we prove the stability of overlay queues.

The queue evolution of an overlay node n can be written
as:

Qkn(t+ 1) =

Qkn(t)−
∑
l:l1=n

F kl (t) +
∑

l:l|l|=n

F̄ kl (t) +Akn(t)

+

≤

[
Qkn(t)−

∑
l:l1=n

F kl (t)

]+
+
∑

l:l|l|=n

F̄ kl (t) +Akn(t)

Here F kl (t) represents the amount of packets injected into the
tunnel l at time t, and F̄ kl (t) represents the number of packets
that exit tunnel l at time t.

Then the queue length after T slots can be bounded as

follows

Qkn(t+ T) ≤

[
Qkn(t)−

∑
l:l1=n

T−1∑
τ=0

F kl (t+ τ)

]+
+

∑
l:l|l|=n

T−1∑
τ=0

F̄ kl (t+ τ) +

T−1∑
τ=0

Akn(t+ τ)

≤

[
Qkn(t)−

∑
l:l1=n

T−1∑
τ=0

F kl (t+ τ)

]+
+

∑
l:l|l|=n

T−1∑
τ=0

F kl (t+ τ) +

T−1∑
τ=0

Akn(t+ τ) +B

The first inequality comes from considering all the arrivals
and departures in a T-slot interval in a single slot. We get the
second inequality by bounding the backlog in the underlay
nodes by a constant B.

Now to prove the theorem, consider the quadratic Lyapunov
function

L(Q(t)) =
∑
k,n

(
Qkn(t)

)2
.

The T-slot drift is given by:

∆T =E [L(Q(t+ T))− L(Q(t))|Q(t)]

≤T 2K +
∑
k,n

Qkn(t)
(
Tλkn +B

)
+
∑
k,n

Qkn

E

T−1∑
τ=0

∑
l:l1=n

F kl (t+ τ)−
T−1∑
τ=0

∑
l:l|l|=n

F kl (t+ τ)

∣∣∣∣∣∣Q(t)


(25)

=T 2K +
∑
k,n

Qkn(t)
(
Tλkn +B

)
− E

T−1∑
τ=0

∑
k,l

F kl (t+ τ)
(
Qkl1(t)−Qkl|l|(t)

)∣∣∣∣∣∣Q(t)


(26)

The TBP policy minimizes the right hand side of inequality
(25) at every time-slot. Hence it also minimizes the right hand
side of inequality (26). So we can bound the drift by the rate
variables chosen by the stationary policy.

∆T ≤T 2K +
∑
k,n

Qkn(t)
(
Tλkn +B

)
+
∑
k,n

Qkn

E

[
T−1∑
τ=0

∑
l:l1=n

F kl (t+ τ, π)

−
T−1∑
τ=0

∑
l:l|l|=n

F kl (t+ τ, π)

∣∣∣∣∣∣Q(t)

 (27)

≤T 2K +
∑
k,n

Qkn(t)
(
Tλkn +B

)
−
∑
k,n

Qkn(Tλkn

+ Tε−B) (28)

∆TBP
T ≤T 2K −

∑
k,n

Qkn(t)(Tε− 2B) (29)

13

We use Lemma 2 to obtain (28). The drift is negative when
T > 2B/ε and the queues are large. From [15] we know that
the overlay queues are strongly stable.

	I Introduction
	II Model
	II-A Overlay
	II-B Underlay

	III Background
	IV Centralized solution
	V Fluid Formulation and Distributed Solution
	V-A Dual problem
	V-B Distributed solution
	V-C Queue-lengths as dual variables
	V-D Underlay sources and destinations
	V-E Rate control

	VI Unknown Underlay Queues
	VI-A Delay based approaches
	VI-B Priority probe approach

	VII Simulation Results
	VII-A OORP on the counterexample to OBP
	VII-B Estimated Tunnel Backlog
	VII-C Background traffic
	VII-D Rate control

	VIII Conclusion
	References
	Appendix: Proof of Theorem 1
	A Stationary policy
	B Analysis of TBP

