978-3-901882-89-0 @2017 IFIP

Cloudified Mobility and Bandwidth Prediction in
Virtualized LTE Networks

Zhongliang Zhao!, Morteza Karimzadeh?, Torsten Braun', Aiko Pras?, Hans van den Berg??3

YUniversity of Bern, Switzerland, *University of Twente, The Netherlands
3Netherlands Organization for Applied Scientific Research (TNO)
Email:{zhao, braun} @inf.unibe.ch, {m.karimzadeh, a.pras, j.l.vandenberg} @utwente.nl

Abstract—Network Function Virtualization involves imple-
menting network functions (e.g., virtualized LTE component) in
software that can run on a range of industry standard server
hardware, and can be migrated or instantiated on demand. A pre-
diction service hosted on cloud infrastructures enables consumers
to request the prediction information on-demand and respond
accordingly. In this paper we introduce MOBaaS, which is a
network function of Mobility and Bandwidth prediction cloudified
over the cloud computing infrastructure. We implemented the
service orchestration framework of MOBaa$S, which can easily be
setup and integrated with any other cloud-based LTE entities to
provide prediction information about the future location of mobile
user(s) as well as the network link(s) bandwidth availability. This
information can be used to generate required triggers for on-
demand deployment or scaling-up/down of virtualized network
components as well as for the self-adaptation procedures and
optimal network function configuration. We also describe the
performance evaluation of the MOBaaS cloudification procedures
and present an example of the benefit of such a prediction service.

I. INTRODUCTION

Long Term Evolution (LTE) as the fourth generation (4G)
cellular system is capable of providing high data rates as
well as support of high-speed mobility. Even though LTE
promises a faster and more efficient mobile data network, its
core network architecture is still highly hierarchical, leading
to high bandwidth requirement and processing load on core
network nodes. The straightforward and short-term solution to
cope with these issues, may consist of operators investment
to upgrade the resources and build a scalable architecture
to handle the bandwidth-intensive mobile applications more
efficiently. This approach is technically and technologically
feasible. However, the network operators mostly desire to stand
for the cost-effective solutions.

The huge appreciation received by cloud computing tech-
nologies in latest years motivated mobile network operators to
plan the adoption of Network Function Virtualization (NFV)
in their network to meet the increasing mobile traffic demands.
In this regard, cloudification of the LTE [1] aims to integrate
the use of cloud computing concepts in the LTE network with
the objective of increasing LTE’s performance by building
a shared distributed mobile network while optimizing the
utilization of computation, storage and networking resources.
This can be realized by implementing and running the LTE’s
components — i.e., E-UTRAN (Evolved UMTS Terrestrial Ra-
dio Access Network) and the EPC (Evolved Packet Core) —
over distributed cloud computing data centers (Fig. 1). The

517

most important benefits of this approach are the support of
on-demand deployment, provisioning, disposing of virtualized
LTE system components, the support of resource allocation
both on-demand and dynamically.

|
} Data Center }
RAN

} aas EPCaaS ’ |
@ @ |

|
|
Mobile } Radio Access Core }

Network —

End User } Network Current Cloud }
} Computing |
| e e > }
|

Fig. 1: A view of cloudified LTE network system.

Generally, the duration of deploying, scaling, or migration
of Virtual Machine (VM) are higher than the acceptable delay
for the communication of a subscriber (e.g., booting up of
a VM may take 10-20s, but a hand over is lost after 30-
50ms in LTE). Therefore, to give enough time for the system
to adapt to guarantee the desirable quality of service, an
appropriate mechanism other than reacting to metered values
by the monitoring system is required. Prediction approach in
order to estimate the system change state in the future, is one
of the key mechanism that can be used to trigger the decision
making process.

In [2] we proposed a software architecture entitled as
MOBaaS (Mobility and Bandwidth Prediction as a Service),
encompassing two algorithms that can provide prediction
information about the user(s) mobility and link bandwidth
availability in a particular future moment. Estimation of both
the algorithms rely on a significant amount of user’s mo-
bility or network link’s bandwidth usage historical informa-
tion. The prediction information provided by MOBaaS can
be interpreted as an estimation of geographic and temporal
traffic distribution in a network, which are key parameters for
realising the Virtualized Network Functions (VNF) and smart
city applications.

In the paper we extend our previous works by threefold: (i)
we present in detail the MOBaaS’s implementation architecture
that can be readily integrated with any other virtualized LTE
component to provide prediction information; (ii) we develop
an framework to implement a fully cloudified MOBaaS, which
can provide prediction services on-demand such that it can
easily be instantiated, deployed and disposed in a cloud infras-
tructure; (iii) we verify the MOBaaS cloudification operations
and analyze its functional and non-functional performance.

518

The remainder of the paper is organized as follows. Section
II describes briefly a few applications of prediction information
and presents the motivation for the MOBaaS. The internal
components of the MOBaaS implementation architecture is
described in Section III. Section IV details the technical
implementation components of the MOBaaS cloudification
reference architecture. Section V presents the cloudification
performance evaluation results. Finally, the paper ends up with
conclusion in Section VI.

II. RELATED WORK

Predicting mobile users locations at any time moment in
the future is essential for a wide range of mobile applications,
such as location-based services, mobile access control, mobile
multimedia QoS provision, as well as the resource management
for mobile network operators and cloud storage.

A variety of mobility prediction systems have been pro-
posed. However, most of them focus on using cloud computing
platform to provide storage and computing resources [3]. Liang
et al. have been developed a mechanism to address a prediction
problem in a personal communication service networks based
on user’s location, movement history, movement pattern, ve-
locity, etc [4]. However, most of the works focus on providing
an isolated prediction framework, which can not be utilized by
other network services. Few efforts have been made to provide
mobility prediction as a virtualized network function (VNF)
for the virtualized LTE network. In a cloudified LTE system,
different virtualized services might also need the mobile users
location information to optimize network performance. As an
example, Follow-Me Cloud concept and Information Centric
Network (ICN) could benefit from the mobility prediction
information to (re)place the content closer to locations that
users will visit in the future [5].

In this work, we present Mobility and Bandwidth prediction
as a service - a new service model of telecom operator cloud
that enhances the telecom cloud with mobility prediction ca-
pacity. We explain MOBaaS via describing the service lifecycle
of an on-demand, elastic, and pay-as-you-go mobility predic-
tion service instantiated on top of the cloud infrastructure.
MOBaaS service life-cycle management is a process of net-
work design, deployment, run-time management, and disposal
that allows to rapidly architect, instantiate, and reconfigure the
network components and their associated services.

III. MOBAAS ARCHITECTURE

Given the above description, a MOBaaS cloudification
implementation architecture needs to fulfill the following re-
quirements:

e An efficient algorithm to predict the user(s) mobility
availability and network link(s) bandwidth availability.

e A reference architecture that the MOBaaS can be eas-
ily integrated with other virtualized LTE components
to retrieve the input data for the prediction algorithms
or to provide the prediction results.

e An orchestration framework that manages the
MOBaaS service instantiation, deployment, and dis-
posal on-demand on a cloud infrastructure.

In [2], we discussed and evaluated the user(s) mobility and
network link(s) bandwidth availability prediction algorithms
comprehensively. In this section we detail the proposed refer-
ence architecture for the MOBaaS and present the composing
entities and their functionalities. In Section IV we describe
the orchestration framework and present its components for
the MOBaaS cloudification process.

I e | e s

| Storing Tracing | =
I Gonsumer Jl | Predicted Data Input Data | 8
Rl ——'®n
Requests/ Register/ J)— Requests (];
MOBaaS Answers Trigger IAnswers
r—-—-——">"~>"""~"~>""~>""T~"~""~>~"~"~"~""T7~"~"~"~>™"™>"~™"7° -1
| ° MOBaaS ! |
| |3 sl Incoming Data |
=) Meta Info
— || 3¢ —>0—{ Frontend History Data |
O § 2) Retriever |
Sa > o2 Missing
| [=° 2 86 Data Request |
o [} H 55
e e — Request |
o 1] %
=] | g by Queue |
=4
o | |
o |
T | WP, BP. |
o
3 il g, B == |
lol]lag /[Datatormp | [patatorse |[Raw || [Data || I
1] 25 | algorithm algorithm Data Convertor |
1 5o
| 2 : ¥ Local Storage ! |
gj - IR R [SO Wit pais S % ,,,,,,, |
' |

Fig. 2: MOBaa$ implementation architecture.

Fig. 2 shows the MOBaaS Service Instance (SI) and the
MOBaaS internal components. The internal components are
included in the Service Instance Components (SIC). The roles
of each components are listed below:

e Frontend: It works as the interface towards service
consumers. If there is a prediction request whose
required input information is currently not available,
the frontend stores the request in the Request Queue,
and that request will be postponed until the missing
data becomes available. If the request can be met,
it will starts the prediction algorithm threads. It
also handles the trigger-based prediction. In this
case, it periodically calculates future states of users’
movements and network links bandwidth and stores
the prediction information in MaaS (Monitoring as a
Service). This data is used later to trigger a consumer
for a particular decision making procedure.

e M.P: It presents the mobility prediction algorithm
and predicts the location of an individual/a group of
end-users in a future moment of time. The improved
version of Dynamical Bayesian Network (DBN) [6]
was used as the mobility prediction mechanism in this
architecture. The rationale behind using DBN is that,
the next location (cell) visited by a user only depends
on its current location, the current time, and the day
of the week that the user is in the movement. This
approach utilizes the trace of mobile user trajectories
to predict the next location that may be visited, and
more details can be found in [2].

e B.P.: It presents the bandwidth prediction algorithm
and estimates the bandwidth used/available at a certain
network link in a future moment of time. The B.P.
relies on the dimensioning approach, which is able

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

to take into account the impact of possible traffic
bursts on the required link capacity. The algorithm
applied in bandwidth prediction approach relies on the
information obtained from Flow data (e.g., NetFlow,
IPFIX, J-Flow). More details can be found in [2].

e History Data Retriever: This module continually re-
trieves end users’ historical movement traces from
MaaS. This data later is processed and used as the
input data for the prediction algorithms.

e Data Converter: It processes the raw monitored data
and converts it to the format usable by the algorithms.

e Request Queue : It queues the requests when either
a specific data to perform a prediction is missing in
the input trace data, or more than one prediction is
requested by consumers.

e Data for M.P/B.P. algorithms: These are the local
databases storing the data processed by the Data Con-
verter. To perform estimations on the user(s) mobility
or the available bandwidth in a certain network link, a
significant amount of user(s) movement or link usage
history information is required. This information can
be acquired from MaaS.

MOBaaS consists of two types of prediction notification
mechanisms: request-based and trigger-based.

In the request-based approach, a web server running at
the Frontend constantly waits for prediction requests from
the consumers. Whenever a consumer requires a prediction, it
sends the request information to MOBaaS using a JSON (Java
Script Object Notation) message. The request message includes
the User ID (for single user), the current time and date, the
current Cell ID, and the time period of the required prediction.
Given this information, M.B. makes the mobility prediction of
which cell the specified user(s) will be located at a certain
future time. Next, Frontend returns the prediction results in
the JSON message to the consumers, including multiple pairs
of <Cell ID, Probability>. The bandwidth prediction is similar
to the mobility prediction, except that the request message
includes the ID of a link, and its aiming time for bandwidth
prediction. In this case, the results message sent by B.P.
includes the <Link ID, Available Capacity>.

In the trigger-based approach, the web server running at
the Frontend gets the prediction requests from consumers
including two parameters: the maximum number of users
(N) in each cell (for mobility prediction) or the minimum
available capacity (C) in a specific network link (for bandwidth
prediction) as a threshold, and the prediction interval ().
Knowing this information, the M.B. and B.P. periodically in
every ¢ intervals perform mobility and bandwidth predictions,
respectively. If the number of users per cell exceeds (for
mobility prediction), or the amount of available capacity in the
network link reduces (for bandwidth prediction) the threshold,
a trigger message is generated by the Frontend and results
are pushed into MaaS. This information could later be used
by consumers for a specific action (e.g., scaling the resources,
instantiating the VMs) [2].

IV. MOBAAS CLOUDIFICATION

In this section, we describe how mobility and bandwidth
prediction services have been cloudified, achieving a MOBaaS.
The cloudification of MOBaaS allows it to run in the cloud
platform with all the benefits brought by cloud principles.
Namely, the EEU (Enterprise End User) only needs to provide
the network topology for the deployment among other a few
settings. Afterwards, it will get a running service instance that
manages itself for a typical operation. The key components for
MOBaaS cloudification are the service manager (SM), service
orchestrator (SO), cloud controller (CC), and service develop-
ment kit (SDK). These logic entities have been designed and
developed within the context of the Mobile Cloud Networking
(MCN) project [1]. In the following subsections, these compo-
nents along with other cloudification-related components are
described in detail.

A. Technical Reference Architecture

In principle, the architectural elements are influenced by
Start of Authority (SOA) principles, and constructs are in place
to facilitate the service lifecycle management. The detailed

EEU occl ::/Service\:
lﬁp_o_, _Bundle /
SM (sm & pyssf)
SDK
£ (Python)
& Q occl occl occl
o
> SO
@ I trol
Cloud Controler Spansii | (Python)
API
QO O (@) Q OcCcCl
| D e |
L,! MOBaas Paa$S i
Service Instance (OpenShift) :
I
I

laaS (OpenStack, Joyent SDC)

Fig. 3: MOBaaS orchestration framework architecture.

representation of the architecture element is shown in Fig. 3,
and the roles of different elements are listed below:

e Service Orchestrator (SO): 1t is responsible for the or-
chestration of the MOBaaS service, consisting of two
internal modules: the Service Orchestrator Decision
(SOD) and Service Orchestrator Execution (SOE). The
decision module is the component responsible for han-
dling inputs from other services, mainly monitoring
information (from e.g., MaaS) that makes decisions on
whether a scaling decision is needed. The execution
module is responsible for the interaction with the
Cloud Controller (CC) using a Service Development
Kit (SDK), ensuring that service instances are mapped
to cloud resources as well as are deployed, scaled, and
disposed whenever requested. It is also responsible for
handling requests from SM to instant or dispose the
MOBaaS service instance through the SDK.

o Service Manager (SM): It provides an external inter-
face to the EEU and a list of available services (Ser-
vice Catalog). It is responsible for deploying the SO,
and forwarding requests to SO for MOBaaS service
instance deployment and disposals. Upon receipt of
a service creation request, the SM creates a Docker

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference 519

520

container in OpenShift [7] and when the container
is ready, pushes the service bundle into the container
and deploys it. Once the SO is ready, the various life-
cycles of the services are activated (Fig. 3).

e Open Cloud Computing Interface (OCCI): OCCI
[8] enables to maintain interoperability and a com-
mon interface and model between different services
(e.g., MOBaaS with MaaS, RaaS, etc). It forms the
core of the interfaces exposed by the SM, CC, and the
SO. It is also the specification used by the northbound
interface of the Cloud Controller.

e Cloud Controller (CC): CC is implemented through a
set of modules to support service deployment, provi-
sioning, and disposal. Each of the modules is modeled
as a service itself.

o Service Development Kit (SDK): 1t is designed to sup-
port service developers to manage different services.
It servers two main purposes: (i) it supports the basic
functionalities for the life-cycle management of any
service by allowing the SO to interact with the various
internal services of the CC. Therefore, any changes
to the internal implementation of the CC will have
no impact on the code written, as the SDK abstracts
the technologies used; (ii) it provides access to the
supporting services, which allows for the developer
of a certain service to interact with another service
in a certain way, regardless how the other service is
implemented [9],[10].

e Service Bundle: It contains the Service Manifest
details, which comprises of Service Template Graph
(STG) where dependencies on other external services
are encoded, and Infrastructure Template Graph (ITG),
which is realized as a Heat Template (HT) that en-
codes all the details for the deployment of the service
itself. The service bundle also contains the SO logic
(the application code).

e OpenStack Infrastructure: OpenStack is the cloud
management framework that allows the life cycle
management of virtual machines. It provides infras-
tructure cloud services, namely compute, storage, and
networking. OpenStack is chosen as the reference
implementation framework. The OpenStack Heat [11]
orchestration module allows service deployment as
one logical unit instead of a collection of a number of
virtual machines.

e OpenShift: A PaaS (Platform as a service) solution
called OpenShift [7] is adopted to enable the CC
deployment module to host the SO instance. OpenShift
provides quick and effective means to run SO work-
loads, and OpenShift v3 (Docker container based)
builds the application container for every SO instan-
tiation efficiently.

B. Sequence Diagrams of MOBaaS Service Management

The sequence diagrams are interaction diagrams that show
the different steps that have to be done by the system to
realize a certain operation requested from an external actor,
either a person or an external system. It shows the different

classes that are involved in the operation and the sequence of
messages exchanged between the objects needed to carry out
the functionality of the scenario (e.g., MOBaaS instantiation).

In the following, we describe the general MOBaaS cloudi-
fication operations, including the sequence diagrams of service
deployment, provisioning, and disposal. Through the SM and
the SO, the MOBaaS system can request the CC to deploy, dis-
pose, provision, and management operations of the MOBaaS
instance. It allows the EEU to get a MOBaaS instance, deploy
and dispose it in an on-demand fashion.

Fig. 4 shows the deployment of the MOBaaS service. The
main users of the system (Service Provider) can log into the
administrator panel and execute a command for deployment of
an instance. As a start, the EEU requests through MOBaaS’s
SM the deployment and provisioning of a MOBaaS instance.
The SM module then send the request including the OpenStack
Heat template graph of the service to the CC to start an
instance of the SO. Heat is the main project in the OpenStack
Orchestration program.

It implements an orchestration engine to launch multiple

MOBaa$S
g [cc] ‘\ SM | [SO | [MOBaas sic |‘\ MaaS |
Demarj'ld MOBaa$S !
Req. SO deployment
— "
SO deployment

Resp. SO deployment
_—]
Sub-components deployment
| >
| Req. MaaS|deployment,
—
Maa$S deployment

Resp.i MaaS components deplci)yment
MOBaasS is reédy
MOBaas is ready
S
Fig. 4: MOBaaS service instance deployment procedure.

composite cloud applications based on templates in the form
of text files that can be treated as a code. In general, a Heat
template describes the infrastructure for a cloud application in
a text file that is readable and writable by humans. Once the SO
is instantiated, the SM requests the SO to deploy the MOBaaS.
Afterwards, SO requests the CC to instantiate the ITG of the
MOBaaS. Next, the CC instantiates the internal components
of the MOBaaS instance (Frontend, M.P., B.P., Historical Data
Retriever, Data Converter, and Request Queue). After this, if
everything is correct, as a response, an endpoint to the created
instance will be returned, which makes us able to configure
and manage the created instance.

Fig. 5 shows the provisioning phase of the service. After
deployment, provisioning should have the actual virtual ma-
chines configured and running. To achieve this, after getting
the SO instance from the CC, SM commands SO to provision
required VMs according to the provided configuration. In this
way, we have an MOBaaS instance deployed and ready to use.
Fig. 6 shows the disposal phase of the service. Disposal means
disposing all the virtual machines created in the provisioning
phase. Whenever the EEU does not need the service instance
anymore, it may ask SO for the disposal. When receiving the
disposal request, the SO will ask the CC to dispose all the
stacks associated with the service instance. After disposing all
the resources by the SO, it sends a message to the SM to

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

MOBaaS
[Consumer] ‘\ SM | [SO | [Frontend |

[Maas |

Reql. trace data retrieval
—
Resp. trace data retrieval

Req. a prediction

| Check for |
| valid data>No |

Req. trace data
—_—

Wa:it for prediction

Resp. trace data |

B
" Checkfor |
| _valid data>Yes |

Perform the

Resp. the prediction output
: - . Prediction |

Fig. 5: MOBaaS service instance provisioning procedure.

inform it about the situation. Afterwards, the service manager
sends the destroy command to the SO. When all is done, a
conformation message will be shown to the user.

MOBaa$S
i [cc |‘| sM | [so || Moaaassmm MaaS
Req. MOBaas$ disposal
Req. SO dispiosal
SOdi#posaI

Sub-components disposal
i —_—
Req. Maa$ disposal |
: MaasS disposal

Resp. Maas$ disposal
MOBaas is disposed
—
MOBaasS is disposed
-«

Fig. 6: MOBaaS service instance disposal procedure.

V. EVALUATION

This section describes the performance evaluation of the
proposed service, which includes description of the evaluation
scenario and methodology, as well as an analysis of the results.

A. Scenarios

In order to present privilege of the proposed MOBaaS
service and to validate its functionality and performance, we
target at a content migration scenario where a mobile user
moves from one place (eNodeB) to another. The user requests
the same content at different places, and we analyze the content
retrieval time when the user is moving with and without the
help of mobility prediction provided by the MOBaaS.

B. Methodology

The evaluation procedure has two aspects: non-functional
performance evaluation and functional performance evaluation.

The non-functional evaluation refers to the time measure-
ments of deployment, provisioning and disposal the MOBaaS
instance in a cloud infrastructure. To perform this, a monitoring
system is needed. We used the Graylog tool [12], integrated
in the SM library, as a log aggregator to collect the related
timing information for the MOBaaS cloudification operations.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

The data collected by this tool is used to measures the timing
of deployment, provisioning, and disposal procedures of the
MOBaaS instance.

The functional evaluation presents the accuracy of the
MOBaaS’s prediction algorithms on estimating the mobile
user(s) location and network link(s) bandwidth availability in
a particular moment of time at future, as well as shows the
benefit of using the MOBaaS to a consumer service (e.g., in
terms of reducing content retrieval time for the scenario
described in Section V-A)

C. Performance Evaluation Results

1) Non-Functional Evaluation: The results of non-
functional evaluation are illustrated in Fig. 7, including the
MOBaaS instance deployment, provisioning (for both the
mobility and bandwidth predictions) and disposal latency. To
study the impact of hardware and platform of the cloud
computing infrastructure on the MOBaaS implementation, we
used two different testbeds with different allocated resources
for the MOBaaS instance as follows:

o Testbed 1: 1t offers all essential services, including
OpenStack Nova with KVM, Glance, Cinder, Neutron,
and Heat. The OpenStack version is Juno running
on Ubuntu 12.04. The testbed consists of a con-
troller node, computing node (Dell PowerEdge R520),
and a storage node (Dell PowerVault MD3800i). It
operates 32 cores, Interl(R) Xeon(R) CPU E5-2450
v2@2.50GHz, 192 GB RAM, 2.3 TB HDD for nova-
computing filesystem, 9.0 TB HDD for the cinder
block storage, and 120 floating IPs.

We have committed the following resources for
MOBaaS implementation: 100 instances, 100 VCPU,
50GB RAM, 50 public IPs, and 1 TB of storage.

o Testbed 2: 1t offers the basic OpenStack services as
Testbed 1. The OpenStack version is Kilo. It consists
of multiple servers and has a total of 64 cores, 377
GB RAM, 5.5 TB disk and 44 floating IPs available.
Additionally, Testbed 2 is an Identity Provider, a
service that allows users to authenticate and get a
token to interact with other services. The Identity
Provider is implemented with OpenStack Keystone.
The OpenShift V3 [7], is hosted in Bart also and is
used by the orchestration.

Resources available to implement the MOBaaS are:
10 instances, 20 VCPU, 20GB RAM, 8 public IPs,
and 1TB of storage.

70

60

50 -

| 1§

Provisioning Disposal

40

30

Latency (s)

20+

Deployment

Fig. 7: Evaluation of the MOBaaS cloudification operations.

521

522

The deployment phase includes the creation of a VM and
allocation of related resources to it. We can observe that
the deployment phase takes more time than provisioning and
disposal phases. This is due the fact that the deployment
phase, includes also the allocation floating IP addresses to
VMs, the installation of the SO as a docker container in the
OpenShift platform. The provisioning phase refers to properly
configure the MOBaaS’s VM and the internal components that
has been setup in the deployment phase. It is also include the
operations for providing the mobility and bandwidth results.
The disposal phase includes the deletion of the VM and
releasing the allocated resources and IP addresses that are no
longer required.

Obtained results show that, in Testbed 1 the deployment
time (31s) and disposal time (11s) are shorter than in Testbed
2 (42s and 18s, respectively). This is because more resources
are allocated at Testbed 1 during the evaluation procedure.
However in both cases, the related latencies are in the order
of seconds and short enough, and could meet the on-demand
instantiation requirements.

In the provisioning phase, the size of the trace files
significantly influences the prediction calculation time. In the
mobility prediction the number of users also directly affects the
prediction latency (more detail can be find in [2]). Therefore,
for the time-critical applications e.g., smart city the prediction
requests with large computation overhead, which might lead to
a longer response delay, need to be split into multiple parallel
lightweight computation procedures.

2) Functional Evaluation: Fig. 8 shows the accuracy of the
mobility prediction algorithm for a few users (as examples)
in different weekdays. As it is observed, a high prediction
accuracy of around 85% could be reached for some users
(e.g., user with ID 6030) on Friday, while some users can only
get an accuracy of 10 % (e.g., user with ID 6016) on Sunday.
This variation of prediction accuracy is due to the different
qualities of users’ traces.

.80
E70

8o ==
& s0-
>
gao-
£ s0-
8 20-
sat Sin

10
[sat B Sun B Mon I Tue I wed [Thru_ Fri

o
70~
s-
£ 30-
g2s-
< 20-
1s-
10-
-
3

5960 5969 6016

—_—

Mon

Tue
Week day

EﬁE

Wed Thru Fri

NI
3a

%oad

racy Percentage
YNy
)

6020
User ID

6025 6030 6073

Fig. 8: Mobility prediction accuracy for some users during weekdays.

In the used trace files, for some users there is continuous
recording of the location information, which leads a very good
trace quality. While for some others the mobile-phone might
always is not ON or is not taken with the users such that
their movement trace files are discrete, which makes it very
difficult to generate accurate prediction. In addition to the
heavy dependence on the trace files quality, we can also see
that prediction accuracy varies for different weekdays. The
prediction is more accurate in weekdays than in weekend, this

is due to the fact that people have regular movement pattern
during the weekdays, such as fix movements from office to
home, etc. Details about the explanation of the prediction
algorithms and its evaluation can be found in [2].

In order to illustrate the benefit of MOBaaS, we measure
the content retrieval time for a user when it requests to access
a content at the destination place for both the case with
and without the help of mobility prediction information. The
benefit of using mobility prediction result is clear from a
user’s perspective, since the content retrieval time is 33% lower
for all content file sizes (Fig. 9). This is due the fact that
with the help of mobility prediction, the interested content is
already available at (or started to be migrated to) the next
location before user’s actual movement. In scenarios without
mobility prediction, after reaching user to the destination
cell, it has to request the content, which takes more time to
access the requested consent compared to the scenario with
using the mobility prediction information. The performance
improvements are more obvious when the content size is
bigger.

[Content Retrieval without MOBaaS
I Content Retrieval with MOBaaS

701

601

501

40}

301

Retrieve Latency (s)

20f

10 MB 20 MB 100 MB

File Size (MB)

50 MB

Fig. 9: Content retrieval with/without using the MOBaaS.

VI. CONCLUSION

Virtualization of the LTE network requires on-demand
deployment, provisioning, and disposing of the cloudified LTE
components. In this paper, we have developed an imple-
mentation architecture for the MOBaaS (Mobility and Band-
width prediction as a Service), which can easily be setup
on a OpenStack cloud computing infrastructure, and can be
readily integrated with any other virtualized LTE component
to provide prediction information. The MOBaaS prediction
information can be used to generate the required triggers for
on-demand deployment of virtualized network components as
well as for the self-adaptation procedures and optimal network
function configuration during run-time operation. These are
also a key enabling concepts to optimize the smart city
operations, such as data traffic planning and network links
bandwidth re-allocation. We detailed the service management
lifecycles of the MOBaaS cloudification operations, and shown
that its instance can be deployed and disposed in enough short
time with an on-demand fashion. To present the benefit of
using MOBaaS, we evaluated the content retrial time from a
user’s perspective in a ICN network, with and without using the
mobility prediction information. The obtained results shown
that the access time for the requested content can be enhanced
almost 33% using the MOBaaS prediction information.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

ACKNOWLEDGEMENTS

The research work presented in this paper is conducted as

part of the Mobile Cloud Networking project, and has been
funded by the European Union Seventh Framework Program
under grant agreement [# 318109].

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[10]

(1]

[12]

REFERENCES

EU FP7 Mobile Cloud Networking project, February 2015. http://www.
mobile-cloud-networking.eu/site/.

Morteza Karimzadeh, Zhongliang Zhao, Luuk Hendriks, Ricardo
de O. Schmidt, Sebastiaan la Fleur, Hans van den Berg, Aiko Pras,
Torsten Braun, and Marius Julian Corici. Mobility and bandwidth
prediction as a service in virtualized LTE systems. In IEEE 4th
International Conference on Cloud Networking (CloudNet), 2015.

Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey
of mobile cloud computing: architecture, applications, and approaches.
Wireless com. and mobile computing, 13(18):1587-1611, 2013.

B. Liang and Z. J. Haas. Predictive distance-based mobility man-
agement for pcs networks. In INFOCOM ’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 3, pages 1377-1384 vol.3, Mar 1999.

Bruno Sousa, Zhongliang Zhao, Morteza Karimzadeh, David Palma,
Vitor Fonseca, Paulo Simoes, Torsten Braun, Hans van den Berg,
Aiko Pras and Luis Cordeiro. Enabling a Mobility Prediction-aware
Follow-Me Cloud Model. In 41st IEEE Conference on Local Computer
Networks (LCN), 2016.

Vincent Etter, Mohamed Kafsi, Ehsan Kazemi, Matthias Grossglauser,
and Patrick Thiran. Where to go from here? Mobility prediction from
instantaneous information. Elsevier Pervasive and Mobile Computing,
2013.

OpenShift. https://www.openshift.com. Online, accessed Feb. 2016.

OCCI-Open Cloud Computing Interface. http://occi-wg.org. Online,
accessed Feb. 2016.
Infrastructure Management Foundations—Final Report on Component

Design and Implementation, MCN D3.4. In European Commission,
EU FP7 Mobile Cloud Networking public deliverable, available at[1].

Final Overall Architecture Definition, MCN Dd2.5. In European
Commission, EU FP7 Mobile Cloud Networking public deliverable,
available at[1]. 2015.

OpenStack Heat Orchestration. https://wiki.openstack.org/wiki/Heat.
Online, accessed Feb. 2016.

Graylog. https://www.graylog.org. Online, accessed Feb. 2016.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

523

