
FM-Delta: Fault Management Packet Compression
Technical Report� , January 2017

Tal Mizrahi∗†, Yoram Revah∗, Yehonathan Refael Kalim†, Elad Kapuza†, Yuval Cassuto†

∗Marvell Semiconductors, †Technion
talmi@marvell.com, revahyo@gmail.com, {srefaelk@campus, eladkap@campus, ycassuto@ee}.technion.ac.il

Abstract—Fault Management (FM) is a cardinal feature in
communication networks. One of the most common FM ap-
proaches is to use periodic keepalive messages. Hence, switches
and routers are required to transmit a large number of FM mes-
sages periodically, requiring a hardware-based packet generator
that periodically transmits a set of messages that are stored in
an expensive on-chip memory. With the rapid growth of carrier
networks, and as 5G technologies emerge, the number of users
and the traffic rates are expected to significantly increase over the
next few years. Consequently, we expect the on-chip memories
used for FM to become a costly component in switch and router
chips. We introduce a novel approach in which FM messages
are stored in compressed form in the on-chip memory, allowing
to significantly reduce the memory size. We present FM-Delta,
a simple hardware-friendly delta encoding algorithm that allows
FM messages to be compressed by a factor of 2.6. We show
that this compression ratio is very close to the results of the zlib
compression library, which requires much higher implementation
complexity.

I. INTRODUCTION

A. Background

Network devices, such as switches and routers, are often
required to transmit control-plane messages. The ability to
generate and transmit messages has been recognized as an
essential building block in network devices, not only in
conventional networks, but also in Software-Defined Networks
(e.g., [2]). Specifically, the ability to generate packets is
important in the context of Fault Management (FM).

Fault detection is essential in large-scale networks, enabling
fast recovery and effective troubleshooting; it is one of the key
components in Operations, Administration, and Maintenance
(OAM) [3]. FM is typically implemented as a combination
of proactive and reactive mechanisms for detecting failures.
Some of the most commonly deployed FM protocols (e.g., [4],
[5], [6]) are implemented using periodic keepalive messages;
a fault is detected when no keepalive messages are received
from a given source for a given period of time.

B. FM Scaling

The scaling problem of storing FM messages is a real-life
problem that some of the authors of this paper encountered
while designing packet processor silicons. A switch or a router
that runs an FM protocol periodically transmits FM messages.
The rate of FM messages varies from 1 packet every ten

�This technical report is an extended version of [1], which was accepted to
the IFIP/IEEE International Symposium on Integrated Network Management,
IM 2017.

minutes to 300 packets per second per service [4], [5]. Typical
carrier Ethernet devices support tens of thousands of services
(e.g., 16k in [7] and 64k in [8]). Due to these large scales,
typical devices do not provide FM support at the highest rate
for all services simultaneously. As 5G technologies evolve,
network devices will be required to support a larger number
of services at a higher bandwidth. Thus, fault detection will
be expected with a low detection time, implying a high rate of
FM messages. Hence, we expect these scales to continuously
increase in the next few years.

Example. The rate of traffic that a network device is ex-
pected to generate for 64k services, assuming the FM message
length is roughly 100B [4], and assuming 300 packets per
second per service [4], is 64k×300×100B∼= 16 Gbps. Such
high traffic rates cannot be handled by the device’s software
layer, and thus must be implemented in the device’s hardware.
A typical implementation (e.g., [9]) uses a hardware engine
and an on-chip memory; the engine periodically reads the
messages stored in the memory and transmits them to the
network. In this case the required memory space for 64k
services is 64k× 100B ∼= 6.4 MB. This is a very significant
size for an on-chip memory, consuming an expensive area of
roughly 18 mm2 in a 28nm process. As a point of reference,
the entire on-chip packet memory of a typical switch is on the
order of a few megabytes, e.g., 12 MB in [10].

This example illustrates that as carrier and mobile back-
haul networks evolve, the significant size of the FM on-chip
memory may become infeasible.

C. FM Packet Compression in a Nutshell

We argue that if FM packets are compressed when stored
in the memory, then the expensive on-chip memory can be
significantly reduced.

In our approach FM packets are compressed offline, and
stored in compressed form in an on-chip memory. Each packet
is decompressed by the hardware packet generation engine
before it is transmitted to the network. Notably, packets are
in compressed form only when stored in memory, and are
decompressed before transmission, making the compression
transparent to the network.

Why do we focus on FM messages? The solution we
propose relies on three properties that are unique to the
problem at hand: (i) the entropy of the FM packets stored in
the memory is low, as they share common properties, (ii) the
FM packet memory is accessed sequentially, since all packets

ar
X

iv
:1

70
1.

08
10

4v
1

 [
cs

.N
I]

 2
7

Ja
n

20
17

are sent periodically, and (iii) we can determine the order
of the FM packets in the memory.1 These three properties
significantly improve the effectiveness of the compression.

D. Related Work

Data compression has been analyzed in the context of
network switches and routers, e.g., [11], [12]. Specifically,
data-plane packet compression has been widely discussed and
analyzed in the literature, e.g., [13], [14]. For example, packet
compression is widely used in the Hypertext Transfer Protocol
(HTTP) [15]. It has been shown that HTTP compression can
be very effective [16], in some cases reducing the data to
20% of its original size. However, it has been shown [13] that
packet compression is ineffective for random internet traffic,
as this traffic typically has high entropy, and is often already
compressed or encrypted. In this paper we focus on control-
plane packet compression, and present a use case in which
packet compression is highly effective.

E. Contributions

The contributions of this paper are as follows:

• We present a novel approach that uses packet compression
to reduce the size of the on-chip memory used in Fault
Management (FM) message transmission.

• We introduce FM-Delta, a simple delta encoding algo-
rithm that can easily be implemented in hardware, and
present a high-level design of a system that uses FM-
Delta.

• We evaluated the algorithm over a synthetically generated
FM packet database, and show that it offers a compression
ratio that is comparable to state-of-the-art compression
algorithms, such as Lempel-Ziv (LZ).2 The FM packet
database that we used in our experiments is publicly
available [18].

II. A SYSTEM DESIGN

A. Overview

Fig. 1 illustrates the design of a system that uses FM-Delta
to periodically generate FM packets. The system consists of
two main components:

• Software module – responsible for compressing the FM
packets and storing them in the on-chip memory of the
packet generation engine. The compression procedure
is performed offline. When an FM packet needs to be
added to the FM packet database, or removed from it, the
software layer invokes an insert or a remove operation,
instructing the packet generation engine to perform an
incremental update in the FM database.

1In the FM-Delta system we present we have full control of the order in
which packets are stored in the memory, and thus the order in which packets
are accessed and decompressed.

2It is important to note that known LZ implementations (such as zlib [17])
are unlikely to be realizable in the low-level hardware setup of interest here,
due to their significant processing and memory requirements.

Switch / Router

Software

layer

Hardware

layer

FM software module

Packet

generation

engine

FM

packet

memory

Fig. 1: FM-Delta: a system design.

• Packet generation engine – this hardware module se-
quentially reads the packets from the on-chip FM packet
memory, decompresses them in real-time, and transmits
them to the network.

B. Compression Algorithm

We introduce FM-Delta, a simple delta encoding algorithm
that we designed and implemented.

FM-Delta. We present an outline of the FM-Delta algo-
rithm. Given a sequence of N uncompressed packets, the
compressed packets are represented as follows.

The first packet is represented in uncompressed form, as
shown in Fig. 2.

Length Packet

Fig. 2: FM-Delta: the first packet is in uncompressed form.

The ith packet, for i≥ 2, is compressed, as shown in Fig. 3.

Length ValuesDelta Bitmap

Fig. 3: FM-Delta: structure of the ith compressed packet.

DECOMPRESS(N)

1 Read packet P1
2 L1← Length of P1
3 U1← uncompressed packet P1
4 for i = 2 to N
5 Read compressed packet Pi
6 D← Delta Bitmap of Pi
7 V ← Values of Pi
8 m← 0
9 for j = 0 to min(Li,Li−1)−1

10 if D[j] = 1
11 Ui[j]←Ui−1[j]
12 else
13 Ui[j]←V [m]
14 m← m+1

Fig. 4: Decompression algorithm for N packets. The ith

compressed packet is denoted by Pi, and the ith uncompressed
packet by Ui.

The compressed packet consists of the following fields
(Fig. 3):

• Length – represents the length in bytes of the original
(uncompressed) packet.

• Delta Bitmap – indicates the differences between packet
i and packet i− 1. Every packet is divided into equal-
sized words, and each bit in the bitmap indicates whether
the respective word in the current packet is equal to the
corresponding word in the previous packet. The word size
is a parameter of the algorithm. Section III discusses the
effectiveness of the algorithm with various word sizes.

• Values – the values of the words that differ from the
previous packet.

The decompression algorithm is presented in Fig. 4.
Common (de)compression algorithms, such as Lempel-

Ziv [19] are not hardware-friendly, as they require a complex
iterative indirection over a sliding window. In FM-Delta,
every packet is decompressed by comparing it to the previous
(decompressed) packet using the Delta Bitmap. This simple
comparison does not require an iterative procedure, and thus
all the words of the packet can be compared (decompressed)
in parallel, making FM-Delta a silicon-friendly algorithm.

C. Insertion and Removal

As described above, the packet database is compressed
offline, and accessed by the chip in real-time. An essential
question is how the packet database is updated, i.e., how a
new packet can be added to the database, or how a packet can
be removed from it.

One approach that allows simple insertion and removal is
by using a linked list. Each compressed packet in the memory
is followed by a pointer that points to the location of the
next packet in memory. The linked list approach is simple,
but requires some memory overhead for the next pointers, and
also may be inefficient due to fragmentation.

We suggest a more efficient approach that allows for simple
insertion and removal of packets when using FM-Delta. In
this approach (Fig. 5) packets are stored contiguously in
the memory. The packet generation engine proceeds by a
read-decompress-write procedure; every packet is read from
memory, decompressed, and then written back to the memory.
There is a cache that stores the previous packet, which enables
the engine to decompress the current packet using FM-Delta.

Removal
Assume that we have N compressed packets in the memory,

denoted by P1,P2, . . . ,PN , and we want to remove a packet Pk
from the database. Removing the kth packet from the database
includes two operations that need to take place atomically:
(i) removing the kth packet from the memory, and (ii) updating
the (k+1)th delta-encoded packet. The latter is required since
after removing packet Pk, the compressed (k+ 1)th packet is
encoded with respect to packet Pk−1. The two operations must
be performed atomically to prevent inconsistent reading or
decompression.

Length Packet Length
ValuesDelta Bitmap Length

Values

Delta Bitmap

...

1
st
packet 2

nd
packet

3
rd
packet

Fig. 5: FM-Delta: the compressed packets in the memory.

In order to perform the two operations above atomically,
we assume that there is a software layer that triggers the
removal operation, and that the removal itself is performed by
the packet generation engine. When the software layer triggers
the operation, it also provides k, the index of the packet to be
removed, and P′k+1, the newly compressed (k+1)th packet.

Once the packet generation engine receives the removal
request it:

1) Performs the conventional read-decompress-write proce-
dure until it reaches packet Pk−1.

2) Reads and decompresses packets Pk and Pk+1, but does
not write them back to the memory.

3) Writes the newly compressed packet, P′k+1 immediately
after packet Pk−1.

4) Continues the read-decompress-write procedure on
packets Pk+2, . . . ,PN , so that each packet is written after
the previously written packet, thus eliminating the gap
created by removing Pk.

Insertion
Assume we have N packet in the memory, and we want to

insert a new compressed packet, P, before packet Pk. As in the
removal procedure, two operations need to occur atomically:
(i) inserting packet P, and (ii) updating packet Pk to a newly
encoded P′k. Again, we assume that there is a software layer
that provides the location k, the packet that needs to be inserted
P, and the newly encoded P′k.

Upon receiving an insertion request, the packet generation
engine:

1) Performs the conventional read-decompress-write proce-
dure until it reaches packet Pk−1.

2) Reads and decompresses packet Pk, but does not write
it back to the memory.

3) Writes the newly inserted (compressed) packet P imme-
diately after Pk−1.

4) For packets Pk+1, . . . ,PN , the engine proceeds by reading
packet Pj, decompressing it, and then writing packet
Pj−1 after the previously written packet.

Note that in steps 2-4 above, the packet generation engine
takes care not to write over packets that have not yet been read.
For example, if the compressed packet Pj is slightly shorter
than Pj−1, the engine writes Pj−1 only after having read Pj+1.
Thus, the packet generation engine maintains a small cache
that stores the currently read packets.

D. Random Access to FM Packets

In our approach we assumed that the FM packet memory
is always accessed sequentially. However, in some cases the
FM application may require an urgent packet Pk to be sent
immediately. The delta encoding scheme implies that in order
to access the kth packet the packet generation engine must
sequentially read all the preceding packets.

In order to allow quick random access, our delta encoding
scheme can be extended to include entry points. For example,
the FM software layer can store packets P10,P20,P30, . . . in
uncompressed form. Thus, when the software layer instructs
the packet generation engine to access the 21st packet, it also
provides the uncompressed P20, and the engine can use P21
with one memory access. In this example every packet in
the FM memory can be reached in at most 9 memory access
operations.

III. EVALUATION

A. Data Set

We evaluated our FM-Delta compression system on 100 sets
of synthetically generated packets.3 Each set comprises 100k
packets. Our synthesized data sets are publicly available [18].

The data sets consists of two types of packets: Continuity
Check Messages (CCM) [5], and Bidirectional Forwarding
Detection (BFD) [6] control messages. Each packet type was
used on half of the data set. CCMs are defined over Ethernet,
while BFDs are over IPv4-over-Ethernet. Each packet included
a random number of VLAN tags (either 0, 1, or 2 tags).

The network topology can significantly affect the extent
to which FM packets can be compressed in our setting.
For example, if multiple FM packets are sent to the same
destination device, then some of the packet fields may be
similar in these packets. Moreover, in CCMs [5] the MEG
ID field is a 48-byte field that has a different value in each
Maintenance Entity Group (MEG) [5]. Thus, the number of
devices per MEG can significantly affect the similarity among
packets.

We assumed that the current device has a set of 32 MAC
addresses, and thus the source MAC address of each packet
was randomly chosen from the pool of 32 addresses, while
the destination MAC address was randomly chosen4 without
constraints. The IP addresses of each BFD packet were ran-
domly chosen. The VLAN IDs of each packet that included a
VLAN tag was also randomly chosen. The MEG ID field in
CCM packets was randomly chosen for each set of 3 CCM
packets.5

3We did not use publicly available packet traces since these traces either do
not include FM packets, or do not include packet payloads, thus preventing
effective data compression analysis.

4Throughout this section the ‘randomly chosen’ refers to a uniformly
distributed selection.

5We assumed that the number of Maintenance Points (MP) [5] per Main-
tenance Entity Group (MEG) [5] is 4 on average.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8

C
o

m
p

re
ss

io
n

 R
a

ti
o

zlib Compression Level

Ordered

Random

(a) zlib: Compression ratio as a
function of the zlib
compression level.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8

C
o

m
p

re
ss

io
n

 R
a

ti
o

Word Size [Bytes]

Ordered

Random

(b) FM-Delta: Compression ratio
as a function of the word size.

Fig. 6: Compression ratio of the two analyzed algorithms. The
‘Ordered’ curve is most interesting, since we have full control
over the order of packets in the FM packet memory. In FM-
Delta the best compression ratio is achieved when the word
size is fixed at 2 bytes.

Our experiments were performed in two modes: ordered
mode, in which packets were arranged so as to allow a
higher compression ratio, and random mode, in which packets
were ordered randomly. In the ordered mode, the arrangement
was implemented according to two criteria: (i) packets were
ordered according to their size, allowing alignment between
the fields of consecutive packets, and (ii) packets from the
same MEG were grouped together.

B. Results

We present a glimpse at some of our experimental results.
Fig. 6a illustrates the compression ratio6 using zlib. Since zlib
supports nine possible compression levels, the graph presents
the compression ratio for each of the levels.

Fig. 6b presents the compression ratio of the delta encoding
algorithm as a function of the word size. The word size is a
design parameter of the FM-Delta algorithm. Specifically, for
the FM protocols that were analyzed in this work, if the word
size is fixed at 2 bytes, we expect the algorithm to provide the
best performance for the FM protocols we analyzed.

Notably, although the delta encoding algorithm is signif-
icantly simpler, it provides a comparable compression ratio;
zlib provides a compression ratio of 2.9 at the highest compres-
sion level, but is not hardware-friendly, while the hardware-
friendly FM-Delta provides a ratio of 2.6.

Another significant result is that the ordered message set
allows a higher compression ratio, emphasizing the advantage
of optimizing the order of the data set. Such an optimization is
feasible in light of the relative flexibility of FM specifications
as to the order and exact timing of packet transmission.

6The compression ratio is the ratio between the uncompressed data set and
the compressed data set.

IV. CONCLUSION AND OUTLOOK

In this paper we have shown that packet compression can
significantly reduce the required on-chip memory in Fault
Management protocol implementations. Surprisingly, delta en-
coding, which is typically dismissed as an ineffective com-
pression approach, is shown to be highly effective for packet
compression. We introduce a simple and hardware-friendly
delta encoding algorithm that provides a compression ratio
of 2.6, and allows to reduce the cost of packet processor
silicons.

Potential improvements of FM-Delta can be considered,
for example by using a dictionary for common field values.
Furthermore, the preliminary results presented in this paper
can be further established by experimenting with a hardware
implementation of FM-Delta, and by analyzing real-life traces
of FM messages. Notably, the concepts we presented may be
applied not only to FM messages, but also to other types of
control messages that are stored by switches and routers.

REFERENCES

[1] T. Mizrahi, Y. Revah, Y. Refael Kalim, E. Kapuza, and Y. Cassuto, “FM-
Delta: Fault Management Packet Compression,” in IEEE International
Symposium on Integrated Network Management, 2017.

[2] “OF-PI: A Protocol Independent Layer,” ver. 1.1, ONF, 2014.
[3] T. Mizrahi, N. Sprecher, E. Bellagamba, and Y. Weingarten, “An

Overview of Operations, Administration, and Maintenance (OAM)
Tools,” RFC 7276, IETF, 2014.

[4] IEEE 802.1ag, “Connectivity Fault Management,” 2007.
[5] ITU-T G.8013/Y.1731, “Operations, administration and maintenance

(OAM) functions and mechanisms for Ethernet-based networks,” 2015.
[6] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),” RFC

5880, IETF, 2010.
[7] “Ericsson SPO 1400 Family,” tech. rep., 2012.
[8] “Huawei OptiX OSN 550 and OSN 3500,” tech. rep., 2011.
[9] T. Mizrahi and I. Yerushalmi, “The OAM jigsaw puzzle,” technical white

paper, Marvell, 2011.
[10] “Pica8 32x40 gbe,” http://www.pica8.com/wp-content/uploads/2015/09/

pica8-datasheet-32x40gbe-p5401.pdf, 2014.
[11] O. Rottenstreich, M. Radan, Y. Cassuto, I. Keslassy, C. Arad, T. Mizrahi,

Y. Revah, and A. Hassidim, “Compressing forwarding tables for data-
center scalability,” IEEE Journal on Selected Areas in Communications,
vol. 32, no. 1, pp. 138–151, 2014.

[12] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger, “Com-
pressing ip forwarding tables: towards entropy bounds and beyond,” in
ACM SIGCOMM, 2013.

[13] C. S. Tye and G. Fairhurst, “A review of IP packet compression
techniques,” Proc. PGNet, p. 13, 2003.

[14] C. Gutwin, C. Fedak, M. Watson, J. Dyck, and T. Bell, “Improving
network efficiency in real-time groupware with general message com-
pression,” in conference on Computer supported cooperative work, 2006.

[15] J. Mogul, L. M. Masinter, R. T. Fielding, J. Gettys, P. J. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1.” RFC 2616,
Mar. 2013.

[16] “HTTP Compression,” http://www.websiteoptimization.com/speed/
tweak/compress/.

[17] J.-l. Gailly and M. Adler, “zlib,” http://www.zlib.net/.
[18] T. Mizrahi, Y. Revah, Y. Refael Kalim, E. Kapuza, and Y. Cassuto, “The

FM-Delta Project,” https://sites.google.com/site/fmdeltacompression/.
[19] J. Ziv and A. Lempel, “Compression of individual sequences via

variable-rate coding,” IEEE transactions on Information Theory, vol. 24,
no. 5, pp. 530–536, 1978.

http://www.pica8.com/wp-content/uploads/2015/09/pica8-datasheet-32x40gbe-p5401.pdf
http://www.pica8.com/wp-content/uploads/2015/09/pica8-datasheet-32x40gbe-p5401.pdf
http://www.websiteoptimization.com/speed/tweak/compress/
http://www.websiteoptimization.com/speed/tweak/compress/
http://www.zlib.net/
https://sites.google.com/site/fmdeltacompression/

	I Introduction
	I-A Background
	I-B FM Scaling
	I-C FM Packet Compression in a Nutshell
	I-D Related Work
	I-E Contributions

	II A System Design
	II-A Overview
	II-B Compression Algorithm
	II-C Insertion and Removal
	II-D Random Access to FM Packets

	III Evaluation
	III-A Data Set
	III-B Results

	IV Conclusion and Outlook
	References

