
Cache peering in multi-tenant 5G networks
Konstantinos V. Katsaros, Vasilis Glykantzis, George Petropoulos

Intracom SA Telecom Solutions,
Peania, 19002, Greece

Email:{konkat, vasgl, geopet}@intracom-telecom.com

Abstract—Building on the adoption of the Network Functions
Virtualization (NFV) and Software Defined Networking (SDN)
paradigms, 5G networks promise distinctive features includ-
ing the capability to support multi-tenancy. Virtual network
operators (VNOs) are expected to co-exist over the shared
infrastructure, realizing their network functionality on top of
virtualized resources. In this context, we observe the emerging
opportunity for establishing synergies between co-located tenants
of the infrastructure, in the form of cache peering relationships
between co-located VNOs. Upon a cache miss, co-located caches
benefit from content cached at their peers, taking advantage of
the shared nature of the infrastructure in reducing latencies and
traffic overheads. Our approach allows VNOs to autonomously
manage their peering links without the involvement of the
infrastructure operator.

Index Terms—5G, NFV, SDN, multi-tenancy, orchestration,
caching

I. INTRODUCTION

5G networks are expected to adopt the NFV paradigm,
opening the way to a series of benefits. By realizing key
network functions (e.g., caches, firewalls, IDS, DPI, etc.) on
top of virtualized compute, storage and network resources,
NFV promises a series of benefits such as the reduction of
associated CAPEX/OPEX, due to the shared nature of the
equipment, as well as the increased flexibility in network
management and programmability. In the context of 5G, these
still shaping capabilities, facilitate a series of key features
and advances, including the assembly and management of
isolated sets of virtual resources (often termed as network
slices) tailored for the operational needs of third parties i.e.,
the tenants of the shared infrastructure. In turn, this capability
supports the emergence of Virtual Network Operators (VNOs),
enabling multi-tenancy scenarios, where multiple VNOs are
realized on top of the same, shared physical infrastructure.

Typically, communication between tenants is expected to
take place by traversing the corresponding mobile network
gateways, since VNOs will be realized as entirely distinct
networks. However, the shared nature of the underlying infras-
tructure presents the opportunity for shortcuts in this commu-
nication. As network functions of different VNOs may reside
on the same IT infrastructure i.e., micro-data center (µ-DC),
inter-VNO traffic can be exchanged locally, thus promising
significant benefits in terms of end-to-end latency and overall
traffic overheads 1. Building on this observation, we focus on

1This operation raises challenges related to the GTP tunnels used to deliver
traffic to the mobile network gateway. Potential workarounds have been
proposed in literature [1]. This issue is consider out of this paper’s focus
area, which is centered around the particular issue of cache peering.

the particular case of caching, proposing the establishment of
cache peering relationships between co-located VNOs. In the
envisioned environment, VNOs instantiate transparent virtual
caches (vCaches) to reduce traffic overheads and improve
performance for their users. Co-location takes the form of
vCaches instantiated within the same µ-DC, either on the
same or different compute hosts (i.e., physical servers). Cache
peering then takes advantage of the proximity of vCaches i.e.,
upon a local cache miss, peering vCaches mutually benefit
from the content cached at co-located VNOs. As illustrated
in Figure1(a), in the absence of cache peering, a cache miss
results in the traversal of the virtualized infrastructure (VI)
4 times, before the content can be delivered to the end user
i.e., a content request exits the VI to reach the content origin,
bringing the content to the vCache before exiting the VI again
to reach the end user. In contrast, cache peering allows content
to be locally fetched from a co-located vCache, promising
substantial traffic and latency savings. What is more, the
inherently low latency/high bandwidth µDC environments
are expected to facilitate communication between peering
vCaches, including both the exchange of content availability
information and the delivery of content.

The envisioned setup contributes to the emergence of new
business models, for the NFV-enabled cooperation between
VNOs, in an analogy to inter-domain peering agreements
between autonomous systems in the Internet [2]. However, the
considered environment presents increased complexity. Cache
peering involves the implicit sharing of compute and storage
resources, in addition to network resources. Moreover, VNOs
are expected to pursue their autonomy in managing their (busi-
ness) peering relationships, consequently calling for technical
solutions that do not require the intervention/involvement of
the (third party) infrastructure operator.

In this paper, we report on our ongoing work towards the
realization of cache peering relationships in the aforedescribed
context. We present technical details for the configuration of
the proposed solution for a typical OpenStack-supported µ-DC
environment, identifying key challenges related to virtualiza-
tion overheads, network slice traffic isolation, as well as the
tight control of resource consumption.

II. BACKGROUND

A. NFV and multi-tenancy

The NFV concept has been under intense investigation by
the research community during the last years, largely building
on a series of architecture specifications produced by the ETSI
standardization body [3], as well as a series of open source

ar
X

iv
:1

61
2.

07
22

0v
1

 [
cs

.N
I]

 2
1

D
ec

 2
01

6

(a) Cache miss: no cache peering

(b) Cache miss: peering with co-located cache

Figure 1: Caching in NFV: cache misses and the effect of
cache peering

tools e.g., Open Source Mano (OSM)2. Figure 1 provides
an illustration of this architecture. The management and or-
chestration (MANO) plane provides infrastructure operators
with the capability to manage their virtualized infrastructure
(VI), allocating resources for the realization of virtual network
functions (VNFs), in the form of virtual machines (VMs), and
interconnecting them with the rest of the (virtual) network
infrastructure, into end-to-end network services. In the context
of 5G multi-tenancy support, these services span the entire
network and IT infrastructure of the infrastructure operator,
comprising the network slices allocated to each instantiated
VNO.

Taking a closer look at the VI, and in order to understand
the technical implications of MANO operations in the targeted
environment, we adopt a typical3 OpenStack configuration,
also shown in Figure 1. The IT and network resources of
the VI are organised in Compute and Network hosts/nodes.
Compute nodes (or hosts) host VNFs in the form of VMs.
Network nodes are responsible for handling ingress/egress
traffic, isolating and optimising traffic flow across tenants.

2https://osm.etsi.org/
3OpenStack configuration is rather complex, offering a series of features and

options. We provide a simplified description so as to improve clarity of pre-
sentation, within length limitations. For an elaborate description the reader is
first referred to http://docs.openstack.org/liberty/networking-guide/index.html

This is accomplished by a series of Layer 2/3 forwarding
nodes (e.g., Open vSwitch instances (OVS)4). qbr switches
are introduced to handle security issues, while br-ex is
responsible for handling traffic from/to the external network.
The br-int switch has a central role in switching packets on
a node level. The br-vlan switch is responsible for handling
traffic labeled with 802.1Q VLAN tags. A separate VLAN ID
can be used for each VNO to isolate traffic at Layer 2.

B. Caching

Content caching has been intensively investigated in the
past, with a particular focus on Web (HTTP) caching (e.g.,
[4]). Caches are a typical part of networks and/or content de-
livery networks (CDNs) in the form of middleboxes/dedicated
servers. Traffic is typically intercepted by caches via means
of user request redirection, either in the form of DNS redirec-
tions, in the case of CDNs, or via the end user proxy cache
configuration. Both cases are associated to penalties related
to the DNS signaling latencies and complexity and/or the
cumbersome configuration of user devices. In an alternative
approach, transparent caching is building on the network
configuration, to forward traffic to a cache instance.

Taking advantage of distributed cache resources, cooperative
caching schemes have been developed, enabling the exchange
of cached content by remote caches. This exchange is realized
with the establishment of relationships between the caches
including cache peering relationships (alternatively, peering
caches are known as siblings). When a content request results
in a cache miss i.e., the content is not locally available, a
cache can direct the request to a sibling cache. The receiving
sibling cache responds either with the content or with a failure
message. Sibling caches indicate the availability of content
to each other, either proactively e.g., exchanging compact
representations of their cached contents5 or reactively (i.e.,
upon a request) by directly querying each other [5].

III. CACHE PEERING FOR 5G TENANTS

A. Baseline tenant configuration

Enabling cache peering in an NFV-enabled multi-tenant
environment, first goes through the end-to-end network service
orchestration, including the realization of the caching service
at each tenant separately. This first involves the configuration
of the network so as to ensure the isolation of tenant traffic. To
this end, we consider the establishment of a VLAN segment
per VNO. Edge network devices (on the access network) are
configured by the MANO plane to tag the incoming traffic with
a VLAN ID allocated to the VNO. All involved forwarding
elements in the infrastructure e.g., backhaul links, are also
correspondingly configured to associate VNO traffic (and al-
located resources e.g., bandwidth) with the specific VLAN ID.
The MANO plane subsequently orchestrates the instantiation
of the vCaches, allocating the requested IT resources e.g.,
CPU, RAM, storage, etc. In this stage, a separate tenant is

4openvswitch.org/
5E.g., Cache Digests, http://wiki.squid-cache.org/SquidFaq/CacheDigests

created within the VI i.e., OpenStack in our case. This results
in the secure isolation of allocated resources across tenants
of the VI, including network isolation i.e., a separate virtual
network is created for each tenant within the VI in the form
of a VLAN. At this point, the Orchestrator component is
responsible for coordinating the overall network configuration,
so that the entire forwarding fabric (within and across µDC
borders), appears as a single VLAN domain.

B. Traffic interception

The next stage involves the configuration of the network
for the interception of traffic by the vCaches. As the cache
VMs are configured to participate in the tenant’s VLAN
domain, all traffic can reach them using well known techniques
(see Section II). However, the overheads associated with a
cache miss in the context of NFV caching, as illustrated in
Section I, call for a more agile approach, where vCaches are
reached mainly/only by flows that are likely to result in a
cache hit. The emergence of SDN has introduced the missing
agility and flexibility in dynamically identifying the traffic to
be intercepted by caches, and appropriately steering traffic
through flow rules, subject to content availability and load
conditions [1], [6], [7]. However, realizing these solutions in an
NFV-enabled, multi-tenancy environment requires careful con-
sideration of the shared nature of the infrastructure. Intelligent
traffic interception mechanisms, currently build on content
availability lookups upon each content request. As such, they
are prone to significant resource consumption of switching
fabric, such as br-int at the network node, raising concerns
regarding the overall forwarding performance, even for VNOs
with no vCaches in operation. Alternatively realizing these
solutions on a VNF level, i.e, allocating VM resources for the
content availability lookups, would confine the impact within
VNO resources. However, a close look at Figure 1 illustrates
the drawback of this approach: traffic steering decisions are
taken once traffic flows have already traversed the virtualized
infrastructure towards the VNF; flows that will eventually
bypass the vCache, pay the corresponding traversal delay
penalties.

Considering this tradeoff, our on-going work focuses on the
establishment of traffic interception flow rules on the shared
br-int, however avoiding the aforementioned lookup oper-
ations and the associated overheads. Instead, the definition of
interception rules relies on the pro-active processing of vCache
access logs/cache index, with the purpose of identifying target
IP addresses prone to cache misses e.g., popular web sites
serving personalized content. Our future work plans include a
detailed assessment of this design, focusing on the accuracy
of the traffic interception rules, their memory footprint and
impact on lookup and latency savings.

C. Peering configuration

Based on the aforementioned configurations, each VNO is
in the position to provide caching support within its network
slice. The established network configuration does not allow
traffic to cross VNO borders e.g., an HTTP request of a user

in VNO A can never reach any VNO B vCache, and both
VNO’s vCaches cannot communicate with each other, even
if they are instantiated within the same Compute Host. The
establishment of a cache peering relationship, then calls for
the careful configuration of the network environment, adhering
to the following set of requirements. The main objective is
to allow peering vCaches to communicate so as to exchange
content availability information, cache requests and content
(Req.1). The provided solution however should not allow any
other form of traffic to traverse the inter-VNO communication
link (Req.2). The reason is that a peering agreement requires a
well defined interface, over which the aforementioned control
and data plane peering traffic is solely exchanged, avoiding
misuse of the established communication link/network i.e.,
VNOs should not be allowed to directly offload user traffic
to peering vCaches, so as to reduce local resource consump-
tion. In the same vein, the authentication/authorization of
the involved vCaches is required to mitigate any hijacking
of the peering communication link/network from malicious
third parties i.e., malicious tenant exploiting VNO network
configuration vulnerabilities to make unauthorised use of the
peering vCache resources (Req.3). At the same time, the
communication between the peering vCaches requires a low
latency and high bandwidth communication link/network so
as to avoid delay penalties in the discovery and delivery of
the requested content from peering vCaches, thus preserving
the key benefits of and motivation for peering (Req.4).

Towards these ends, the proposed solution includes a mix-
ture of network and application level solutions. On the network
side, our approach foresees the creation of a shared network
between the involved vCaches. This network is shared ex-
clusively by the vCache instances i.e., the VNF VMs of the
involved tenants. The Role-Based Access Control (RBAC)6

feature introduced in Liberty version of OpenStack, enables
tenants to grant access to network resources for specific other
tenants. Building on this feature, a VNO first creates a network
instance, further also configuring its own vCache(s) by adding
to them an interface to the new network. Subsequently, the
VNO is able to grant access to the peering VNO by its tenant
ID. The latter VNO is able then to proceed with attaching
its vCache(s) to the shared network. When the vCaches are
collocated on the same Compute Host, the resulting config-
uration allows the peering traffic to reach the corresponding
VMs by only traversing the br-int switch (see Figure 1(b)).
When vCaches are located at different Compute Hosts of the
same µDC, traffic reaches the host of the peering vCache
through a direct link typically available between br-vlan
switches of co-located Compute Hosts (not shown due to
length limitations).

The described configuration so far satisfies Req. 1 and 4. To
further satisfy Req. 2 and 3, application level configurations
come into play. Namely, vCaches build on the Squid cache

6http://docs.openstack.org/liberty/networking-guide/adv-config-network-
rbac.html

implementation7, a mature and widely adopted solution. The
configuration of Squid first includes the establishment of the
peering link, through the cache_peer directive8, which
allows the specification of the peering vCache IP/hostname
and listening ports. Satisfying Requirement 2, goes through
the iptables configuration of a vCache, dropping all not
legitimate input traffic e.g., traffic destined to a non-peering
port or originated by an IP address other than the vCache
IP address9. Satisfying Requirement 3, goes through the ap-
propriate login configuration options of the cache_peer
Squid directive. The configuration of the icp_access access
control list, enables access control of cache peering control
traffic.

It is noted that the proposed configuration does not rely on
the direct involvement of the infrastructure operator i.e., both
the establishment of the shared network and the application
layer configuration are carried out by the tenants themselves.
This is considered as an important aspect of the solution,
simplifying and facilitating the management of peering links
by the VNOs, without directly exposing business relationships
to third parties.

As the establishment of a vCache peering link realizes
a business agreement between the VNOs, monitoring and
controlling the amount of exchanged resources becomes partic-
ularly important, as it allows VNOs to ensure the symmetry of
the peering link in terms of resource consumption. This means
that VNOs require firm control over the compute, storage and
network resources devoted to the peering agreement (Req.5).
In the context of caching, this translates to the compute load
for the lookup of content for peering requests, the I/O storage
load for the retrieval of cached content and the load for
the transmission of the content to the peering vCache. Our
preliminary approach on this issue, builds on the Delay Pools
feature of the Squid cache implementation, which provides the
means to limit the bandwidth of certain requests based on any
list of criteria10. In particular, we define a class 2 delay pool
for the shared network between the vCaches.

IV. RELATED WORK

Caching has been identified as one of the key applications
areas for the NFV paradigm, right from the beginning of
the NFV concept [8]. Since then, several commercial NFV-
enabled solutions have appeared, including caching as a key
building block of a broader-CDN oriented solution e.g., [9],
[10]. However, limited information has been revealed about
the service configuration, as these solutions are proprietary,
while, to the best of our knowledge, no commercial solution
focusing on multi-tenancy. The currently on-going 5G PPP
Phase 1 EU H2020 research projects put substantial effort in
integrating and enhancing the NFV paradigm within the 5G
landscape [11]. However, again, to the best of our knowledge,
no research efforts are being devoted to the particular case of

7http://www.squid-cache.org/
8http://www.squid-cache.org/Doc/config/cache peer/
9A malicious peering VNO can still though offload all its HTTP traffic.
10http://wiki.squid-cache.org/Features/DelayPools

cache peering in multi-tenancy environments. It is also worth
noting that, in the recent past, a series of efforts have been
devoted in enabling the extension of (caching) service footprint
through peering, in the context of Content Delivery Network
interconnection (CDNi) [12]; however, these efforts aimed at
the design of interfaces between (application level) CDNs,
rather than building on the emerging NFV capabilities and
the overall integration of IT resources within the 5G network
infrastructure. In all, we consider the proposed cache peering
approach as an important step in progressing beyond the mere
NFV-based instantiation of virtualized caches, focusing on a
better understanding of the particular technical (and business)
opportunities brought in the field by virtualization and network
programmability, namely, for multi-tenancy.

V. CONCLUSIONS AND FUTURE WORK

Building on NFV and SDN technical advances, and the
emerging capability to support multi-tenancy in 5G networks,
in this paper we proposed the realization of cache peering
relationships between VNOs. The purpose is to take advantage
of the potential co-location of virtual caches within µDCs, thus
promising reduced latency and traffic overheads. We presented
our on-going work, identifying key challenges and potential
solutions in the specific context of NFV. The proposed techni-
cal path towards the realization of the envisioned setup enables
the autonomous management of peering links from VNOs.

REFERENCES

[1] M. Rodrigues, G. Dn, and M. Gallo, “Enabling transparent caching
in lte mobile backhaul networks with sdn,” in 2016 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), April
2016, pp. 724–729.

[2] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and
F. Jahanian, “Internet inter-domain traffic,” in Proceedings of the
ACM SIGCOMM 2010 Conference, ser. SIGCOMM ’10. New
York, NY, USA: ACM, 2010, pp. 75–86. [Online]. Available:
http://doi.acm.org/10.1145/1851182.1851194

[3] ETSI, “GS NFV 002 V1.1.1, Network Functions Virtualisation (NFV);
Architectural Framework,” 2013.

[4] J. Wang, “A survey of web caching schemes for the internet,” ACM
SIGCOMM Computer Communication Review, vol. 29, no. 5, pp. 36–
46, 1999.

[5] D. Wessels and K. Claffy, “Internet Cache Protocol (ICP), version 2,”
RFC 2186 (Informational), Internet Engineering Task Force, Sep. 1997.
[Online]. Available: http://www.ietf.org/rfc/rfc2186.txt

[6] M. Kimmerlin, J. Costa-Requena, and J. Manner, “Caching using
software-defined networking in lte networks,” in 2014 IEEE Inter-
national Conference on Advanced Networks and Telecommuncations
Systems (ANTS), Dec 2014, pp. 1–6.

[7] P. Georgopoulos, M. Broadbent, B. Plattner, and N. Race, “Cache as a
service: Leveraging sdn to efficiently and transparently support video-
on-demand on the last mile,” in 2014 23rd International Conference on
Computer Communication and Networks (ICCCN), Aug 2014, pp. 1–9.

[8] “Network Functions Virtualisation Introductory White Paper,” 2012.
[Online]. Available: https://portal.etsi.org/nfv/nfv white paper.pdf

[9] Qwilt, “NFV-based Caching and Acceleration Solution to Power
Video on Mobile Networks,” 2014. [Online]. Available: http:
//qwilt.com/qwilt-launches-nfv-caching-acceleration-solution/],

[10] Juniper/Akamai, “The Elastic CDN Solution,” 2014. [Online].
Available: https://www.juniper.net/assets/de/de/local/pdf/solutionbriefs/
3510532-en.pdf

[11] 5G PPP, “5G PPP Phase 1 Projects,” 2016. [Online]. Available:
https://5g-ppp.eu/5g-ppp-phase-1-projects/

http://doi.acm.org/10.1145/1851182.1851194
http://www.ietf.org/rfc/rfc2186.txt
https://portal.etsi.org/nfv/nfv_white_paper.pdf
http://qwilt.com/qwilt-launches-nfv-caching-acceleration-solution/],
http://qwilt.com/qwilt-launches-nfv-caching-acceleration-solution/],
https://www.juniper.net/assets/de/de/local/pdf/solutionbriefs/3510532-en.pdf
https://www.juniper.net/assets/de/de/local/pdf/solutionbriefs/3510532-en.pdf
https://5g-ppp.eu/5g-ppp-phase-1-projects/

[12] G. Bertrand, E. Stephan, T. Burbridge, P. Eardley, K. Ma, and
G. Watson, “Use Cases for Content Delivery Network Interconnection,”
RFC 6770 (Informational), Internet Engineering Task Force, Nov. 2012.
[Online]. Available: http://www.ietf.org/rfc/rfc6770.txt

http://www.ietf.org/rfc/rfc6770.txt

	I Introduction
	II Background
	II-A NFV and multi-tenancy
	II-B Caching

	III Cache Peering for 5G tenants
	III-A Baseline tenant configuration
	III-B Traffic interception
	III-C Peering configuration

	IV Related Work
	V Conclusions and Future Work
	References

