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Abstract—We consider the problem of inferring the topology
of a network using the measurements available at the end nodes,
without cooperation from the internal nodes. To this end, we
provide a simple method to obtain path interference which
identifies whether two paths in the network intersect with each
other. Using this information, we formulate the topology inference
problem as an integer program and develop polynomial time
algorithms to solve it optimally for networks with tree and ring
topologies. Finally, we use the insight developed from these algo-
rithms to develop a heuristic for identifying general topologies.
Simulation results show that our heuristic outperforms a recently
proposed algorithm that uses distance measurements for topology
discovery.

I. INTRODUCTION

Knowing the topology of the underlying network can
provide several advantages to the communicating hosts. For
example, the topology can be used to improve the throughput
and robustness of the network [18], [19], and it can be a
necessary part of identifying bottlenecks and critical links in
the network [20]. It can also be used to monitor the network
or to simply get a picture of the underlying system. However,
often the owners of the network keep the topology information
hidden due to privacy and security concerns [5]. This has led
to a significant amount of research on topology discovery. We
develop a new method that can be used to identify general
network topologies. This method only requires the interference
pattern of the paths in the network which can be inferred from
the data available at the end nodes.

Prior work on topology discovery can be divided into two
main categories: algorithms that require cooperation from the
internal nodes and the algorithms that do not. Many algorithms
for topology discovery, usually designed for the purpose of
mapping the Internet, use ICMP commands like traceroute [3],
[4], [5]. These methods requires some level of cooperation
from the network providers. The other methods, that fall under
the category of network tomography [1], [2], use data that
can be measured directly at the end nodes. Our method falls
under this category as we do not seek any information from
the internal nodes.

In the network tomography literature significant attention
has been given to the discovery of tree networks. Papers such
as [7], [9], [10] use probing mechanisms to infer single source
multiple destination trees. There is also some work on com-
bining these single source trees to form a multi-source multi-
destination network [8], [13]. In [12], the authors provide a
method for identifying minimal trees with multiple sources
and multiple destinations by using distance measurements.

In [11], the authors develop an algorithm called RGD1 that
attempts to discover a general network topology. It uses a set

for four nodes that share a link, called quatrets and uses them
to build an approximation of the entrie network. The discovery
of the quatret and placement of the nodes in the topology
requires the shortest path distance between the nodes, which
is inferred using packet delay. RGD1 algorithm is very close
to our algorithm in terms the objective, hence we will compare
its performance against ours via simulation.

In order to obtain the interference pattern, we provide a
simple method based on linear regression. This method uses
the number of in-flight packets in the paths and the delay ex-
perienced by the packets to determine whether a given pair of
paths interfere with each other. Using the resulting interference
information, we formulate the topology inference problem as
an integer program. We develop polynomial time algorithms
to solve it optimally for networks with special topologies,
namely tree or ring topology. Both of these algorithms obtain
the minimal version of the network, even when the original
network is not minimal. We also develop a heuristic that
attempts to recover any general topology in polynomial time.

The main contributions of this paper can be summarized as
follows:
• We use the interference pattern of the paths to formulate

an integer linear program (ILP) that obtains the network
that has the fewest number of links and supports the
given interferences. The solution provides a new method
to discover a general network topology.

• We provide an upper bound, a lower bound and a suffi-
cient condition for optimality for the ILP.

• We design two polynomial time algorithms to recover tree
and ring networks and show that if the network is in fact
a tree or a ring, the algorithms solve the ILP optimally.

• Building upon the tree and the ring algorithms, we
develop a polynomial time heuristic to identify general
networks. Using simulations we show that this method
outperforms the RGD1 algorithm of [11].

II. MODEL

A. Network Model

We model the network as a graph G = (N,E), where N
is the set of nodes and E is the set of edges. We assume that
all the links in the network are bidirectional and have unit
capacity. Each bidirectional link {i, j} is composed of two
directed links (i, j) and (j, i). The network has two types of
nodes: the overlay nodes, which represent hosts and can be
controlled, and the underlay nodes, which represent routers
that are uncontrollable and do not provide any direct feedback.
We represent the set of overlay nodes by O and the set of
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underlay nodes by U , and N = O ∪ U . We further assume
that each overlay node is connected to only one underlay node.
Other that this, we do not have any knowledge of the structure
of the network. The main goal of this paper is to recover the
graph G from data measured at the overlay nodes.

All the overlay nodes are connected to each other by tunnels,
which are paths that go through the underlay nodes. A tunnel
l = (l1, l2, ..., l|l|) consists of overlay nodes l1 and l|l| and the
rest of the nodes are underlay. Since, l1 and l|l| are connected
to only one underlay nodes, we will often refer to node l2 as
the parent of node l1, p(l1), and node l|l|−1 as the parent of
node l|l|, p(l|l|). There are a total of L = |O| × (|O| − 1)
tunnels in the network.

We also assume that each node i ∈ N maintains a queue
for each of it outgoing link (i, j) ∈ E. Packets from all the
tunnels that uses the link (i, j) gets enqueued in this queue
when they reach node i and are served on a first come first
serve basis.

B. The Interference Matrix F
Our algorithm for recovering the graph G is based on

whether or not any two tunnels between the overlay nodes
intersect with each other. In order to identify this we propose
a simple method based on linear regression. We note that
depending on the measurements available, other methods such
as the ones from [6], [11] can also be used to derive this
information.

Let dl(t) represent the delay experienced by a packet that
enters tunnel l at time t. Tunnels in the network can intersect
with each other, hence, the path traversed by a tunnel can have
packets belonging to itself and packets from other tunnels. Let
hl(t) represent the number of packets that belong to tunnel l
that are still in the tunnel at time t. We will refer to these
packets as packets in flight of tunnel l. The delay experienced
by a packet entering tunnel l at time t is affected by the number
of packets in that tunnel and other tunnels that intersect with
it. Considering only a pair of tunnels k and l, we can model
the relationship between the packets in flight and delay as a
linear function:

dl(t) = hl(t) + αklhk(t) + ηl.

Here αkl represents the fraction of packets of tunnel k that are
in the path traversed by tunnel l and ηl is random perturbation
(noise).

By injecting randomly generated traffic into each pair of
tunnels and measuring the packet delay and packets in flight,
it is possible to determine if two tunnels intersect. In particular,
using linear regression it is possible to calculate the optimal
parameters αkl that minimizes the noise for each pair of tunnel
(k, l). When tunnels l and k do not intersect, the number of
packets in tunnel k does not affect the delay of packets entering
tunnel l, hence, αkl ≈ 0. Otherwise, αkl is closer to 1. We
use these αkl values to create the L × L binary interference
matrix F . If αkl ≈ 0 then Fkl = 0, and Fkl = 1 otherwise.
Moreover, F is symmetric, implying Fkl = Flk.

We will use the graph representation of F in some of our
results. We refer to such a graph as the interference graph
of the network, GF (NF , EF ). This graph is simply the graph
formed by using F as an adjacency matrix, where NF consists
of tunnels and an edge exists between tunnels that interfere
with each other. An example of an interference matrix and its
corresponding graph is given in Figure 1.

C. Minimal topology

There exist many networks that produce the same interfer-
ence matrix F , hence, these networks are indistinguishable by
our method. For example, each tunnel in the two networks
shown in Figure 1 face the same interference. E.g. the tunnel
(1, ..., 2) only interferes with tunnel (1, ..., 3) in both the
networks. Hence, they produce the same F matrix. We are
interested the smallest network, in terms of the number of
links, that produces the given F matrix. We will call such a
topology the minimal network topology.
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(a) Not minimal
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(b) Minimal

𝐹 =

0 1 0 0 0 1
1 0 0 1 0 0
0 0 0 1 1 0
0 1 1 0 0 0
0 0 1 0 0 1
1 0 0 0 1 0

(c) The interference matrix
F .

1,2

1,3

3,2

2,3 2,1

3,1

(d) The interference graph
GF . Each node (i, j) repre-
sents a tunnel (i, ..., j).

Fig. 1. Two topologies in Figures 1(a) and 1(b) produce the same F matrix.
The white nodes are overlay and gray nodes are underlay, and the network
uses the shortest path routing.

A necessary condition for a network to be minimal was
identified in [11]. Specifically, all underlay nodes must have
at least three neighbors. If an underlay has only one neighbor,
we can simply remove it to obtain a smaller network that is
indistinguishable from the original network by using only the
measurements available at the overlay. If an underlay node has
two neighbors, we can connect its two neighbors and remove
the node in order to obtain a smaller network with the same
properties. We note that this condition is not sufficient for
minimality in general. E.g. in Figure 1(a), all the underlay
nodes have 3 neighbors but the topology is not minimal. We
will provide a sufficient condition for minimality, and show
that the necessary condition from [11] is also sufficient for
specific topologies, namely trees and rings.

In this paper we assume that the F matrix for a network
G(N,E) is given (i.e. obtained via measurements, as de-
scribed earlier) and focus on obtaining the minimal network
Ĝ∗(N̂∗, Ê∗) that supports this interference pattern.



III. INTEGER PROGRAMMING FORMULATION

We formulate the problem of finding the minimal network
that supports the given path interference pattern as an integer
linear problem (ILP). Although a solution for this ILP is
computationally intractable for large networks, studying this
formulation will provide us with useful insights into the
problem. Also, when the network is small, we are able to
solve it optimally.

A. Integer program

Let us consider a network with |N̂ | nodes. Nodes 1, ..., |O|
are overlay nodes and nodes |O| + 1, ..., |N̂ | are underlay
nodes. Note that the set O is known a priori.

Let xlij ∈ {0, 1} represent whether link (i, j) is used by
tunnel l, for 1 ≤ i, j ≤ |N̂ |, 1 ≤ l ≤ L, and xlii = 0∀l. For
notational simplicity, we define another variable xij which
represents whether the link {i, j} is used by any tunnel in
either direction. Hence,

xij = ∨lxlij ∨ xlji, ∀i, j (1)

Here “∨” is a logical OR operator. Note that such logical
constraints can easily be transformed into a set of linear
(integer) constraints [15]. The objective function can be written
as

minimize
∑
ij

xij .

Our network model assumes that each overlay node is
connected to only one underlay link. This can be enforced
by using the following constraint:∑

j

xij = 1, i = 1, ..., |O|. (2)

Again, to simplify the notation we define two new variables.
Let s(l, j) ∈ {0, 1} represent whether tunnel l begins at
node j, and let d(l, j) represent whether tunnel l ends at
node j. These values are known a priori, so we can replace
these variables with their respective values while formulating a
specific problem. Now we can write the next set of constraints
which are essentially the flow conservation constraints. These
constraints guarantee that each tunnel has a set of connected
links in the network, starting and ending at its respective
overlay nodes.∑

i

xlij + s(l, j) =
∑
i

xlji + d(l, j), j = 1, ..., |N̂ |,

l = 1, ..., L (3)

We can see that the flow conservation constraints above
allows loops to be formed in the network. Unlike max-
flow type problems where loops can be removed in the post
processing without harming the feasibility, removing them in
our case can change the interference pattern of the tunnels.
Hence we need to add constraints to avoid formation of loops.

Similar problems arise in the ILP formulation of the Travel-
ling Salesman Problem (TSP). We use the technique originally

proposed by Miller-Tucker-Zemlink in [14] to resolve this
issue in TSP and add the following constraints:

uli − ulj + |N̂ |xlij ≤ |N̂ | − 1, ∀i 6= j, l = 1, ..., L. (4)

Here, the variables uli ≥ 0 is used to assign an order to each
node i in each tunnel l. If xlij = 1, then ulj ≥ uli + 1, so the
next node j is assigned a higher value than node i. Otherwise,
uli − ulj ≤ |N̂ | − 1. This ensures that there are enough values
to assign to all the nodes that the tunnel might pass through.

Finally we consider the interference constraints. For each
tunnel pair (k, l) we add a set of constraints depending on
whether tunnels k and l interfere with each other. If tunnels k
and l do not interfere we have the following constraints:

xkij + xlij ≤ 1, ∀i, j, and k, l : F (k, l) = 0. (5)

This ensures that two tunnels that do not interfere with each
are never assigned to the same link. If F (k, l) = 1, then both
the tunnels k and l must appear together in at least one of the
links. We enforce this with the following constraints∑

i,j

xkij ∧ xlij ≥ 1, ∀i, j, and k, l : F (k, l) = 1. (6)

Here “∧” is the logical AND operator, and these constraints
can also be transformed into a set of linear (integer) con-
straints.

The objective function along with the constraints (1) through
(6) give the required ILP for identifying a minimal network.
After solving the ILP, the graph can be recovered from the
links {i, j} for which xij = 1. A node that is not used by
any of the tunnels can simply be removed from the recovered
network.

B. Example

We consider a network where 6 underlay nodes are arranged
to form a 3× 2 grid, and an overlay node is attached to each
underlay node. The network uses the shortest path routing.
The 30×30 interference matrix F is generated by determining
whether two paths intersect with each other. We formulate the
ILP with |N̂ | = 12 then solve it using the Gurobi solver [16].
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(a) Original graph G.
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(b) Recovered graph Ĝ.

Fig. 2. Recovering a network topology by solving the ILP.

The original and the recovered network are shown in
Figure 2. The recovered network has fewer nodes and edges
than the original network. Link {7, 8} in the original network
is used only by tunnels (1, 8, 7, 4) and (4, 7, 8, 1) in different
directions. Hence there is no interference on this link, and



it can be removed without changing the interference matrix.
For the same reason, link {11, 12} can be removed to obtain
the minimal network. Even after the removal of the links, we
can see that the recovered network looks quiet similar to the
original.

C. Upper bound

We provide an upper bound on the solution to the ILP in
the previous section by using a simple algorithm given in
Algorithm 1. This algorithm produces a feasible solution to
the ILP by assigning two interfering tunnels to a new link in
Ĝ. This algorithm can be suboptimal because in an optimal
solution many tunnels can interfere at the same link.

Algorithm 1 FeasibleGraph(F ,O) for obtaining a feasible
network Ĝ

1) Create a graph Ĝ with |EF | edges in a line.
2) For each link {k, l} ∈ EF assign tunnel k and l to a

unique edge in Ĝ. All the tunnels traverse the line
graph in the same direction.

3) Connect links in Ĝ that have the same tunnel, if they
aren’t already connected, such that the tunnels form a
loop free path. This can require either a single link, or a
node and two links; see example in Figure 3.

4) Add nodes Ô = {ô1, ô2, ..., ô|O|} to Ĝ. Each node
ôi ∈ Ô corresponds to an overlay node oi ∈ O.

5) For each node ôi add a parent node p(ôi) and edge
{ôi, p(ôi)} to Ĝ.

6) For each tunnel l that starts at oi assign tunnel l to link
(ôi, p(ôi)).

7) For each tunnel l that ends at oi assign tunnel l to link
(p(ôi), ôi).

8) Complete the tunnels by connecting p(ôi) to the partial
tunnels formed in Step 3.

Algorithm 1 starts with a Ĝ that is a line graph with |EF |
edges, then maps each link in the interference graph GF to a
link in Ĝ. Each edge in GF represents two tunnels that pass
through the same edge in G, so if there is an edge between
tunnels k and l in GF , then tunnels k and l are assigned to
one of the links in Ĝ. When all the interferences are assigned,
it is likely that the same tunnel gets assigned to links that
are not attached to each other. In such a case, new links are
added to create complete tunnels. An example of this process
(Steps 1-3) is given in Figure 3. At the end of Step 3, all the
interference constraints are satisfied. Steps 4-8 add the overlay
nodes and makes sure that each overlay node is connected to
a single underlay node.

We give the following lemma to show that Algorithm 1
produces a feasible solution to the ILP. Then Theorem 1
establishes the upper bound on the number of links used by
this algorithm.

Lemma 1. Algorithm 1 obtains a feasible solution to the ILP
in Section 1.

Proof. The proof of this lemma is given in Appendix A.
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(a) Interference graph
for tunnels a, b, c and
d.

a
b
c
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d
Tunnels

(b) Ĝ after Step 2. Every pair of
interfering tunnels are assigned to
some link in the graph.

a
b
c

21 3 4 5

d
Tunnels

2

(c) Ĝ after Step 3. Tunnels that
are disconnected are connected us-
ing extra nodes and edges.

Fig. 3. Example of an execution of Steps 1 to 3 of Algorithm 1.

Theorem 1. The number of edges required for a feasible
solution of the ILP, |Ê| ≤ |EF |+ 2L|EF |+ |O|+ 2L.

Proof. The proof of this theorem is given in Appendix B.

D. Lower bound

We establish a lower bound on the number of edges in the
minimal graph using the properties of the interference graph.
In order to minimize the number of links, we want to assign as
many interfering tunnels as possible to the same link. However,
we cannot have two tunnels be assigned to the same link if
they don’t interfere with each other. This property is nicely
abstracted by the cliques in the interference graph GF . The
tunnels, represented by the nodes in GF , that are in the same
clique interfere with each other. So we can assign all of them to
the same link. A lower bound is given by the minimum number
of cliques required to cover all the links. For example, two
cliques are needed to cover all the edges of the interference
graph in Figure 3(a), so we need at least two links in Ĝ to
represent all the interferences. In graph theory the smallest
such set is known as the minimum edge clique cover1, and the
size of such set is known as the intersection number of the
graph [17]. Computing the minimum edge clique cover of a
graph is known to be NP hard so it might not be useful for
the purpose of comparing our solutions. However, in the next
subsection we will use it to derive conditions when a recovered
graph achieves the lower bound and guarantee optimality.

The following lemma presents the lower bound result in
terms of the number of directed links required to have a
feasible solution. Theorem 2 extends this result to the case
with undirected links, which is the setup in this paper.

Lemma 2. Let |ÊD| be the number of directed links required
for a feasible solution of the ILP. Let C be the size of the

1This is different from the minimum node clique cover which is the smallest
set of cliques required to cover all the nodes.



minimum edge clique cover for the interference graph GF .
Then |ÊD| ≥ C.

Proof. The proof of this lemma is given in Appendix C.

Theorem 2. Let |Ê| be the number of undirected links
required for a feasible solution of the ILP. Let C be the size
of the minimum edge clique cover for the interference graph
GF . Then,

|Ê| ≥ C

2
.

Proof. The proof of this theorem is given in Appendix D.

E. A sufficient condition for optimality

We give a condition under which a the recovered network
has the same number edges as the original network. When
this condition is satisfied, the interference pattern cannot be
achieved in a smaller network, so this result also provides
a sufficient condition for minimality of a network. We prove
this result by showing that if the condition is satisfied, then the
recovered network achieves the lower bound developed in the
previous subsection. We use this result in the subsequent sec-
tions to show that our polynomial time algorithms optimally
solve the ILP for special networks.

The main result of this subsection says that a given network
is minimal if every directed edge in the network is associated
with a unique interference (interfering pair of tunnels). Intu-
itively, this condition seems reasonable because if it is satisfied
then each directed link in the graph creates a unique clique in
the minimum edge clique cover of the interference graph.

Lemma 3. The size of the minimum edge clique cover of GF ,
C = 2|E| if and only if for each directed edge (i, j) there
exists a pair of tunnels kij and lij such that they intersect at
link (i, j) and nowhere else.

Proof. The proof of this lemma is given in Appendix E.

Theorem 3. Let C be the size of the minimum edge clique
cover for the interference graph GF . Let Ĝ∗(N̂∗, Ê∗) be the
optimal network obtained by solving the ILP. If every directed
link (i, j) ∈ E has a pair of tunnels kij and lij such that they
intersect at link (i, j) and nowhere else, then Ĝ∗ has the same
number of edges as the original network, i.e. |Ê∗| = |E|.

Proof. The proof of this theorem is given in Appendix F.

Note that this theorem provides a sufficient condition but
it may not be necessary. That is, there may be graphs where
C < 2|E| but the ILP still produces a graph with |E| edges.
Also, if the number of edges in the optimal network obtained
by solving the ILP is the same as the original network, then
we know that the both the networks are minimal. Hence, we
can use the condition in the theorem as a sufficient condition
for minimality of a network.

Corollary 1. A network G(N,E) is minimal if every directed
link (i, j) ∈ E has a pair of tunnels kij and lij such that they
intersect at link (i, j) and nowhere else.

IV. IDENTIFYING TREES

We design a polynomial time algorithm to recover a tree
network. If G is a minimal tree, i.e. every non leaf nodes
have at least three neighbors and all the leaf nodes are overlay,
then this algorithm recovers the tree exactly. A similar result
on recovering trees by using distance between the leaf nodes
is given in [12], however, the algorithm of [12] requires the
network to be minimal. In the situation when the network G
is a non-minimal tree, our algorithm produces a Ĝ that is a
minimal tree corresponding to G since both the networks have
the same F matrix. Note that there is a unique minimal tree
corresponding to each non-minimal tree which can be obtained
by using the process discussed in Section II-C.

A. Algorithm

The tree identification algorithm is given in Algorithm 2.
The algorithm uses the interference matrix F to obtain a tree
graph Ĝ with the same F . It begins by initializing the graph
Ĝ and checking for terminating conditions in Steps 1 to 3. In
Step 4, the algorithm identifies a node k∗1 such that when all
its siblings along with itself are removed, its parent becomes
a leaf node. This property will later help us compute a new
F matrix of the reduced graph. In Step 5, this algorithm finds
a group of nodes Xk∗ that consists of all the sibling nodes of
k∗1 . Procedure 3 is used to identify such nodes; see Lemma 5
for proof. These nodes are then added to the recovered graph
Ĝ in Step 6 by assigning then a common parent node, p(X∗k).

Steps 7 removes the sibling nodes in X∗k from the original
network G. Since the graph G is not available, the removal is
done indirectly by removing the corresponding tunnels from
the F matrix. Note that node k∗1 is not removed, instead it
is renamed as the parent of the group p(X∗k) in Step 8. This
works because when all the siblings of k∗1 are removed, the
interference of the tunnels that start or end at k∗1 is the same as
the tunnels that start or end at its parent node. The algorithm
is iteratively applied to the reduced F matrix until only one
or two leaf nodes remain.

An example of the graphs created after the first and the
second iterations of this algorithm are shown in Figure 4. In the
first iteration, Step 4 identifies one of the tunnels that intersect
with the most number of other tunnels, (5,...,1). So X∗k =
{5, 6, 7} in obtained in Step 5. This avoids obtaining sibling
groups such as {3, 4}, which when removed does not make
their parent a leaf node. Step 6 produces the Ĝ shown in Figure
4(c), and Steps 7 and 8 result in the reduced tree shown in
Figure 4(b). The F matrix of the reduced tree is obtained by
removing all the tunnels with nodes 6 and 7, then renaming
node 5 to the parent node p(5, 6, 7). Similarly the result of
the second iteration is shown in Figures 4(d) and 4(e). Since
there is only one group of siblings left in the graph after this
iteration, the third iteration results in the G with only one
node. Also, the third iteration produces the Ĝ that is identical
to the original graph in Figure 4(a).



Algorithm 2 IdentifyTree(F ,O) for recovering a tree network

1) Add the nodes in O to Ĝ.
2) If |O| = 1 return Ĝ .
3) If |O| = 2, add an edge between the two nodes in Ĝ and

return Ĝ .
4) Identify the tunnel k∗ that interferes with the largest

number of other tunnels, k∗ = argmaxk
∑

l Fkl. Let k∗1
be the first node of tunnel k∗.

5) For each node i ∈ O, use Procedure 3 to decide whether
it has the same parent as k∗1 . Let Xk∗ be the set of nodes
that successfully pass the test.

6) Add a new node p(Xk∗) to Ĝ. Connect p(Xk∗) to the
nodes in Xk∗ in Ĝ.

7) For each node i ∈ Xk∗ , i 6= k∗1 :
• Remove rows and columns corresponding to all the

tunnels starting or ending at i from F .
• Remove node i from O.

8) Rename node k∗1 to p(Xk∗) so that any tunnel in F start-
ing or ending at k∗1 starts or ends at p(Xk∗) respectively.

9) Goto Step 2.
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the second iteration.

Fig. 4. First two iterations of the tree identification algorithm. The third
iteration (not shown) recovers the complete graph in Figure 4(a).

B. Analysis

In order to prove that Algorithm 2 obtains the minimal tree,
we first show that Step 4 identifies a node k∗1 whose parent
becomes a leaf node when we perform the node removal in
Step 7. In Step 8 of the algorithm, this allows us to use the
interference properties of the tunnels starting or ending at k∗1
to obtain the interference of the tunnels of the parent node.

Lemma 4. Let l = (l1, l2, ..., l|l|) be the tunnel that interferes
with the largest number of other tunnels. When all the leaf

nodes connected to l2 are removed, l2 becomes a leaf node in
the resulting graph.

Proof. The proof of the lemma is gven in Appendix G.

The following lemma shows that Procedure 3 identifies the
nodes that share the same parent. The main idea behind the
proof is that a path between two nodes that share the same
parent interferes with only the tunnels starting or ending at
these nodes.

Lemma 5. Two leaf nodes of a tree i and j share the same
parent if and only if the tunnel from i to j does not interfere
with any tunnel l such that l1 6= i or l|l| 6= j.

Proof. The proof of this lemma is given in Appendix H.

Procedure 3 AreSiblings(F , i, j) for checking whether two
nodes i and j share the same parent

1) Let k be the tunnel going from node i to j.
2) For each tunnel l in the network:

If Fkl = 1 and l1 6= i and l|l| 6= j
Nodes i and j don’t share the same parent.
Return.

3) Let k be the tunnel for j to i and repeat Step 2.
4) Nodes i and j share the same parent.

Now we prove the following theorem that shows that the
algorithm recovers the minimal tree network.

Theorem 4. If a given network G is a minimal tree, then
Algorithm 2 recovers the network.

Proof. The proof of this theorem is given in Appendix I.

Note that not only the recovered graph Ĝ is isomorphic to
G, the relative positions of the overlay nodes are the same.
That is if the overlay nodes i and j share the same parent
in G, they also share the same parent in Ĝ. Also, because of
the fact that the F matrix for a non minimal tree is the same
as that of the minimal version of the tree, and the minimal
tree is unique for any non-minimal tree, we get the following
corollary.

Corollary 2. If a given network G is a non-minimal tree, then
the tree Ĝ recovered by Algorithm 2 is the unique minimal tree
for G.

The following corollary states that the graph generated by
the tree algorithm solves the ILP optimally. This is true simply
because all minimal trees satisfy the condition of Theorem 3.

Corollary 3. If the interference pattern in a F matrix can be
represented in a tree, Algorithm 2 produces a Ĝ that solves
the ILP optimally.

Note that even when G is not a tree, Algorithm 2 can
produce a tree as long as the interference can be represented
by a tree. However if the interference pattern cannot be
represented by a tree this algorithm will either fail Step 4, or



the algorithm terminates but the recovered Ĝ has a different
interference matrix than F .

V. IDENTIFYING RINGS

We now consider a situation when the F matrix cannot be
represented in a tree. Specifically we consider a graph G where
the underlay nodes are arranged in a ring, and each underlay
node is attached to exactly one overlay node. Also, we will
assume that the network uses a shortest path routing algorithm,
hence, the tunnels take the shortest paths between the overlay
nodes. If the F matrix can be represented in a ring, our
algorithm identifies the order of the overlay nodes. Note that
knowing the order of the nodes gives more information than
just recovering isomorphic graphs, e.g. in [11]. Just like the
tree discovery algorithm in the previous section, this algorithm
can also be used to show that a particular network is not a ring.

A. Algorithm

The ring identification algorithm is given in Algorithm 4.
This algorithm builds the ring in an incremental fashion. First,
in Step 1 an overlay node i and its parent node p(i) are added
to Ĝ. The key idea behind the algorithm is in Step 2. It uses
the F matrix to identify two overlay nodes in the ring that
are closest to node i, i.e. two nodes such that their parents are
neighbors of p(i). In Steps 3 to 5 we attach the two nodes to
their parents, and connect the parents to p(i).

Algorithm 4 IdentifyRing(F ,O) for recovering a ring net-
work
For each overlay node i ∈ O:

1) If i is not in Ĝ, add two nodes i and p(i) to Ĝ. Add an
edge {i, p(i)} to Ĝ.

2) Identify two tunnels starting at node i that interfere with
the least number of other tunnels. Call these tunnels k∗

and l∗.
3) If node k∗|k∗| is not in Ĝ, add two nodes k∗|k∗| and p(k∗|k∗|).

Add edge {k∗|k∗|, p(k
∗
|k∗|)}.

4) Add edge {p(i), p(k∗|k∗|)} to Ĝ if it doesn’t exist.
5) Repeat Steps 3 and 4 for node l∗|l∗|.

B. Analysis

We will show that Algorithm 4 is guaranteed to recover the
correct ring if |O| ≥ 5. For |O| = 3, any ordering of the
nodes is the same because the network links are bidirectional,
so, using the algorithm is unnecessary. The algorithm might
not produce the correct result for the a network with |O| = 4
if the tunnels between the nodes in opposite sides pass through
the same set of nodes. The networks in both of these situations
with 3 or 4 overlay nodes in a ring are not minimal.

Lemma 6. Let G be a graph where the underlay nodes are
arranged in a ring, and each underlay node is connected to
exactly one overlay node. Let |O| ≥ 5. Let i and j be two
overlay nodes and l be the tunnel from i to j. Underlay nodes

p(i) and p(j) are neighbors if and only if tunnel l interferes
with the fewest number of other tunnels.

Proof. The proof of this lemma is given in Appendix J.

Algorithm 4 identifies overlay nodes whose parent nodes
are neighbors and pieces them together into a ring. Hence,
Theorem 5 follows directly from the lemma above.

Theorem 5. If the given network G is a minimal ring,
Algorithm 4 recovers the network.

Similar to the tree identification algorithm, this algorithm
will produce a corresponding minimal ring if the original
network is a non-minimal ring. This is true because both the
rings have the same F matrix. Also, because a minimal ring
satisfies the sufficient condition for minimality, this algorithm
optimally solves the ILP for ring networks. Hence we get the
following two corollaries.

Corollary 4. If a given network G is a non-minimal ring
with |O| ≥ 5, then the ring Ĝ recovered by Algorithm 4 is the
unique minimal ring for G.

Corollary 5. If the interference pattern in the F matrix with
|O| ≥ 5 can be represented in a ring, Algorithm 4 produces
a Ĝ that solves the ILP optimally.

VI. IDENTIFYING GENERAL NETWORKS

Inspired by the algorithms for identifying trees and rings
in the previous sections, we develop a scheme for identifying
general networks. A network can consist of trees and rings
connected to each other. Our algorithm assumes that the
network uses shortest path routing, and attempts to separate the
trees from the rest of the graph, and identify these components
separately. We will use Algorithm 2 for recovering the trees,
and we will design a new algorithm inspired by Algorithm
4 for the non-tree components. Finally we will combine the
discovered components to obtain the full network. This scheme
is largely a heuristic, hence, we will compare its performance
against another algorithm that also discovers general graphs.

A. Algorithm

We first present Algorithm 5 which is designed to recover a
graph where every underlay node is part of one or more cycles
and only one overlay node is attached to each underlay node.
The algorithm works in similar fashion as the ring recovery
algorithm from the previous section. The difference is that
now each underlay node can have more than two underlay
neighbors. So, for each overlay node i, the algorithm attempts
to find all the overlay nodes whose parents are neighbors
of p(i). For clarity, we present this part of the algorithm
separately in Procedure 6.

The main idea behind Procedure 6 is shown in an example
in Figure 5. For Node 1, the procedure first identifies two
neighbors of p(1) using the tunnels that start at 1 and intersects
with the fewest number of other tunnels. The intuition behind
this is the same as the ring algorithm from the previous
section, however, when there are more than one rings, it is not



guaranteed that the shortest tunnels have the fewest number
interferences. It is possible that the tunnel (1,...,5) intersects
with the same number of tunnels as (1,...,3). After identifying
the two neighbors, the procedure avoids any tunnels that pass
through these neighbors and identifies other shortest tunnels.

p(2) p(5)

p(1)

1

p(3)

3

p(4)

4

2 5

Fig. 5. Example of Procedure 6 at work. Node p(1) has three neighbors
p(2), p(3) and p(4). Procedure 6 first attempts to identify two nodes, e.g.
2 and 4, by minimizing the number of tunnel intersections. Then node 3 is
identified by using the property that tunnel (3,...,1) doesn’t interfere with the
tunnels (2,...,4) or (4,..,2).

Algorithm 5 IdentifyRings(F ,O) for recovering a non-tree
network
Initialize Ĝ to empty graph.
For each overlay node i ∈ O:

1) Obtain the to neighboring nodes, R = allNeighbors(i).
2) For each r ∈ R:

a) If node r is not in Ĝ add nodes r and p(r) and edge
{p(i), p(r)} to Ĝ.

b) Add edge (p(i), p(r)) to Ĝ if it doesn’t exist.

Procedure 6 allNeighbors(F ,O, i) for finding all j such that
p(i) and p(j) are neighbors

1) Identify two tunnels starting at node i that interfere with
the least number of other tunnels. Add the end nodes of
these tunnels to set R.

2) For each n ∈ (O\R), find a tunnel k = (1, ..., n) such
that it interferes with the fewest number of tunnels and
does not interfere with any tunnel l such that l1, l|l| ∈ R.

3) If tunnel k exists, add k|k| to R and goto Step 2.
4) Return R.

Finally, we present Algorithm 7 for identifying networks
with multiple rings and trees. In Step 2, this algorithm identi-
fies sets of overlay nodes that could be a part of a tree using
Procedure 3. Step 2(i) identifies the siblings, X , of node i.
Step 2(ii) obtains the siblings of all the nodes in X . If j is
a sibling of i, then i must also be a sibling of j. Using this
property, Step 2(iii) attempts to reduce false positives. Step
2(iv) adds the nodes that are identified as part of a tree into
the set of existing nodes. If some part of the tree containing
the nodes in S have already been identified, then these nodes
must have one node in common with S, i.e. S′ exists. In such
a case, nodes in S is added to S′, otherwise S is added as a
new element C. The tunnels belonging to all but one node in

S are removed from F , and Step 2 is repeated on this new
interference matrix. The completion of Step 2 produces the set
C such that each element of C is a set of nodes that belong to
the same tree.

Step 3 of the algorithm retrieves the original F matrix. Then
in Step 4, Algorithm 2 is used on the elements of C to discover
their corresponding trees. If the tree identification algorithm
completes successfully, then all but one of the overlay nodes
belonging to the tree are removed from the F matrix. The node
that is not removed acts as an anchor node while combing the
trees and the rest of the graph. In Step 5, the resulting F matrix
is then used in Algorithm 5 to recover the non-tree part of the
graph. In order to combine a tree with the non-tree graph, in
Step 6, the anchor node corresponding to the tree is found in
the graph. Then in Steps 6(ii) and 6(iii), attempts are made
to connect the tree to the anchor node at different locations
in tree. The algorithm keeps the connection that minimizes
the difference between the interference matrix of the resulting
graph Ĝ and the original F matrix.

B. Simulation result

We compare the performance of Algorithm 7 against that of
RGD1 algorithm from [11]. For the implementation of RGD1,
we obtain the exact length of each path by using a shortest
path algorithm. All links are assumed to have unit length. We
choose the parameter Rg+ τ to be 4. We also tried the value
of 3 and 5 for this parameter, however, the performance was
not as good.

The graphs used to obtain the data for the simulation were
generated to be similar to the random graphs considered in
[11]. We first generate an Erdős-Rényi random graph with
parameters G(n, 2/n). Then we find the largest connected
component of the graph, and remove all the other nodes that
do not belong to this component. We then attach overlay nodes
to 80% of the remaining nodes uniformly at random. Finally,
we remove any underlay nodes that have degree less than 3
by using the process discussed in Section II-C. We generate
100 networks for each value of n, where n = 10, 20, ..., 50
and obtain the measurements required for both algorithms:
distances for RGD1 and the F matrix for our algorithm.
Finally, we use the measurements to recover the graphs.

The performance of the two algorithms was measured by
computing the edit distance between the original graph G and
the recovered graph Ĝ. Edit distance measures the number
of links in Ĝ that needs to be added or removed in order
to make it isomorphic to G. This metric is similar to the
metric used in [11] to obtain the asymptotic bounds of RGD1.
Unfortunately, calculating the graph edit distance is an NP-
hard problem, so we use an open source tool called GEDEVO
[21] to approximate it.

The results of the simulations are given in Figure 6. Figures
6(a) and 6(b) show the performance of the two algorithms for
each of the 100 graphs that were generated. We can see that in
most of the cases, our algorithm outperforms RDG1. Figure
6(c) shows the average performance of the two algorithms



Algorithm 7 IdentifyGeneral(F ,O) for recovering general
networks
Initialize Ĝ to empty graph.

1) Let C be an empty set. Let F ′ = F .
2) For each i ∈ O :

i. Use Procedure 3 to find the set of nodes that share
the same parent as i. Let X be the set.

ii. For each j ∈ X use Procedure 3 to find the set of
nodes that share the same same parent as j. Let Xj

be the set.
iii. Let S = X ∩ (∩jXj)
iv. If |S| > 1,

a) Let S′ ∈ C be a set of nodes such that S′∩S 6= {}.
b) If such S′ exists, S′ := S′ ∪ S. Otherwise, C :=
C ∪ {S}

c) Let x be an arbitrary node in S. Let S := S\{x}.
d) Remove tunnels l from F if l1 ∈ S or l|l| ∈ S.

Let O := O\S.
e) Restart Step 2.

3) Let F := F ′.
4) For each S ∈ C:

i. Use Algorithm 2 on the nodes in S. Let T be the
corresponding tree.

ii. If the algorithm fails to produce a tree, continue.
iii. Remove tunnels l from F if l1 ∈ S or l|l| ∈ S. Let
O = O\S.

5) Use Algorithm 5 on the remaining F to obtain Ĝ.
6) For each tree T ∈ T :

i. Find the overlay node i that is common to T and Ĝ.
ii. For each underlay node j of T , add T to Ĝ by

replacing i in Ĝ by node j of the tree. Calculate
the interference matrix for each j.

iii. For each underlay node j of T add T to Ĝ by
replacing p(i) in Ĝ by node j of the tree. Calculate
the interference matrix for each j.

iv. Keep the Ĝ that produces the interference matrix
closest to F in Steps ii and iii.

across different values of n. Again, we can see that our
algorithm outperforms RGD1.

VII. CONCLUSION

We developed a new method for discovering the topology
of a network. It uses the path interference information, which
can be obtained by using the measurements available at the
end nodes. Using the path interference, we formulated an
integer linear program that finds a minimal graph that can
contain all the interferences. We then developed polynomial
time algorithms that solve the ILP for the special cases when
the network is a tree or a cycle. Finally, we developed a
heuristic for identifying general networks and compared its
performance to a well known algorithm. Future research in
the area will focus on developing better heuristics for general
networks and providing performance guarantees.
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Fig. 6. Comparison of Algorithm 7 and RGD1.
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APPENDIX A
PROOF OF LEMMA 1

Steps 5 satisfies Constraint 2. Constraints 3 and 4 are
satisfied because the initial graph formed in Step 2 is a
line, and the rest of the steps never create branches or rings.
Constraints 5 and 6 are satisfied because each interaction in
the interference graph, i.e. the F matrix, is represented in one
of the links in Ĝ, and two tunnels that do not interfere are
never assigned to the same link.

APPENDIX B
PROOF OF THEOREM 1

Lemma 1 shows that Algorithm 1 obtains a feasible solution.
We need to establish the upper bound to prove the theorem.
Step 1 of the algorithm adds |EF | edges to Ĝ. The number
of edges added by Step 3 in the worst case is upper bounded
by 2L|EF | because each tunnel can require a maximum of
2|EF | extra edges. Step 5 adds |O| edges, and Step 8 can add
a maximum of 2L edges. Hence we get the required upper
bound.

APPENDIX C
PROOF OF LEMMA 2

A clique q in the minimum edge clique cover of a graph
has at least one unique edge, i.e. an edge that is not a part
of any other cliques. If this was not the case, then we can
obtain a cover with fewer cliques simply by removing clique
q. Because each edge represents an interference, each unique
edge must be assigned to a different link in Ĝ.

If |ÊD| < C, then two unique edges of the interference
graph have been assigned to the same edge of Ĝ. This contains
at least two tunnels that do not interfere with each other which
violates the interference constraints in the ILP.

APPENDIX D
PROOF OF THEOREM 2

Given a graph with directed edges, we consider the problem
of assigning the same tunnels in an undirected network. If
every edge in the directed network is used by the tunnels in
both direction, then |ÊD| = 2|Ê|. That is links (a, b), (b, a) ∈
ÊD become a single link {a, b} ∈ Ê. However, in the directed
network, some of the links can be used only in one direction.
Hence, |ÊD| ≤ 2|Ê|. The result follows directly from Lemma
2.

APPENDIX E
PROOF OF LEMMA 3

First we show that if there exists tunnel pairs kij and lij

that intersect at link (i, j) and nowhere else, then C = 2|E|.
We know that G provides a feasible solution to the ILP, hence
from Theorem 2, C ≤ 2|E|. Also, the interference graph GF
has a clique corresponding to each directed edge in G as long
as some flows intersect in this link. It is sufficient to show that
if the condition is satisfied then each clique in GF corresponds
to a unique link G.

Let Qij be the clique corresponding to the directed link
(i, j). Qij has a link between the nodes kij and lij , and this
link is not part of any other clique. Hence, Qij must be a
clique in the minimum edge clique cover. This shows that
there is one to one correspondence between the cliques in the
minimum edge clique cover of GF and the links of G.

Next we show that if C = 2|E| then there exist tunnel pairs
kij and lij that intersect at link (i, j) and nowhere else. Let
Lij be the set of all the tunnels that pass through at link (i, j).
Note that Lij must have at least two tunnels because if Lij

has less than two tunnels then there is no clique corresponding
to link (i, j) giving C < 2|E|.

For contradiction, assume that every pair of tunnels (k, l) ∈
Lij also intersects at some other link (xkl, ykl) ∈ E. Now we
can consider a set of cliques corresponding to every link in
the network other than link (i, j) and cover all the edges in
the interference graph giving C < |E|.

APPENDIX F
PROOF OF THEOREM 3

We know from Theorem 2 that C ≤ 2|Ê∗|. We also know
that the original network provides a feasible solution to the
ILP, so |Ê∗| ≤ |E|. Hence,

C ≤ 2|Ê∗| ≤ 2|E|.

By Lemma 3, when the condition in the theorem statement
is satisfied C = 2|E|. Hence by a sandwiching argument
|Ê∗| = |E|.

APPENDIX G
PROOF OF LEMMA 4

The proof is by contraction. Assume that l interferes with
the most number of other tunnels, but when all the siblings
of l1 are removed l2 is not a leaf node. Because of this
assumption, l2 has at least one neighbor node n 6∈ l such
that n is not a leaf node as shown in Figure 7. Since G is a
minimal tree the subtree of n, formed by removing the link
(n, l2), has at least two leaf nodes n1 and n2.

Consider a graph G′ formed by removing the neighbors of
node n other than l2. In this graph, because of symmetry, a
tunnel from n to l|l| interferes with the same number of tunnels
as l. Clearly, in graph G, the tunnel from n1 to l|l| interferes
with more tunnels because in addition to all the tunnels that
the path from n to l|l| interferes with it also interferes with
the tunnel from n1 to n2. This leads to a contradiction.

http://www.gurobi.com/
http://gedevo.mpi-inf.mpg.de/
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Fig. 7. If tunnel l interferes with the most number of tunnels then all the
nodes connected to l2 must be leaf nodes. Otherwise, there exists a tunnel
(n1, n, ..., l|l|) that interferes with more tunnels than tunnel l.

APPENDIX H
PROOF OF LEMMA 5

If i and j share the same parent, the path from i to j contains
only two links (i, p(i)) and (p(i), j). None of the tunnels that
don’t start in i or end in j use these links, hence no such
tunnels l intersect with the tunnel from i to j.

If i and j do not share the same parent, p(i) must be
connected to a leaf node i′ in the subgraph obtained by
removing the link {l2, l3}. Similarly p(j) must be connected
to a leaf node j′ in the subgraph obtained by removing the
link {l|l|−2, l|l|−3}. The tunnel connecting the nodes i′ and j′

intersects with the tunnel connecting i and j.

APPENDIX I
PROOF OF THEOREM 4

We will need one more lemma before proving the main
theorem. This lemma simply uses Lemma 5 to show that Step
5 identifies the correct set of nodes.

Lemma 7. Consider the set of nodes Xk∗ obtained in Step 5
of Algorithm 2. A leaf node i is in Xk∗ if and only if i shares
the same parent as k∗1 .

Proof. By Lemma 5, node i and k∗1 pass the test of Algorithm
3 if and only if they share the same parent. Step 3 collects all
the nodes that pass the test into Xk∗ and ignoring any node
that doesn’t. Hence, we obtain the required set Xk∗ .

A. Proof of Theorem 4

By Lemmas 4 and 7 we can see that Steps 5 and 6 identify
a group of sibling nodes such that removing them makes their
parent a leaf node. Steps 7 and 8 produce a the F matrix of
a tree with the siblings of k∗1 pruned. The new F matrix so
formed corresponds to the such a tree because interference
of tunnels starting or ending on the node p(k∗1) is exactly
the same the tunnels starting or ending at node k∗1 when its
siblings are removed. Meanwhile, the pruned portion tree is
recreated in Ĝ at every iteration of Step 5. Hence, when all
the nodes in G are removed, the complete graph is created in
Ĝ.

APPENDIX J
PROOF OF LEMMA 6

Let O = {1, 2, ..., n} where n = |O|. Assume that the
correct ordering of the nodes in the ring is p(1), p(2), ..., p(n).
We want to show that tunnels from node 1 to 2 and 1 to n
intersect with fewer tunnels than any other tunnel that start at
node 1.

We begin by showing that the tunnel (1, ..., 2) intersects
with fewer tunnels than tunnel (1, ..., 3). These tunnels share
the links (1, p(1)) and (p(1), p(2)). So any tunnel passing
through these links intersect with both the tunnels. Also,
because of symmetry, the number of tunnels intersecting with
tunnel (1, ..., 2) only at link (p(2), 2) is equal to the number
of tunnels intersecting with tunnel (1, ..., 3) only at link
(p(3), 3). The tunnel (2, ..., 4) does not intersect with tunnel
(1, ..., 2) however it intersects with tunnel (1, ..., 3) only at
link (p(2), p(3)). Hence tunnel (1, ..., 3) intersects with at least
one more link than tunnel (1, ..., 2). Clearly, any longer tunnel
starting at node 1 must interfere with even more tunnels.

The ring has at least 5 nodes and the network is using the
shortest path routing, so we can apply the same argument as
above to show that to show that (1, ..., n) also intersects with
the fewest number of tunnels among the tunnels starting at
node 1 and passing through link (p(1), p(n)). Since all tunnels
that start at node 1 has to pass through either p(n) or p(1),
these two tunnels must be the ones that intersect with the
fewest other tunnels that start at node 1.

Because of symmetry this property holds for tunnels starting
at every node in the network. This completes the proof.
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