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Abstract—5G networks leverage network slices for serving use
cases with different and potentially conflicting requirements. Cur-
rent approaches for composing network slices largely overlook
the presence of multiple ingress and egress nodes in each network
slice. This results in inefficient resource usage even when co-
locating the Virtual Network Functions (VNFs) of a slice. The
network is thus quickly saturated, and no more use cases can be
served. We address this issue by introducing µslices, where each
µslice is tied to a specific pair of ingress and egress nodes of a
slice. Then, we optimize the bandwidth consumed by each µslice
by co-locating its VNF instances that communicate the most. We
observed that enabling µslicing was able to save about two times
more control and data plane traffic and it also resulted in a more
even distribution of computational and link load.

I. INTRODUCTION

5G networks are expected to serve a wide range of use
cases from verticals such as automotive and e-health. To
satisfy the requirements from these use cases, mobile operators
and equipment manufacturers envision using Virtual Network
Functions (VNFs) and network slicing [1]. VNFs are software
implementations of network functions that can be migrated
and instantiated on demand. Network slicing prescribes mul-
tiplexing several virtual networks that are isolated from each
other on a single physical network.

Composing network slices, i.e. specifying how to create
network slices by taking as input the physical substrate and
the VNFs, is non-trivial. As discussed in §II, this problem
falls in the realm of VNF Forwarding Graph Embedding
(VNF-FGE). Nevertheless, 5G networks distribute traffic on
different paths of User Plane Functions (UPFs) to achieve
scalability [2], which results in network slices having their
traffic flowing through multiple pairs of ingress and egress
nodes. Current solutions for composing network slices largely
overlook the existence of multiple ingress and egress nodes
within a network slice, thus leading to inefficient resource
usage, e.g. see §III. As a result, the network resources are
quickly saturated, and subsequent requests for new slices by
other use cases must be rejected.

To address this problem, we propose to compose 5G net-
work slices by splitting them into µslices. Each µslice consists
of a group of VNF instances tied to a pair of ingress and
egress nodes. In particular, each µslice serves flows traversing
a specific ingress node. For each network slice, multiple
instances of its VNFs are created such that each instance of a
VNF is assigned to a specific µslice. This ensures that VNF
instances serving different µslices are isolated from each other.

Then, we optimize the bandwidth consumed by each µslice
by co-locating its VNF instances that communicate the most.
Note that the term µslice has been used previously by Leconte
et al. [3] to describe a subset of all the traffic flows that are tied
to a single pair of ingress and egress nodes. This description
of a µslice is clearly different from ours.

Our key contributions are as follows.
• We present a novel approach for composing 5G network

slices by co-locating VNFs in µslices. The key differences
of our approach from existing approaches are that a) it
builds on the ability to decompose a VNF into VNF
instances tied to a pair of ingress and egress nodes, and
b) it optimizes the bandwidth consumed by co-locating
VNF instances serving a µslice.

• We present an integer linear programming model to
compose network slices that takes as inputs the properties
of the physical substrate and the requirements of use
cases. We implement our model in an off-the-shelf solver,
and our code is publicly available.1

• We highlight the benefits of µslicing by comparing the
solutions obtained with µslicing and those obtained with-
out µslicing across different configurations. We created
these configurations by integrating data from publicly
available datasets with measurements conducted in our
test network. We observed that across all configurations
µslicing was able to save about two times more control
plane and data plane traffic. Furthermore, we observed
that µslicing allowed us to find a feasible solution for
problem instances declared otherwise infeasible by the
solver. µslicing also resulted in a more even distribution
of the computational and link load.

In the following, we discuss the related works (§II) and
we define the concept of µslicing (§III). We then present
our model (§IV) and some refinements to reduce complexity
(§V). Finally, we discuss our evaluation (§VI), and we analyze
limitations and follow-up work of our study (§VII).

II. RELATED WORKS

Composing networks by mapping virtual entities, such
as VNFs and virtual links, onto a physical substrate falls
into the realm of Virtual Network Embedding (VNE) and
VNF Forwarding Graph Embedding (VNF-FGE). Solutions
for VNE mainly focus on mapping virtual links onto the
physical links. In contrast, solutions for VNF-FGE focus on

1https://version.helsinki.fi/matteo.pozza/avatarifip19ISBN 978-3-903176-16-4 © 2019 IFIP
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TABLE I
COMPARISON WITH RELATED WORKS

VNF VNF
Work Group Co-location Key Difference(s)
Basta et al. [4] Ingress Implicit Ingress node not shareable among

VNF groups
Baumgartner
et al. [5], [6]

Ingress Implicit Ingress node not shareable among
VNF groups

Bhamare et al. [7] FC Implicit Scheduler for Function Chain re-
quests

Carpio et al. [8] FC ND OBJ: load balancing
Eramo et al. [9] ND Explicit OBJ: minimize amount of traffic re-

jected
Kuo et al. [10] ND Implicit OBJ: maximize number of accepted

Function Chain requests
Kuo et al. [11] FC ND OBJ: maximize number of flows

embedded
Leconte et al. [3] Ingress ND Single pair of ingress and egress

nodes
Liu et al. [12] ND ND OBJ: maximize profit
Martini et al. [13] FC Implicit OBJ: minimize communication la-

tency
Mehraghdam
et al. [14]

ND Explicit No VNF grouping; quadratic model

Meng et al. [15] ND Explicit No VNF grouping; quadratic model
Palkar et al. [16] ND Explicit Rough specification of demands
Patel et al. [17] Ingress Implicit OBJ: minimize handover latency
Pham et al. [18] FC Explicit OBJ: trade-off between traffic cost

and load on nodes
Song et al. [19] ND Implicit OBJ: trade-off between traffic cost

and load on nodes
Taleb et al. [20] ND ND OBJ: minimize (UE, P-GW) path

and minimize S-GW relocations
Wen et al. [21] ND Explicit OBJ: minimize number of VNFs

deployed
Ye et al. [22] FC Explicit VNFs not shared between Function

Chains of same use case
Our approach Ingress Explicit OBJ: maximize traffic between co-

located VNFs

composing networks where VNFs are organized into Function
Chains. Note that each Function Chain defines the order in
which traffic traverses through its VNFs. In 5G networks, the
VNFs are traversed in a specific order during procedures such
as registration and deregistration. For instance, the order of
the VNFs traversed during a registration procedure is different
from the order followed during deregistration [23]. Composing
5G slices therefore falls into the VNF-FGE category.

In Table I, we summarize the key related works on VNF-
FGE; other works on VNE and VNF-FGE are summarized in
the surveys by Fischer et al. [24] and Herrera et al. [25]. We
compare the related works using two parameters: approach for
VNF grouping, and support for VNF co-location.

The approach for VNF grouping determines the granularity
with which a solution can create groups of VNFs such that
VNFs of one group are isolated from those in other groups.
The ability to group VNFs is a key property for network
slicing because network slices are isolated from each other.
The solution may either a) not discuss the grouping approach
(ND), b) group VNFs according to the Function Chain they
serve (FC), or c) group VNFs serving flows traversing a
specific ingress node of the network (Ingress). Grouping by
Function Chain is not suitable for network slicing because the

VNF instances serving a network slice might be shared by
several procedures. For example, an instance of the Access
and Mobility Function (AMF) is expected to be used by both
registration and deregistration procedures. Instead, grouping
by ingress node is desirable because it allows sharing of VNFs
between the different procedures originating from the same
ingress node. Our analysis shows that VNF grouping on a
per-ingress-node basis has been explored only by few works.

VNF co-location optimizes link utilization by placing VNFs
that communicate the most on the same physical node. We
observe that VNF co-location is either a) not discussed (ND),
b) implicitly achieved as a side effect (Implicit), or c) explicitly
specified as objective (Explicit). To achieve a more efficient
resource usage, it is desirable to explicitly specify VNF co-
location as objective.

Among the works that group VNFs according to ingress
nodes, the works of Baumgartner et al. [5], [6] and Basta
et al. [4] do not allow sharing the same ingress node in the
physical substrate between two independent groups of VNFs.
Sharing an ingress node is a key property for network slicing
because traffic from different use cases might be originated at
the same ingress node. Moreover such works do not deal with
mobility requirements of the users of each use case. In con-
trast, Patel et al. [17] deal with mobility requirements, however
the objective of their work is to minimize the handover latency.
The recent work of Leconte et al. [3] introduces the concept of
µslices, which the authors leverage to split the traffic between
a pair of ingress and egress nodes in sub-flows. However, their
work considers only a single pair of ingress and egress nodes.

III. OVERVIEW OF µSLICING

A network slice has a set of VNFs and a corresponding
set of procedures describing how the VNFs communicate
with each other. Furthermore, VNFs of one slice do not
communicate with VNFs of another slice because network
slices are expected to be isolated from each other.

In our model, each VNF of a network slice is labeled as
either a) ingress, b) egress, or c) intermediate. An ingress VNF
is the first VNF traversed by traffic entering the network, while
an egress VNF is the last VNF traversed before exiting the
network. All other VNFs are labeled as intermediate VNFs.
Each network slice has exactly one ingress VNF and exactly
one egress VNF. Note that there can be multiple instances of
the same VNF simultaneously running in the network. A VNF
can also have an additional label of being a mobility anchor,
i.e. an ingress, egress, or intermediate VNF can also be a
mobility anchor. A VNF is a mobility anchor if two instances
of this VNF exchange user traffic when a user relocates to
another ingress node.

We assume that a 5G network assigns one network slice
for each use case; this mapping of use cases to slices is in
line with the various ways in which network slices can be
created [26]. Each use case specifies a set of node pairs, where
each pair consists of an ingress node and the corresponding
egress node. Pairs of the same use case have different ingress
nodes, while an egress node may be shared by multiple pairs.
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Fig. 1. Composing a network slice by co-locating VNFs when µslicing is
disabled, and when µslicing is enabled. We assume a network slice with i)
four VNFs: I, A, B, and E, and ii) fives nodes: 1, 2, 3, 4, and 5. Nodes 1 and
2 are ingress nodes, while nodes 4 and 5 are the corresponding egress nodes.
The number of arrows indicate the amount of communication between a pair
of VNFs. A µslice is labeled by the ingress-egress pair, i.e. (1,4) and (2,5).
VNF I is an ingress VNF, i.e. a VNF which must be instantiated on an ingress
node. Similarly, VNF E is an egress VNF. VNFs A and B are intermediate
VNFs which can be instantiated anywhere in the network. In this example,
µslicing can provide traffic savings and distribute the load more evenly.

Consequently, each pair is identified within a use case by its
ingress node. Note that different use cases may use the same
ingress and egress nodes. For each use case, its ingress and
egress VNFs must be instantiated on an ingress and egress
nodes respectively.

The idea behind µslicing is to decompose intermediate
VNFs into instances that are tied to a pair of ingress and
egress nodes. The µslices are isolated from each other, except
for the communication between mobility anchors. In Figure 1,
we present an example network slice with one ingress VNF,
I, two intermediate VNFs, A and B, and one egress VNF, E.
This slice has two pairs of ingress and egress nodes: (1,4) and
(2,5). When µslicing is disabled and VNFs that communicate
the most are co-located, we observe that the intermediate
VNFs can be co-located and instantiated on node 3. Instead,
when µslicing is enabled, the network slice is split into two
µslices. Each µslice has its own instances of intermediate
VNFs that are tied to the corresponding pair of ingress and
egress nodes. As shown in Figure 1, co-locating VNF instances
in µslices is more effective in optimizing resources of the
physical substrate.

IV. SYSTEM MODEL

We now present an integer programming model whose
objective function maximizes the amount of traffic savings
by co-locating VNFs in µslices. Table II provides a short
description of the model input.

TABLE II
MODEL INPUT DESCRIPTION

Physical Substrate
N set of nodes
L set of links
capNn processing capacity of node n (ops/s)
capLl capacity of link l (Bps)
latLl latency of link l (s)
edgen1,n2,l 1, if link l connects node n1 to n2; 0, otherwise
pathn1,n2,l 1, if path from node n1 to node n2 includes link l; 0, otherwise

Requirements of Use Cases
U set of use cases
V set of VNFs
P set of procedures
mapUu,v 1, if VNF v serves use case u; 0, otherwise
ingVv 1, if VNF v is an ingress VNF; 0, otherwise
egrVv 1, if VNF v is an egress VNF; 0, otherwise
flocVn,s,v 1, if VNF v serving µslice s is instantiated at node n; 0,

otherwise
vopsPp,v operations required by an instance of VNF v to serve a

procedure p (ops)
vcomPp,v1,v2 bytes exchanged between instances of VNFs v1 and v2 to

serve a procedure p (B)
reqPp,s rate of requests of procedure p for µslice s (Hz)
mdelPp max acceptable delay for completing procedure p (s)

Intermediate Calculations
IvcomPp,v1,v2 1, if vcomPp,v1,v2 > 0; 0, otherwise
isSs,u 1, if s identifies a µslice for use case u; 0, otherwise
procSs,v total processing capacity required by an instance of VNF

v when serving µslice s (ops/s)
comSs,v1,v2 total bandwidth required between instances of VNFs v1

and v2 when serving µslice s (Bps)
pathDeln1,n2 total delay between nodes n1 and n2 (s)

A. Physical Substrate

Our physical substrate corresponds to a connected graph
having a set N of nodes and a set L of links. Each node n has
a processing capacity capNn, while each link l has a capacity
capLl and a latency latLl. For each link l and each pair of
nodes n1 and n2, edgen1,n2,l indicates if link l connects node
n1 to node n2, and pathn1,n2,l indicates if the communication
path from node n1 to node n2 traverses link l.

B. Requirements of Use Cases

The set U contains all the use cases served by the network.
Each use case is assigned one network slice, so there are |U |
network slices to compose in the network. The sets V and P
respectively contain all VNFs and all procedures required to
serve the use cases in U . The mapping between use cases and
VNFs is given by mapUu,v , where mapUu,v = 1 if VNF v
serves use case u. Given a VNF v, ingVv and egrVv indicate
respectively if v is an ingress VNF and if v is an egress VNFs.

As described in §III, we decompose each network slice into
µslices such that each µslice consists of a group of VNF
instances tied to a pair of ingress and egress nodes. Since
each pair is identified within a network slice by its ingress
node, we use the ingress node to identify the corresponding
µslice. Given a node n, a µslice s, and a VNF v, flocVn,s,v
indicates if VNF v serving µslice s must be instantiated at
node n. flocV is thus used to indicate requirements on the
location of the VNF instances, e.g. ingress and egress VNFs
placed respectively at the ingress and egress nodes.
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Each procedure requires a subset of VNFs of a slice to com-
municate with each other, and it also incurs a computational
load on those VNFs. We use vopsPp,v to specify the number
of operations required by an instance of VNF v to serve a
procedure p, and vcomPp,v1,v2 to specify the amount of bytes
exchanged between instances of VNFs v1 and v2 to serve a
procedure p. Note that there is no communication between two
instances of the same VNF (vcomPp,v,v = 0), except when
considering mobility procedures, e.g. handover, because data
of the moving user is forwarded from the mobility anchor
VNF of the source µslice to the corresponding one in the
target µslice. In addition, we use reqPp,s to specify the rate
of requests of procedure p for µslice s. Note that the above
variables are set to 0 when VNFs, procedures, and µslices are
not related with the same use case. For example, if procedure
p is tied to a network slice that has no µslice s, then reqPp,s

is set to 0. Finally, we use mdelPp to indicate the maximum
acceptable delay for completing procedure p.

C. Intermediate Calculations

To succinctly represent some key aspects of the model input,
we introduce the following parameters. These parameters are
computed by pre-processing the model input, thus they do not
affect the complexity of the model.

Given a procedure p and two VNFs v1 and v2, the binary
flag IvcomPp,v1,v2 indicates if the VNFs communicate with
each other during the procedure. We define it as follows:

IvcomPp,v1,v2 =

{
1 if vcomPp,v1,v2 > 0

0 otherwise.
(1)

Given a use case u and a node s, we use isSs,u to indicate
if use case u declares s as an ingress node, i.e. if s identifies
a µslice of use case u. We define it as follows:

isSs,u =
∑
v∈V

mapUu,v · ingVv · flocVs,s,v,

∀s ∈ N, u ∈ U.
(2)

To exemplify the use of isS, given a use case u and a node
s, the node s is an ingress node of use case u (isSs,u =
1) if there exists a VNF v such that a) v serves use case u
(mapUu,v = 1), b) v is an ingress VNF (ingVv = 1), and c) v
is instantiated in the node s to serve µslice s (flocVs,s,v = 1).

The total processing capacity required by an instance of
VNF v when serving µslice s is given by procSs,v , where

procSs,v =
∑
p∈P

vopsPp,v · reqPp,s,∀s ∈ N, v ∈ V. (3)

Similarly, the total bandwidth required between instances
of VNFs v1 and v2 when serving µslice s is given by
comSs,v1,v2 , where

comSs,v1,v2 =
∑
p∈P

vcomPp,v1,v2 · reqPp,s,

∀s ∈ N, v1, v2 ∈ V.
(4)

Note that the two previous calculations result in 0 when a
VNF is not used by a use case. For example, if a use case u

declares s as ingress node (ingNs,u = 1), and consequently
there is µslice s in the corresponding network slice, but VNF
v does not serve use case u (mapUu,v = 0), then procSs,v is
0.

Finally, the total delay between a pair of nodes is given by
pathDeln1,n2 , where

pathDeln1,n2 =
∑
l∈L

pathn1,n2,l · latLl,∀n1, n2 ∈ N. (5)

D. Integer Programming Model

The objective of our model is to optimize the amount of
bandwidth used in the links of the physical substrate by co-
locating VNF instances in µslices. We introduce the following
binary decision variables:

locVn,s,v =


1 if VNF v serving µslice s

is instantiated at node n
0 otherwise.

(6)

Specifically, our objective is to maximize the traffic between
VNF instances that are co-located in the same node of the
physical substrate because such traffic does not leave the
co-location node. As described in §III, instances of VNFs
serving different µslices do not communicate because µslices
are isolated from each other. The only exception to this rule
is in case of instances of a mobility anchor VNF serving
different µslices because mobility procedures require them to
exchange traffic related with moving users. As a result, the
model maximizes a) the traffic between co-located instances
of different VNFs serving the same µslice, and b) the traffic
between co-located instances of the same mobility anchor
VNF serving different µslices. This objective is expressed
using the following objective function.

maximize :∑
s∈N

v1,v2∈V
v1 6=v2

comSs,v1,v2 ·

(∑
n∈N

locVn,s,v1 · locVn,s,v2

)
+

∑
s1∈N
v∈V

comSs1,v,v ·

 ∑
n,s2∈N
s1 6=s2

locVn,s1,v · locVn,s2,v


(7)

The constraints of our model are as follows.
1) Instantiation constraints force to instantiate a VNF serv-

ing a µslice in at most one node. They are expressed as∑
n∈N

locVn,s,v ≤ N · (1−mapUu,v) +mapUu,v · isSs,u∑
n∈N

locVn,s,v ≥ mapUu,v · isSs,u

∀s ∈ N, v ∈ V, u ∈ U.

(8)

2) Fixed VNF location constraints ensure that a VNF whose
location is specified through flocV to a certain node is not
instantiated in another node. They are expressed as

flocVn,s,v ≤ locVn,s,v, ∀n, s ∈ N, v ∈ V. (9)
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3) Processing capacity constraints ensure that the process-
ing capacity of nodes is not exceeded. They are expressed as∑

s∈N, v∈V
procSs,v · locVn,s,v ≤ capNn, ∀n ∈ N. (10)

4) Link capacity constraints ensure that the capacity of the
links is not exceeded. They are expressed as∑

s,n1,n2∈N
v1,v2∈V

comSs,v1,v2 · pathn1,n2,l · locVn1,s,v1 · locVn2,s,v2

+
∑

s1,s2,n1,n2∈N
v∈V

comSs1,v,v · pathn1,n2,l · locVn1,s1,v · locVn2,s2,v

≤ capLl, ∀l ∈ L.
(11)

5) Procedure delay constraints ensure that the time required
to complete the procedures does not exceed their maximum
acceptable delay. They are expressed as∑

n1,n2∈N
v1,v2∈V

pathDeln1,n2
· IvcomPp,v1,v2 · locVn1,s,v1 · locVn2,s,v2

+
∑

s2,n1,n2∈N
v∈V

pathDeln1,n2
· IvcomPp,v,v · locVn1,s,v · locVn2,s2,v

≤ mdelPp, ∀s ∈ N, p ∈ P.
(12)

Note that link capacity and procedure delay constraints have
the same structure as the objective function. Indeed, the first
row deals with instances of different VNFs serving the same
µslice, and the second row deals with instances of the same
VNF serving different µslices.

V. COMPLEXITY OPTIMIZATIONS

We now describe the optimizations we have performed to
reduce the complexity of our model.

A. Achieving Linearity

The proposed model has both a quadratic objective function
and quadratic constraints, which make it difficult to solve
by off-the-shelf solvers. To linearize the model, we introduce
decision variables locV Pair defined as follows:

locV Pairn1,s1,v1
n2,s2,v2

=

{
1 if locVn1,s1,v1 ∧ locVn2,s2,v2 = 1

0 otherwise.
(13)

We add the following constraints to model each locV Pair
variable as a binary conjunction of two locV variables.

locV Pairn1,s1,v1
n2,s2,v2

≤ locVn1,s1,v1

locV Pairn1,s1,v1
n2,s2,v2

≤ locVn2,s2,v2

locVn1,s1,v1
+ locVn2,s2,v2 − locV Pairn1,s1,v1

n2,s2,v2

≤ 1

∀s1, n1, s2, n2 ∈ N, v1, v2 ∈ V

(14)

We use locV Pair variables when we have a multiplication
between locV variables in our model. The objective function
is now expressed as follows.

maximize :∑
s∈N

v1,v2∈V
v1 6=v2

comSs,v1,v2 ·

(∑
n∈N

locV Pairn,s,v1
n,s,v2

)
+

∑
s1∈N
v∈V

comSs1,v,v ·

 ∑
n,s2∈N
s1 6=s2

locV Pairn,s1,v
n,s2,v


(15)

The link capacity constraints are now expressed as∑
s,n1,n2∈N
v1,v2∈V

comSs,v1,v2 · pathn1,n2,l · locV Pairn1,s,v1
n2,s,v2

+
∑

s1,s2,n1,n2∈N
v∈V

comSs1,v,v · pathn1,n2,l · locV Pairn1,s1,v
n2,s2,v

≤ capLl, ∀l ∈ L.

(16)

The procedure delay constraints are now expressed as∑
n1,n2∈N
v1,v2∈V

pathDeln1,n2
· IvcomPp,v1,v2 · locV Pairn1,s,v1

n2,s,v2

+
∑

s2,n1,n2∈N
v∈V

pathDeln1,n2
· IvcomPp,v,v · locV Pair n1,s,v

n2,s2,v

≤ mdelPp, ∀s ∈ N, p ∈ P.

(17)

B. Reducing the Number of Decision Variables

A drawback of introducing locV Pair variables is that it
brings (|N | · |N | · |V |)2 more variables to the solver, and this
becomes intractable for large values of |N | or |V |.

One can note that the instantiation constraints (8) force
locVn,s,v = 0, ∀n ∈ N if v serves use case u but u does
not declare s as an ingress node. As a consequence, locV
variables satisfying such condition do not influence the value
of the objective function nor affect the satisfiability of the
other constraints, and therefore they can be removed from the
problem definition. We thus define a parameter def as follows:

defn,s,v =

{
1 if ∃u ∈ U |mapUu,v ∧ isSs,u = 1

0 otherwise.
(18)

When implementing the problem in the solver, we de-
fine locVn,s,v if defn,s,v = 1. Consequently, we define
locV Pairn1,s1,v1

n2,s2,v2
if defn1,s1,v1 = 1 and defn2,s2,v2 = 1,

thus allowing to reduce significantly the number of decision
variables defined in the solver.

In summary, we show that it is indeed possible to linearize
the model and reduce its number of decision variables when
implementing it in the solver.
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VI. NUMERICAL RESULTS

We now detail the goal of our evaluation (§VI-A), the sce-
narios considered (§VI-B), and the results obtained (§VI-C).

A. Goal

Our aim is to assess the benefits brought by µslices, i.e.
how µslices make more efficient the co-location of VNFs
when composing network slices. We therefore compare the
results obtained by enabling µslicing with those obtained by
disabling µslicing considering the same experimental setup.
We leave the comparison of our approach with other network
slices composition approaches as future work.

We disable µslicing by adding the following constraints,

(1− ingVv) · (1− egrVv) ·mapUu,v · isSs1,u

·isSs2,u · (locVn,s1,v − locVn,s2,v) = 0,

∀n, s1, s2 ∈ N, v ∈ V, u ∈ U.
(19)

The above constraints ensure that the instances of a VNF
v mapped to a use case u are all instantiated in the same
node of the physical substrate; the only exceptions are VNFs
which must be instantiated on ingress or egress nodes. Note
that a model which uses the above constraints along with the
constraints and objective function defined in §IV is still aimed
at finding solutions where VNFs that communicate the most
are co-located, albeit with µslicing disabled. For example, it
searches for solutions such as the one presented in Figure 1
where VNFs A and B are co-located.

B. Scenarios

We now describe the information we gathered from techni-
cal documents and measurements to build realistic scenarios.

1) Physical Substrate: We used three real network in-
stances for our evaluation: New York, from SNDlib [27], and
Beijing and Tokyo, from the Internet Topology Zoo [28]. We
pruned the topology graphs by removing disconnected nodes
and duplicate links. Consequently, the New York topology
graph had 16 nodes and 49 edges, while Beijing and Tokyo
topology graphs had 9 nodes and 10 edges, and 12 nodes and
13 edges respectively. We assume each node in the network
corresponds to a cluster equipped with 100 servers, and the
links between these nodes to be point-to-point fiber links
with 10 Gbps of bandwidth and 1 ms of latency [29]. The
processing capacity of each server was set using the highest
value in the results of the Standard Performance Evaluation
Corporation (SPEC) benchmark suite [30]. We assume that
each pair of non-adjacent nodes communicate using the path
having the smallest number of hops. To account for hardware
improvements in the years to come, we also consider scenarios
in which the number of servers at each node and the bandwidth
of each link is increased by a multiplying factor. Specifically,
we consider multiplying factors (x1, x2.5, x5, x7.5, x10) for
both number of servers (p1, p2, p3, p4, p5) and link bandwidth
(c1, c2, c3, c4, c5) and we consider all 25 combinations of
such factors. As an example, the combination (p3, c4) means
that each node has 5 ∗ 100 = 500 servers and each link has
7.5 ∗ 10 = 75 Gbps of bandwidth.

TABLE III
SIZE OF SIGNALS DURING AN ACTIVE-TO-IDLE (ATI) TRANSITION.

Name Direction Size (B)
UE Context Release Request eNB → MME 90
Release Access Bearers Request MME → S-GW 54
Release Access Bearers Response S-GW → MME 60
UE Context Release Command MME → eNB 102
UE Context Release Complete eNB → MME 98

2) Requirements of Use Cases: We used the VNFs and
procedures of LTE because of the limited information on how
use cases will use the VNF and procedures of 5G. Specifically,
we consider the following four control plane procedures:
Initial Attach (IA), Active-to-Idle (AtI) transition, Idle-to-
Active (ItA) transition, and X2 handover. We abstract data
downloads and uploads as data plane procedures. A download
procedure consists of two types of signals, one from the Packet
Data Network Gateway (P-GW) to the Serving Gateway (S-
GW) followed by another from the S-GW to the evolved Node
B (eNB); uploads use the same signals in the reverse direction.

In our evaluation, the number of operations required by a
VNF to complete a procedure corresponds to the number of
signals received by the VNF during that procedure. We obtain
these numbers by analyzing the LTE specifications [31] and
the traffic between VNFs when running an instance of an LTE
core in our test network. For instance, Table III summarizes
the signals exchanged between VNFs during an Active-to-
Idle (AtI) transition. We create similar tables for the IA, ItA
transition, and X2 handover procedures, however we do not
present them here due to space constraints. To estimate the data
plane traffic going from a Source eNB (SeNB) to a Target eNB
(TeNB) during an X2 handover, we measured the number of
bytes traversing the X2 link. We downloaded a 1.5 GB file on
a mobile phone connected to a SeNB and then moved in the
direction of a TeNB, and we repeated the process 10 times. We
obtained an average of approximately 120 KB of data packets
transferred from SeNB to TeNB.

We defined two use cases, UC1 and UC2, by leveraging the
concept of quality class in LTE which is identified by a Quality
Class Identifier (QCI). For UC1 we select live streaming of
conversational video (QCI 2), and for UC2 we select buffered
streaming of video (QCI 8). We use these quality classes to
represent use cases having different requirements from the
infrastructure. For our evaluation, the underlying infrastructure
hosts two network slices, one for UC1 and the other for UC2.

We consider five pairs of ingress and egress nodes for each
use case. For choosing these nodes, we begin by randomly
selecting one ingress node in the network. We then select the
other ingress nodes randomly from its adjacent nodes. If there
are not enough adjacent nodes we select nodes adjacent to
the ones already selected till we get five ingress nodes. This
selection process creates a group of adjacent ingress nodes so
that X2 handovers are allowed between each pair of nodes in
the group. Finally, for each ingress node, we choose its egress
node by selecting a random node in the network.

For each use case, we assume 1000 users at each ingress
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Fig. 2. Feasibility ratio for each configuration.

node, resulting in 5000 users. The number is in line with the
number of users in recent 5G trials [32], although we acknowl-
edge that in 5G networks the number of users might vary
across use cases. We use the frequency of control plane pro-
cedures reported by Metsälä et al. [33] and Tabbane et al. [34]
for the UC1 and UC2 respectively; we use the frequency of
data plane procedures for UC1 and UC2 from a white paper
from Huawei [35]. We use the maximum packet delay values
provided by the 3GPP community [36] to define the delay
limits on the download and upload procedures of the two use
cases. We define the delay limits on control plane procedures
using the delay budgets reported by Savic et al. [37].

C. Results

For each network instance, we consider all combinations of
the multiplying factors for number of servers at each node and
link bandwidth. Such triples (network instance, servers factor,
bandwidth factor) are henceforth referred to as configurations.
As an example, configuration (Beijing, p3, c4) refers to the
Beijing physical substrate in which the number of servers
for each node is 500 and the bandwidth of each link is
75 Gbps. For each configuration, we generated 10 problem
instances. We implemented our model using IBM ILOG Cplex
Optimization Studio 12.7.1, and for each problem instance we
run the solver on a server with 32 CPU cores and 256 GB
of memory. We set the solver to a maximum of 10 minutes
to solve each problem instance, after which it returns the best
solution found, if any. For each problem instance, we run the
solver two times, i.e. with µslicing enabled and with µslicing
disabled.

We compare the results obtained by enabling µslicing with
those obtained by disabling it using the following metrics.

a) Feasibility ratio: the fraction of problem instances for
which a feasible solution was found within 10 minutes.

b) Traffic savings: the amount of control plane and data
plane traffic which was saved by co-locating the VNFs.

c) Resources usage: the amount of computational and
bandwidth resources consumed by the VNFs.

TABLE IV
RATIO OF AVERAGE TRAFFIC SAVINGS µSLICING ENABLED

µSLICING DISABLED
(CONTROL PLANE, DATA PLANE)

Topo- Num Link Bandwidth
logy Servers c1 c2 c3 c4 c5

B
ei

jin
g

p5 ↑ , ↑ 2.68, 2.99 2.36, 1.98 2.21, 2.12 2.43, 2.35
p4 ↑ , ↑ 2.34, 2.57 2.28, 2.32 2.28, 2.23 2.27, 2.25
p3 ↑ , ↑ 2.41, 2.50 2.26, 2.02 2.27, 2.16 2.23, 1.98
p2 — , — 2.36, 2.71 2.29, 2.24 2.37, 2.24 2.34, 2.24
p1 — , — ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑

T o
ky

o

p5 ↑ , ↑ 2.63, 2.70 2.34, 2.36 2.22, 2.23 2.30, 2.33
p4 ↑ , ↑ 2.46, 2.99 2.29, 2.44 2.24, 2.35 2.26, 2.37
p3 ↑ , ↑ 2.49, 2.58 2.26, 2.30 2.34, 2.29 2.23, 2.25
p2 ↑ , ↑ 2.40, 2.88 2.33, 2.24 2.20, 2.36 2.30, 2.40
p1 ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑

N
e w

Y
or

k p5 2.40, 4.11 2.39, 2.57 2.34, 2.53 2.45, 2.52 2.26, 2.51
p4 2.22, 2.80 2.30, 2.46 2.42, 2.26 2.39, 2.50 2.49, 2.59
p3 3.39, 3.10 2.33, 2.56 2.52, 2.64 2.31, 2.51 2.25, 2.45
p2 2.19, 2.75 2.37, 2.57 2.37, 2.33 2.38, 2.67 2.46, 2.43
p1 ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑

These metrics help us quantify the bandwidth savings by
µslicing and VNF co-location. Note that the delay incurred
by procedures was governed by the delay constraints (12).

1) Feasibility Ratio: In Figure 2, we present the observed
feasibility ratio across all configuration when a) µslicing is
enabled and b) µslicing is disabled. We observe that the solver
is able to find solutions when µslicing is enabled even in
configurations where no solutions were found when µslicing
was disabled. This is evident in constrained configurations, i.e.
configurations with either p1 or c1, and the benefits of µslicing
are clearly evident in configurations with p1. This is in line
with our expectations because µslicing allows us to split the
load of a single VNF in smaller VNF instances that can be
distributed across several nodes.

2) Traffic Savings: For each problem instance with a feasi-
ble solution, we computed the amount of control plane and
data plane traffic saved by VNF co-location. This savings
is measured as the amount of control plane and data plane
traffic exchanged by VNFs instantiated on the same physical
node. We then compute the average savings across the solved
instances with the same configuration.

In Table IV, we present the ratios i/j, x/y for each con-
figuration, where i and x are respectively the average control
plane and data plane traffic savings with µslicing enabled, and
j and y are the corresponding values with µslicing disabled.
As an example, for the configuration (Beijing, p5, c2), we
observe that the average control plane traffic saved with
µslicing enabled is 2.68 times more than the corresponding
savings with µslicing disabled. Similarly, the average data
plane traffic saved with µslicing enabled is 2.99 times more
than the corresponding savings with µslicing disabled. A ‘—,
—’ for a configuration implies that the solver was not able to
find solutions with µslicing enabled nor with µslicing disabled.
Instead a ‘↑, ↑’ implies that feasible solutions were found only
when µslicing is enabled.

We observe that co-locating VNFs in µslices is effective in
saving control plane and data plane traffic. From the control
plane perspective, we observe that µslicing was able to save
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TABLE V
RATIO OF STANDARD DEVIATION OF RESOURCE USAGE µSLICING ENABLED

µSLICING DISABLED
(NODE UTILIZATION, LINK UTILIZATION)

Topo- Num Link Bandwidth
logy Servers c1 c2 c3 c4 c5

B
ei

jin
g

p5 ↑ , ↑ 0.75, 0.51 0.54, 0.51 0.54, 0.48 0.44, 0.50
p4 ↑ , ↑ 0.71, 0.46 0.55, 0.51 0.58, 0.52 0.53, 0.46
p3 ↑ , ↑ 0.60, 0.51 0.47, 0.46 0.46, 0.52 0.53, 0.53
p2 — , — 0.71, 0.54 0.51, 0.54 0.48, 0.51 0.46, 0.54
p1 — , — ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑

T o
ky

o

p5 ↑ , ↑ 0.62, 0.59 0.45, 0.60 0.46, 0.56 0.45, 0.51
p4 ↑ , ↑ 0.63, 0.58 0.42, 0.53 0.45, 0.54 0.44, 0.56
p3 ↑ , ↑ 0.66, 0.57 0.50, 0.54 0.42, 0.54 0.42, 0.50
p2 ↑ , ↑ 0.65, 0.62 0.48, 0.56 0.52, 0.57 0.50, 0.62
p1 ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑

N
e w

Y
or

k p5 0.73, 0.63 0.60, 0.56 0.59, 0.50 0.53, 0.52 0.56, 0.52
p4 0.79, 0.57 0.64, 0.55 0.64, 0.54 0.65, 0.55 0.62, 0.51
p3 0.80, 0.62 0.63, 0.56 0.53, 0.59 0.59, 0.55 0.65, 0.55
p2 0.78, 0.52 0.70, 0.56 0.63, 0.57 0.61, 0.57 0.59, 0.58
p1 ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑ ↑ , ↑

at least two times the traffic across all configurations with
feasible solutions. From the data plane perspective, we observe
that µslicing was able to save up to 4.11 times more traffic.

3) Resources Usage: To study how computational and
traffic load is distributed, we compare the standard deviation
of node and link utilizations across all solved instances with
the same configuration when µslicing is enabled and when
µslicing is disabled. For each problem instance with a feasible
solution we computed the average node and link utilizations,
and their respective standard deviations. We then used these
values to compute the average node utilization, the average
link utilization, and the standard deviations of node and link
utilizations across all the solved instances with the same
configuration. Because the total computational load on the
physical substrate is fixed, the average node utilization across
all solved instances of a given configuration is the same when
µslicing is enabled or disabled. Nevertheless, µslicing affects
the distribution of the computation load, and this in turn affects
the distribution of the load on the links.

In Table IV, we present the ratios i/j, x/y for each configu-
ration, where i and x are respectively the standard deviation of
node and link utilizations with µslicing enabled, and j and y
are the corresponding values with µslicing disabled. As an ex-
ample, for the configuration (Beijing, p5, c2), we observe that
the standard deviation of node utilization with µslicing enabled
corresponds to 0.75 of the standard deviation with µslicing
disabled, thus the computational load was spread more evenly
when µslicing is enabled. Across all configurations we observe
ratios smaller than 1 which imply that the load is more evenly
distributed when µslicing is enabled.

We observe that the ratio of the average computational load
when µslicing is enabled and the corresponding value when
µslicing is disabled is close to 1 across all configurations.
At the same time, we observe that the ratio of the average
link load when µslicing is enabled and the corresponding load
when µslicing is disabled is less than 1 across all configura-
tions. We do not present those results due to lack of space.
Instead, we present the average computational and link load

with µslicing enabled and disabled for four configurations in
Figure 3. The error bars indicate the minimum and maximum
values across all problem instances for a given configuration
where a feasible solution was found. As expected, we observe
that the average node utilization is not affected by µslicing.
However, the error bars show that the distribution of the
computational load is skewed when µslicing is disabled. We
also observe that a) the average link utilization is either smaller
or equal when µslicing is enabled, and b) the distribution of
the link load is skewed when µslicing is disabled.

VII. DISCUSSION AND FUTURE WORKS

We propose to decompose each network slice in µslices,
each of which is tied to a pair of ingress and egress nodes
of the use case served by the network slice, and to co-
locate the VNFs of such µslices to save the bandwidth. We
provide an integer linear programming model whose objective
function maximizes the amount of traffic savings by co-
locating VNFs in µslices. We implemented and evaluated
it against VNF co-location with µslicing disabled, and we
observed that our approach a) can provide feasible solutions
when no solutions are found without µslicing, b) saves around
two times more control plane and data plane traffic, and c)
records a smaller standard deviation of resource utilization,
implying that the load is more evenly distributed. The resource
efficiency brought by µslices thus allows mobile operators to
accept more slice requests on the same network.

Time and number of use cases: despite the problem being
NP-hard, the solver provided a solution in the majority of
the instances studied within 10 minutes. Nevertheless, such a
time limit affects the ability of the solver to provide optimal
solutions to feasible problem instances. Understanding the
impact of such a time limit on the output of the solver requires
further investigation. We are also planning to explore the
impact of µslicing as the number of use cases increases.

Extensions: µslicing and VNF co-location is a combination
that can be used for several purposes. While we adopt it
to save bandwidth, a mobile operator can use it to reduce
energy consumption by minimizing the number of computing
nodes that are active. We are planning to extend our model to
support multiple objectives, which are modeled in the objective
function through different multiplying factors of the decision
variables. Mobile operators can benefit from such a model
exploring different combinations of the multiplying factors
and choosing the one that is more suitable depending on
the context. Furthermore, given the performance issues of co-
locating VNFs that compete for the same resources [38], we
are also planning to include additional constraints on the type
of VNFs that can be co-located in the same node.
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